
Received October 20, 2019, accepted November 22, 2019, date of publication December 9, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958405

Deep Motion-Appearance Convolutions for
Robust Visual Tracking
HAOJIE LI 1, SIHANG WU 1, SHUANGPING HUANG 1, KIN-MAN LAM 2, (Member, IEEE),
AND XIAOFEN XING 1
1College of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
2College of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong

Corresponding author: Shuangping Huang (huangshuangping@gmail.com)

This work was supported in part by the Natural Science Foundation of China under Grant 61673182, Grant 61936003, and Grant
61702192, in part by the Guangdong-Natural Science Foundation under Grant 2017A030312006, and in part by the Science and
Technology Program of Guangzhou, China under Grant 201902010069, Grant 201707010160, and Grant 201704020134.

ABSTRACT Visual tracking is a challenging task due to unconstrained appearance variations and dynamic
surrounding backgrounds, which basically arise from the complex motion of the target object. Therefore,
the information and the correlation between the target motion and its resulting appearance should be
considered comprehensively to achieve robust tracking performance. In this paper, we propose a deep neural
network for visual tracking, namely the Motion-Appearance Dual (MADual) network, which employs a
dual-branch architecture, by using deep two-dimensional (2D) and deep three-dimensional (3D) convolutions
to integrate the local and global information of the target object’s motion and appearance synchronously.
For each frame of a tracking video, 2D convolutional kernels of the deep 2D branch slide over the frame to
extract its global spatial-appearance features. Meanwhile, 3D convolutional kernels of the deep 3D branch
are used to collaboratively extract the appearance and the associated motion features of the visual target from
successive frames. By sliding the 3D convolutional kernels along a video sequence, the model is able to learn
the temporal features from previous frames, and therefore, generate the local patch-based motion patterns
of the target. Sliding the 2D kernels on a frame and the 3D kernels on a frame cube synchronously enables
a better hierarchical motion-appearance integration, and boosts the performance for the visual tracking task.
To further improve the tracking precision, an extra ridge-regression model is trained for the tracking process,
based not only on the bounding box given in the first frame, but also on its synchro-frame-cube using our
proposed Inverse Temporal Training method (ITT). Extensive experiments on popular benchmark datasets,
OTB2013, OTB50, OTB2015, UAV123, TC128, VOT2015 and VOT2016, demonstrate that the proposed
MADual tracker performs favorably against many state-of-the-art methods.

INDEX TERMS Visual tracking, 3D convolutional kernels, motion-appearance.

I. INTRODUCTION
Visual tracking is a fundamental task in the field of computer
vision, where a target, specified by a bounding box in the first
frame, is to be tracked in the subsequent frames. Although
numerous algorithms have been proposed for visual tracking,
it remains a highly challenging problem, especially when the
target object in the video suffers from drastic deformation,
rotation, scale and illumination variations, etc.

To address the difficulties brought by target-appearance
changes, researchers have proposed convolutional neural
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network (CNN)-based approaches [1]–[4], in the hope
of increasing the robustness of appearance representation
through extracting deep features, instead of low-level hand-
crafted features. These methods either combine with tradi-
tional frameworks, such as Discriminative Correlation Filters
(DCFs) [4]; achieve elegant architectural design, such as
that based on the Siamese network algorithm series [5]; or
integrate with a Region Proposal Network (RPN) technique
for object detection [3]. Regardless of the promising perfor-
mance brought by the discriminative power of deep features,
the performance of tracking-by-detection methods is limited,
because they fail to incorporate motion and inter-frame infor-
mation from videos [6]. As a result, these methods have their
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performance degraded, when the visual target shows in-plane
and out-of-plane rotations, dramatic scale variations, severe
occlusion, etc.

To take motion features into consideration for visual
tracking, representative methods, including optical flow and
Recurrent Neural Network (RNN), are adopted alone, or in
combination with a deep tracker [7], [8]. However, these
methods collect motion information from only consecutive
pairs of frames, requiring per-pixel correspondence esti-
mation and localization, which result in dense flow field
and high computational complexity. In addition, traditional
optical flow methods have limited performance, due to the
brightness constancy constraint, which is rarely the case
in complex video scenes. Moreover, optical flow can only
capture low-level motion patterns, which are not robust to
the diverse changes of the targets’ motion in videos. More
recently, some researchers proposed the deep optical flow
network [8]–[10], which integrates optical motion informa-
tion learned by deep networks to improve the computation
efficiency and enhance the semantic representation of motion
features. However, the tracking performance is not prominent
[9]. RNN-based methods consider temporal dependencies
and model the temporal state transitions over the frames in
a video. This class of method usually has an RNN placed
on the top of a deep convolutional network, in which the
deep feature of a frame is taken as the input of an RNN time
cell. Nevertheless, this structure fails to synchronously model
the inter-relationship of the spatial-temporal characteristics in
videos.

In this paper, we propose the Motion-Appearance Dual
network (MADual), a new dual-branch architecture based on
deep 2D and 3D convolutions to improve the feature repre-
sentation and tracking accuracy. The proposed architecture
achieves the spatial-temporal information fusion on both the
local and global scales. First, the local fusion of spatial and
temporal information is carried out by the 3D convolutional
operations. Unlike 2D convolutions, which only capture the
spatial features in a single frame, 3D convolutions also span
the temporal dimension - i.e. they capture appearance features
across multiple consecutive frames. In this manner, the 3D
convolutional operations enable the integration of temporal
information into the learned deep features. Meanwhile, deep
2D convolutional operations are used to capture the appear-
ance features of the whole target in the current frame. After
both the 2D and 3D branches have captured the corresponding
features separately, the spatial-temporal fusion on a global
scale is performed by concatenating the features from the two
branches. To further improve the tracking precision, we also
propose an Inverse Temporal Training (ITT) mechanism,
which enhances the regression model of our tracker. Finally,
we conduct extensive experiments to evaluate our method
under various challenging scenarios.

The main contributions of this paper are as follows:
1) We develop a new dual-branch network based on deep

2D and 3D convolutions for visual tracking, which enables
a local-to-global integration of the target’s motion and

appearance information. Thus, it can handle the challenges,
such as dramatic scale variations, significant appearance
deformation and rotation, etc.

2) A deep 3D network branch, which is more robust to
motion noise, is used to learn the semantic-level motion
features. To the best of our knowledge, this is the first work
to introduce a deep 3D convolutional network for object
tracking.

3) We propose an Inverse Temporal Training (ITT)
strategy, for introducing deep motion features to the online
tracking process, which can assist in training the regressor to
obtain a more accurate target location.

4) Extensive experiments were conducted on seven
benchmark datasets: OTB2013 [11], OTB2015 [12],
OTB50 [12], UAV123 [13], TC-128 [14], VOT2015 [15], and
VOT2016 [6], which demonstrate that the proposed MADual
tracker performs favorably against existing state-of-the-art
methods. The source code and model are obtained from the
Github repository.1

II. RELATED WORK
We will give a brief review of object tracking, based on three
approaches related closely to our proposed work: tracking
by deep neural networks (DNNs), tracking by detection, and
tracking based on spatial-temporal information.

A. TRACKERS BASED ON DEEP NEURAL NETWORKS
Recently, due to their superior representation power, deep fea-
tures have been widely employed to boost the performance in
visual tracking. Since DCFs provides an excellent framework
for tracking [4], [16], a common and important trend is the
combination of the DCF framework and CNN features [4],
[17]–[20]. For example, DeepSRDCF [4] used deep features
in SRDCF [21], and achieved good performance. In [18],
the features from different layers of a pretrained CNN, such
as VGG [22], are concatenated, and then fed into a correlation
filter. C-COT [19] and ECO [20] are trackers proposed based
on continuous convolutional filters. Based on ECO [20],
CFWCR [23] normalizes the respective features extracted
from different layers to obtain a more robust result.

Another group of deep trackers are characterized by
using the Siamese network architecture [5], [10], [24]–[28],
in which a similarity comparison strategy is required to per-
form a template match. By comparing the ground-truth patch
of a target object with the candidate patches within a search
window in the current frame, the most similar patch is con-
sidered the target. In particular, Bertinetto et al. [5] proposed
a tracker based on the region-wise feature similarity between
two successive frames. In [29], a fast tracker was proposed by
learning an agent to decide whether an object is located with
high confidence in an early layer. In [30], the exemplars used
for object tracking were adjusted by means of online updat-
ing. In [5], a two-branch Siamese network was proposed, with
one branch for semantic learning and the other for appearance

1https://github.com/DLCV-HUANG/MADual
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learning. In addition, RASNet [27] was introduced with three
different attention mechanisms to enhance the tracking per-
formance, and SiamRPN [3] integrated the region-proposal
network as the backend to improve the efficiency of tracking
objects with different scales. The GOTURN [24] tracker
learns a deep regression network to compare crops from a
search region in the current frame to the target in the pre-
vious frame. SiamVGG employed more advanced networks
to achieve better discrimination capability and more accurate
object tracking.

From the above trackers, deep CNNs can learn effec-
tive high-level semantic representations of object appearance
for locating desired targets, and enhance the performance
of existing trackers, irrespective of whether correlation fil-
ters or Siamese networks are used. These methods are con-
stantly evolving and overcoming the specific limitations of
CNN methods for object tracking. One example is to use
offline training to alleviate high computational complex-
ity and achieve reliable real-time performance [21], [31].
Another example is to employ more advanced networks, such
as AlexNet, VGGNet, and ResNet, for better discrimination
capability, and eventually improve the tracking accuracy [1],
[4], [5], [28].

Despite the success of DNN-based trackers, they can only
achieve sub-optimal tracking performance, as CNNs are only
used to enhance the appearance features and hardly benefit
from the motion and inter-frame information. In fact, visual
trackers can be easily disturbed by similar objects or unseen
object’s appearances if only the appearance cue is used,
resulting in relatively uncertain location predictions in the
current frame. In this paper, we additionally introduce a 3D
deep network to capture semantic-level motion features, and
propose a way to blend both the appearance and motion
information to achieve effective target detection and track-
ing in the current frame, even under challenging conditions.
By using a deep network of multiple 3D layers, the semantic-
level motion features, which are more robust to varying target
appearance due to motion than directly using the low-level
motion features obtained from variousmotionmodels [9], can
be learned.

B. DETECTION-BASED TRACKERS
The tracking-by-detection approaches have been commonly
used by most of the popular object trackers in recent years,
in which tracking is formulated as the detection problem
in each frame [1], [32]–[39]. These approaches emphasize
object appearance modeling to decide whether an image
patch is a target object or not. Among these approaches,
the generative method describes the target appearance using
a generative model and searches for the target region that
best fits the model. Example algorithms include sparse rep-
resentation [33], density estimation [34], and incremental
subspace learning [35]. Discriminating methods aim to build
a classifier that distinguishes the target object from the
background. These tracking algorithms typically learn the
decision boundary based on multiple instance learning [36],

P-N learning [32], online boosting [37], structured output
SVMs [40], domain adaptation [1], random forests [38], and
ensemble learning [39].

Among the numerous tracking-by-detection algorithms,
[1] is one of the most popular CNN-based trackers with
state-of-the-art accuracy, which proposed the multi-domain
convolutional neural network. Therein, the shared layers of
the architecture are pretrained using a large set of videos with
tracking ground-truths to obtain a generic target representa-
tion. The multiple branches of the domain-specific layers are
responsible for binary classification to identify the target in
each domain. Following the work of [1], Jung et al. [41] pre-
sented a real-time version, striving to differentiate foreground
instances across multiple domains and learn a more discrimi-
native embedding of target objects with similar semantics by
the introduction of a new loss term. To summarize, the exist-
ing detection-based trackers can achieve results only as accu-
rately as those models based on the appearance variations
of target objects. In this paper, we go beyond the traditional
detection model, with the motion features synergistically
integrated with the appearance features to locate the target in
the current frame. Our argument is that target objects in previ-
ous multiple consecutive frames can be linked together based
on temporal information, which carries information about
the underlying motion pattern of the targets to be tracked.
The motion pattern characterizes the temporal smoothness.
When the appearance variations are severe, such that the
appearance model cannot be fitted; or when a distractor with
similar appearance to the target object occurs, using only
the appearance model will probably result in detection and
tracking errors. In this paper, motion feature is introduced
to enrich the representation of the target object in a current
frame, so as to achieve a more accurate estimation of the
target position.

C. SPATIAL-TEMPORAL TRACKER
The lack of temporal information greatly degrades the track-
ing performance when challenges, such as partial occlusion
and deformation, etc., occur. To address this problem, RNNs
[30], [42]–[44] were introduced to extract time-contextual
information to boost tracking performance. In RATM [30],
an RNN with an attentional mechanism is used to predict
the position of a target at specific time instances, given a
real-valued hidden state vector. The state vector summa-
rizes the predictions of previous time steps. The RFL [42]
algorithm captures both the spatial and temporal informa-
tion of a sequence for visual tracking using convolutional
LSTM. Except for RNN, the optical-flow methods have
always been adopted to obtain the flow information from
two consecutive image frames, capturing the motion patterns
[8], [9]. For example, DMSRDCF [9] fused handcrafted and
deep-appearance features with motion features, which were
learned based on the optical-flow network in a DCF-based
framework [21]. FlowTrack [8] formulated the optical flow
estimation in an end-to-end tracking framework, andmodeled
the motion during training. Although the performance of all
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FIGURE 1. Offline architecture.

the above-mentioned trackers benefits from the introduction
of the temporal or motion information, they have obvious
shortcomings. An RNN is focused on temporal dependencies
across frames instead of modeling spatial-temporal informa-
tion synergistically. The optical-flow method directly models
motion pattern based on per-pixel correspondence andmotion
estimation at a low-level manner, thus it is computation-
ally intensive and lacks deep semantic-level motion features.
In contrast, our proposed convolutional 3D (C3D) network is
well-suited for joint spatial-temporal feature learning, which
motivates us to propose a C3D-based tracking framework.

Actually, 3D convolutional models have demonstrated
their outstanding representation power in a wide range of
video analysis tasks [45]–[50]. In [45], 3D convolutions were
first proposed to recognize human action, aimed at captur-
ing the motion information encoded in multiple adjacent
frames. In [51], the C3D methods outperformed state-of-the-
art video classifiers, in which a homogeneous architecture
with small 3×3×3 convolution kernels in all layers was
designed to obtain the best performing classifier. [46] applied
the 3D convolutional network to capture the local and global
temporal structure of short videos to produce descriptions.
CDC [48] and S-CNN [49] addressed temporal action local-
ization in untrimmed long videos, utilizing the features from
deep 3-dimensional convolutional networks (3D ConvNets).
Despite the success of C3D in video analysis tasks, such as
action recognition, temporal localization, classification, etc.,
no research work can be found to explore C3D in visual
tracking, to the best of our knowledge. To take the advantage
of the motion feature from the C3D network, in this paper we
propose the ITT strategy to improve the regression process
for obtaining more precise target positions.

III. METHOD
In this section, we describe the proposed dual-branch
network-based MADual tracker, which consists of an offline
architecture (Figure 1), an online tracking architecture based
on ridge regression (Figure 2), and the achieved hierarchical
local-global motion-appearance integration through the net-
work design.

A. OFFLINE ARCHITECTURE
As illustrated in Figure 1, our offline architecture consists
of two branches, forming its backbone network. For the two

FIGURE 2. Regression-based tracking architecture.

branches, a deep convolutional 2D (C2D) network is used
to extract the appearance representation of the target object
from the current frame, .i.e. frame t , and C3D is for learn-
ing the semantic-level motion features between successive
frames. Subsequently, the outputs of these two branches are
concatenated, followed by two fully connected layers, i.e., fc1
and fc2, each with 2048 output units. Finally, the network
is equipped with D branches, i.e. fc31 − fc3D, with each
branch corresponding to a different domain, serving as the
last fully connected layer. Each of the D branches contains
a binary classification layer with the SoftMax cross entropy
loss, which is responsible for distinguishing the target from
the background in each domain [1]. Note that we refer to
fc31 − fc3D as domain-specific layers and all the preceding
layers as shared layers [1].

The architecture of our C2D branch is shown on the left of
Table 1. It receives a 107×107 RGB input and contains three
convolutional layers (Conv1-3). The configuration of these
convolution layers is identical to the corresponding parts
of VGG-M [52], which is pretrained on the ImageNet [53]
dataset. In our design, VGG-M is tailored to be a substantially
simplified version to serve as the deep 2D convolutional
branch. This is because when the network becomes deeper,
class semantics will be overemphasized and the lower-level
features tend to be diluted. This is not suitable for handling
domain adaptation in visual tracking.

TABLE 1. C3D deep structure.
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The architecture of our C3D is illustrated in Figure 3, and
the detailed network parameters are listed on the right of
Table 1. From Figure 3, the network has totally 8 convolu-
tional layers and 5 pooling layers, and is tailored based on
the original network structure proposed in [51], by removing
the last two fully connected layers. We employ this structure
for two reasons. The first one is that this structure has been
empirically proven to be a good architecture for the video
analysis tasks [54], [55]. The second reason is that the model
pretrained on a large video dataset, i.e. the Sports-1M [56],
is available publicly. The 8 convolutional layers can be cate-
gorized into 5 types, with different numbers of filters for the
different types. These 5 types are denoted as Conv1, Conv2,
Conv3_x, Conv4_x, and Conv5_x, respectively, as tabulated
in Table 1, and the corresponding number of filters are 64,
128, 256, 512, and 512. All the 3D convolutional kernels are
homogeneously set as 3× 3× 3, with stride 1×1×1, which is
the best setting proved by [54], [55]. All the 3D pooling layers
are 2×2×2, with stride 2×2×2, except for pool1, which has a
kernel size of 1× 2× 2 and stride 1×2×2, with the intention
of not to merge the temporal signal too early and to satisfy
the clip length of 16 frames. Therefore, 7 × 7 × 512 feature
maps are generated, since we resize the input video frames to
120×120. According to the network configuration, as shown
in Figure 3, we can completely collapse the temporal signal
before concatenating with it the 2D features.

FIGURE 3. C3D deep structure.

B. REGRESSION-BASED TRACKING ARCHITECTURE
As demonstrated in Figure 2, the regression-based track-
ing architecture directly inherits the dual branches of our
trained offline architecture, to form its backbone network.
That means that the dual branches will not be updated again
in the tracking procedure. After the backbone is followed by
both the three fully connected layers (fc1− fc3) in the upper
path and the regressor network in the lower path, as illustrated
in Figure 2. The fully connected layers and the regression
network are trained discriminatively to differentiate the target
from the background, and the offset of the bounding box is
further regressed to finetune the candidate bounding boxes
with the highest classification score. The three fully con-
nected layers have the same hyper-parameter configuration
as in the offline network. The regressor is composed of a
fully connected layer, with four output units, representing the
coordinates of the bounding-box center and the width and
height of the bounding box, respectively.

C. HIERARCHICAL LOCAL-GLOBAL SPATIAL-TEMPORAL
INTEGRATION
In the dual-branch architecture, the spatial appearance fea-
tures and the temporal motion features are extracted and

FIGURE 4. 3D convolution operations, where X, Y, and Z are the size of an
input cube, and Q, P, and R are the convolutional kernel size. (Top: sliding
along the temporal dimension, bottom: sliding over the spatial
dimensions).

combined synchronously to achieve accurate object tracking.
In the C3D branch, each 3D operation convolves a 3D ker-
nel with the cubes formed by stacking multiple contiguous
frames together. In this way, the pixels in the generated fea-
ture maps reflect the connections between the target appear-
ances in the multiple contiguous frames, thereby capturing
motion information. For clarity of presentation, Figure 4 illus-
trates the 3D convolution operation. From the figure, we can
see that the R dimension of the 3D convolutional kernel
represents the temporal dimension, which does not exist in a
2D kernel. Furthermore, the 3D convolution formulation can
be written as:

vxyzij = bij +
∑
m

R−1∑
r=0

P−1∑
p=0

Q−1∑
q=0

wpqrijm v
(x+p)(y+q)(z+r)
(i−1)m (1)

where vxyzij denotes the value of the unit at position (x, y, z)in
the jth feature map of the ith layer. bij is the bias for this
feature map, and m indexes over the set of feature maps
from the (i − 1)st to the current feature map. wpqrijm is the
(p, q, r)th value of the kernel connected to the mth feature
map of the previous layer. P and Q are the height and width
of the kernel, respectively, and R is the temporal dimen-
sion of the 3D kernel. As demonstrated by Equation (1),
the local neighborhood region centered at position (x, y) is
clamped with the corresponding consecutive R frames in the
computation of the spatial-temporal features. In other words,
the motion of a tracked object in the R consecutive frames is
embedded in the feature maps v, together with the appearance
feature of the corresponding spatial patch (i.e. the (x, y)-
centered neighboring region). Thus, the convolution oper-
ations locally synchronize the spatial-temporal information
obtained from the target patch and those in the successive
frames. Usually, the motion of a target patch may suffer from
changes in its local appearance. Therefore, it is necessary
to integrate the local spatial and the corresponding local
temporal information synchronously. Furthermore, when a
3D convolution kernel slides along the time axis (as shown
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at the top of Figure 4), we can obtain feature maps along the
temporal dimension. The values of a feature map summarize
the motion pattern in the neighborhood of the position (x, y).
When the convolution kernel slides only along the x or y
axis (as shown at the bottom of Figure 4), we can obtain a
2D feature map of values along the spatial dimensions. This
set of values expresses the motion patterns of the different
spatial blocks in the clamped consecutive frames. All the
feature-map values are integrated to form the joint temporal
and spatial features. If this spatial-temporal feature is not
extracted in a synchronized manner, the misalignment of the
spatial and temporal features can easily occur. This may hin-
der the capability of our tracker to handle various challenges
in videos. Moreover, the extraction and fusion of the spatial
and temporal features are performed by the convolutional
kernels, whose parameters are learnable and flexible.

From the previous description, using the 3D convolution
operations only, which focuses on the synchronous fusion
of the local spatial-temporal information, is not sufficient
to achieve the best tracking performance. In fact, the global
motion pattern of a tracked target is exhibited in multi-
ple successive video frames, and the appearance represen-
tation depends on the complete area covered by the target
in the current frame, rather than the image patches only.
Hence, we additionally incorporate the global integration of
spatial and temporal information using a dual-branch archi-
tecture design. Specifically, the spatial and temporal infor-
mation is fused by concatenating the 2D and 3D output
features. Therein, feeding the current frame into the 2D
network branch yields the appearance features, and feed-
ing the frame cube, comprising of the current frame and
a specified number of preceding frames, into the 3D net-
work branch yields the temporal information. By sliding the
window temporally, synchronized with the current frame,
global spatial-temporal fusion occurs throughout the entire
video.

In summary, the key to our dual-branch architecture is
its ability to hierarchically fuse temporal-spatial informa-
tion in a synchronous manner, using C3D for local inte-
gration of motion features, which are combined with the
information about the tracked object obtained by 2D con-
volution for global integration. In addition, deep structures
based on 2D and 3D convolutions can learn high-level target
appearance and semantic-level motion features, which are
then further fused. This fusion of semantic appearance and
semantic motion, instead of combining low-level motion and
high-level appearance as in [8], reflects the synergy in our
proposed method. In our experiment, we will show that the
proposed dual-branch model leads to consistent performance
improvements.

D. TRAINING
Corresponding to the proposed dual-branch tracking struc-
ture, the training of the network consists of multidomain
offline learning and online visual tracking, which will be
described in the following subsections.

1) OFFLINE TRAINING
We train offline the multidomain architecture, in an attempt
to integrate arbitrary domain information into the learning
procedure. We believe that some common properties about
both object appearance and object motion pattern exist in
different domains, which are desirable for visual tracking [1].
Themultidomain idea is borrowed fromMDNet [1], but it just
emphasizes the appearance learned from multiple domains,
without anymotion information being considered. The reason
for this is that MDNet uses a deep 2D network only, instead
of combining a 2D and a 3D network.

Specifically, in each SGD iteration, T frames are sampled
randomly from each selected sequence for easy implementa-
tion. In a mini-batch for the C2D branch, 32 positive exam-
ples, i.e. intersection over union (IoU)> 0.7, and 96 negative
examples (IoU < 0.5) were drawn from each frame, with a
Gaussian distribution and a uniform distribution, respectively.
This results in producing 32T positive and 96T negative
samples for training, which are all from the same domain.
For convenience, we denote each sample as cdti , representing
the ith sample from the tth training frame of the dth video
sequence, where d ∈ [1,D] and i ∈ [1,N ]. N is the total
number of samples from each frame, i.e.,N = 32+96 = 128,
and D is the number of video sequences used for training.
Meanwhile, we construct a mini-batch for the C3D branch
with the target-cube samples. Specifically, frame t and a
specified number (e.g. 15 in this paper) of the preceding
consecutive frames form a frame-cube. For each frame in the
frame-cube, we crop a target-centered image region, which is
twice the size of the ground-truth bounding box containing
the targeted object, and then resize each of the regions in
the respective frames into a fixed size, e.g. 120×120 pixels
in our experimental setting. Finally, the cropped and resized
regions form a sample point of the C3D mini-batch. This
sample point is named as the target-cube, which is denoted as
[xdt−15, x

d
t−14, . . . , x

d
t−1, x̃

d
t ]. x̃

d
t is specially cropped, based on

the center of the ground-truth bounding box of the preceding
frame, with the size double that of the ground-truth bounding
box. This setting is due to the fact that the ground-truth
bounding box for the current frame t is unknown during
tracking. It is reasonable to assume that the targeted object in
the current frame is moving within the area that is twice the
size of that in the previous frame. By packing the ground-truth
regions, in terms of their pixel values, with double the size of
their original ground truths, this can form contextual infor-
mation about the targeted object in the successive frames,
which can effectively represent the motion and appearance
information about the object.
We denote motion_info and appearance_info as the out-

put feature maps generated by the C3D and C2D branches,
respectively. Furthermore, we denote ftdi as the concatenated
feature maps output by the dual network. These two types of
information can be expressed as follows:

motion_infodti = C3D(xdti−15, x
d
ti−14, . . . , x

d
ti−1, x̃

d
ti ) (2)
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appearance_infodti = C2D(ctdi ) (3)

f dti = dual(ctdi ; x
d
ti−15, x

d
ti−14, . . . , x

d
ti−1, x̃

d
ti )

= [motion_infodti ;appearance_info
d
ti ] (4)

where C3D(·) and C2D(·) represent the forward outputs of
the C3D and the C2D branches, respectively. dual_net(·) is
the feature output of the backbone network, which is gen-
erated by synergistically extracting and fusing the motion
and appearance information. Moreover, f dti is fed forward into
three fully connected layers, and finally a SoftMax function to
determine whether the candidate cdti is the target or the back-
ground. For the backpropagation adopted in SGD, we employ
the cross-entropy loss function as follows:

`(ydti , s
d
ti ) =

∑
c

ydti × log(σ (s
d
ti )) (5)

sdti = φ
d (8(f dti )) (6)

In (5) and (6), σ (·) denotes the output of the SoftMax clas-
sifier, 8(·) represents the output from the shared fc1 − fc2
layers, and φd (·) is a binary classifier from the last fully
connected layer fc3d for the domain d, and stdi is the cor-
responding classification score. yti ∈ {1, 0} is a one-hot
encoding of the ground-truth label, where 1 and 0 represent
the target and the background classes, respectively. As stated
previously, we chose T = 8 frames from a domain to form
the mini-batch for each iteration. Therefore, the objective
function to train the dual-synergy network offline for the dth
domain is thereby constructed as follows:

argmin
W

1
T × N

T∑
t=1

N∑
i=1

`(ydti , s
d
ti )+ β||W ||

2
2 (7)

where W represents the weights of the dual network, and β
indicates the weight decay.

2) ONLINE TRAINING
After the offline training, as described in Section D.1,
the optimal parameters learned for the dual-branch backbone
and the first two shared fully connected layers in the multido-
main architecture are kept fixed, while the domain-specific
layers, fc31 − fc3D, are fine-tuned to train up a new fc3 for
each of the D training sequences. These optimal parame-
ters are frozen and directly used in the tracking procedure,
through which the common prior knowledge about object
appearance and motion pattern can be applied to testing
sequences, achieving the transfer of domain knowledge. This
benefits the tracking of new targets, and alleviates the bur-
den of online training. In fact, we simply fine-tune the last
fully connected layers (fc31 − fc3D) in online training. The
fine-tuning consists of two parts, tracker initialization and
online update, details of which are given in the following.

a: TRACKER INITIALIZATION
We initialize our tracker with the ground-truth bounding box
from the first frame; this is a standard practice used for object

tracking. In detail, we collected 500 positive (IoU > 0.7)
and 5000 negative (IoU < 0.5) samples to train the fully
connected layers fc1−fc3 in Figure 2. In addition, we sampled
the patches uniformly by setting the IoU in the range [0.6,1],
and subsequently selected 100 patches, such that the ratio of
the area of each of the patches to that of the ground-truth
bounding box is limited to the range [1,2]. These samples
were used to preliminarily learn the regressor model in the
tracking architecture shown in Figure 2.

b: ONLINE UPDATE
Training Data Pool: At each subsequent frame t , the target
position is estimated using the current tracker. Centered at
the estimated target box, we collected 50 positive sample
patches according to a Gaussian distribution, whose IoU with
the predicted targeted bounding box is [0.6,1]. Similarly,
we uniformly collected 100 negative samples, whose IoU
with the predicted targeted bounding box is [0,0.3]. The IoU
boundary values are more stringent compared to the sampling
procedure for offline training, in consideration of the prob-
able inaccuracy of the estimated bounding boxes. Finally,
the estimated box, and all the positive and negative samples,
together with the tth frame, are included to form the training
data pool. In consideration of the pool volume, we update the
pool to the latest 100 frames of the associated data.
Regressor Enhancement: At frame P, we perform a

one-time enhancement learning of the regressor. Specifically,
we take all the estimated bounding boxes from frames 2 to P
from the data pool, and then pad each box using the original
image pixels to double its size. Subsequently, these padded
boxes are resized into a fixed size of 120×120, and the
target-cube is built using the ITT strategy, which will be
described later. Furthermore, the target-cube is input into the
C3Dbranch, capturing themotion features, to train the regres-
sor under the supervision of the ground truth from the first
frame. Compared to most of the existing regressors learned
based on the appearance features [1], [24], our approach
synergistically uses spatial-temporal information to learn the
regression model, and thus renders it more accurate.
Periodical Updating: If t mod P = 0, we update the tar-

get/background classifier and its associated fully connected
layers. From the data pool, we randomly select positive and
negative samples to construct the mini-batch for SGD itera-
tion, based on the binary cross entropy loss. This procedure is
called the ‘long-term update’, as the samples may come from
the frames up to 100 frames away. However, if all the can-
didates’ scores are below the threshold ‘0’ when predicting
for frame t , we adopt the short-term update. This will only
consider samples from the latest specified number of frames
(16 in our experiments) used for the SGD iteration.

3) TRAINING STRATEGIES
a: INVERSE TEMPORAL TRAINING (ITT)
After the prediction for the Pth frame is completed, we use
ITT to further enhance the learning of the regressor by
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simulating the video replay process. Based on the target
estimations from the first full cycle - i.e. the predictions from
the first P frames - we reverse the order and then construct
the input [xP, xP−1, . . . , x2; x1] for the C3D branch. Each
xi(i = 2, 3, . . . ,P) is centered at the estimated target box in
frame i, and we also double the size of the primary estimated
box in the ith frame to incorporate the contextual information.
Unlike other frames that contain estimated bounding boxes
and the corresponding centers smoothly transitioning back-
ward, x1 contains the ground-truth box, which could be very
different from that of x2. This greater center variation between
x1 and x2 might disrupt the smooth replay. Therefore, x1 is
constructed by cropping the patch with the same center as that
of x2 and doubling its size as with the ground truth from the
first frame. So far, just as tracking is started from thePth frame
and back to the first frame, all the x values are arranged in the
temporally reverse order. We use the temporal-reversed cube
[xP, xP−1, . . . , x2; x̃1] as the input of the C3D branch, and the
samples from the first frame, i.e. xP, as the input of C2D,
to retrain the regressor. To summarize, this new Inverse Tem-
poral Training strategy helps us to introduce motion pattern
to learn the regressor for improving localization precision,
even in the case that we have the ground truth only in the
first frame.

With the help of the ITT strategy, our regressor differs
in two aspects from the existing regression techniques used
in state-of-the-art trackers widely, including [1], [39], [41].
The first one is that our regression model exploits not only
the ground-truth bounding box from the first frame, but also
the estimated boxes in the subsequent frames within the first
cycle (i.e., from the 2nd to the 16th frames in our setting).
The second one is that the regressor is learned based not only
the appearance information from the first frame, but also the
motion information hidden in the first cycle of the frames.
It can be deduced that these two characteristics make our
regression model more accurate than the traditional ones [1].
The estimated boxes will not drift far away from the ground
truth in the early tracking stage, and richer information is
provided for training the model. Figure 5 gives a simple view
of ITT, fromwhich a similar motion pattern is implied in both
the reverse sequence and the forward sequence, even though
the trajectory renders with different directions. This claims
the rationality of the ITT strategy.

FIGURE 5. In the first row, video frames are arranged in the original,
forward order. In the second row, video frames are arranged in the
reverse order. The orange line represents the trajectory of the object.

b: FIRST STRATEGY
According to the data pool mechanism, as described previ-
ously, all the sample points are from the latest 100 frames.
Thus, when we perform a periodical update at frame t > 100,
no samples from the first frame are included in the data pool.
Considering that the data points from the ground truth in
the first frame are more reliable, we sample some positive
data points from the first frame for SGD iterations. The
introduction of FIRST slightly modifies the loss function as
follows:∑

k

∑
i

`(yti , ski )+
∑
i+

`(y1i+ , s1i+)+ β||W || (8)

where k denotes a random frame index number in the latest
100 frame range, i denotes the sample index from the data
pool, and i+ denotes the positive sample index from the first
frame.

IV. EXPERIMENTS
In this section, we first describe the experiment settings.
Then, the ablation studies are provided to analyze the effect
of the components or strategies in the proposed method.
Finally, quantitative and qualitative results on the track-
ing benchmarks, including OTB series datasets (OTB2013,
OTB2015, OTB50), UAV123 and TC128, andVOT challenge
datasets (VOT2015, VOT2016) are presented, for comparing
our method with those state-of-the-art tracking algorithms.

A. EXPERIMENT SETTING
All the experiments were implemented under the Pytorch
framework, on a PC equipped with a single Intel(R) Xeon
(R) E5-2630 CPU @ 2.4GHz and a single TITAN X GPU
with 12G RAM. The running speed of our MADual tracker is
0.7 fps. We applied the SGD solver to perform offline train-
ing of the multidomain architecture, which converges after
25 epochs. The learning rate of the dual-branch backbone,
consisting of C3D and C2D, is set at 10−3, and set at 10−2 for
the training of the subsequent fully connected layers. In addi-
tion, we freeze the parameters of the first two layers of the
C3D convolutional network during online training, in order
to achieve a higher training efficiency. For online tracking,
we trained the network for 30 epochs, with the learning rate
of 10−4, based on the first frame of the test video. For online
updating, the number of epochs for fine-tuning is 15. The
weight decay and momentum are set at 5 × 10−3and 0.9,
respectively.

B. ABLATION STUDY
To demonstrate the effectiveness of the proposed method
(including the hierarchical local-global motion-appearance
integration architecture, as well as the ITT and FIRST strate-
gies), we conducted comparison experiments between the
proposed MADual and three variants of MADual, which are
as follows:

(1) Single_2D. This is obtained by removing the C3D
branch from the deep dual-branch backbone network. From
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the architectural point of view, Single_2D is the same as
MDNet. However, we keep the optimal parameters and hyper-
parameters for the MADual network, and evaluate the impact
on performance when the C3D branch is removed. The ITT
and FIRST strategies are not used in this Single-2D.

(2) Dual_Preliminary. This is obtained by using both the
C2D and the C3D branches to form the dual-branch back-
bone, without using any of the two strategies.

(3) Dual_ITT. This is obtained by equipping Dual-
Preliminary with the ITT strategy.

The comparison experiments were conducted on OTB2013
[11]. Table 2 summarizes all the results, in terms of overlap
precision (OP) and distance precision (DP) (described later).
From Table 2, MADual achieves the best accuracy in terms of
DP and OP, i.e. up to 94.6% and 72.5%, respectively. Using
Single_2D decreases the tracking performance significantly,
with the DP and OP reduced to 91.5% and 69.8%, respec-
tively. In addition, whether introducing C3D, or utilizing the
ITT or FIRST strategies, can help improve the performance
compared to the basic Single_2D method. Therefore, this
proves the rationality of the design of our proposed method.
When looking closer at the results, Dual_Preliminary signif-
icantly outperforms Single_2D by 1.6%, in terms of both DP
and OP. This clearly shows that the hierarchical local-global
appearance-motion integration mechanism is advantageous
to visual tracking. With the help of ITT, Dual_ITT achieves a
high DP and OP of 94.2% and 72.1%, respectively. Including
the FIRST strategy can further improve the performance of
Dual_ITT.

TABLE 2. Ablation study of the different components of the proposed
MADual tracker on OTB2013.

C. EVALUATION ON THE OTB SERIES DATASETS
The OTB series datasets include OTB2013, OTB2015 and
TB50. Herein, the OTB2013 and OTB2015 benchmarks con-
tain 51 videos and 100 videos, respectively. The latter bench-
mark is an extension of the former dataset. Within these two
datasets, 50 particularly challenging sequences were selected
to build the TB50 dataset.

For this part of the evaluation, we selected 58 videos
from the VOT challenge datasets, VOT2013, 2014 and 2016,
(as described later), excluding the videos in the OTB series,
UAV123 and TC-128 (as described later) to train the proposed
dual-branch based tracker offline.

We use two metrics: success rate and precision, for quan-
titative evaluation. The success rate is computed as the ratio
of successfully tracked frames according to the IoU of the
predicted and ground-truth bounding boxes, and the success
plot shows how the success rate changes with the overlap

thresholds varying from 0 to 1. Precision is defined based
on the center localization error, and the precision plot is
plotted to show the changes of the ratio of the frames with
a localization error below a threshold. Furthermore, OP is
defined as using the success rate at a specific threshold
(e.g. 0.5) for ranking the trackers’ performance. DP is defined
as the precision value at a specific threshold (e.g. 20 pix-
els). The state-of-the-art trackers, MDNet [1], ECO [20],
C-COT [19], DeepSRDCF [4], SRDCF [21], ADNet [57],
PTAV [17], CFNet [58], SiamRPNRes22 [28], SiamFC-
Next22 [28], DAT [59] and Staple [16], RFL [42], were used
for comparison. The experimental results are demonstrated
in Figures 6 to 8, in terms of the precision and success
plots. Note that OPE in these figures refers to the one-pass
evaluation, as was explained in [11]. All the trackers are
ranked according to DP and OP.

FIGURE 6. Precision and success plots on the OTB2013 dataset.

FIGURE 7. Precision and success plots on the OTB2015 dataset.

FIGURE 8. Precision and success plots on the TB50 dataset.

Overall, the performance of our MADual tracking method
is ranked first or at a high position for all the OTB datasets,
in terms of all the evaluation metrics. Specifically, the MAD-
ual tracker achieves the highest OP of 72.5% and 65.4%
on OTB2013 and TB50, respectively. Compared with the
second-ranked methods, such as ECO and MDNet, ours
achieves an increase of the success rate by 1.6% and 0.9%,
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respectively. On the largest OTB 2015 dataset, both our
MADual and ECO achieve the best performance in terms of
OP. On the other hand, our method is ranked second on the
OTB series datasets, in terms of DP, and is only 0.2% and
0.7% lower thanMDNet on OTB2013 and OTB2015, respec-
tively. In addition, we found that the green curves, which
represent the DP performance of our MADual method in
Figures 6, 7 and 8, always remain in the outer area for thresh-
olds larger than 30, indicating that our distance precision rates
are higher than the methods ranked first. Table 3 tabulates the
detailed precision value of several top performing methods
(MADual, ECO, SiamRPNRes22 and MDNet) with different
location-error thresholds, which further proves the superior
performance of our proposed tracker.

TABLE 3. Precision value at different pixel distances. The results are
shown in the form of ‘‘OTB2013/OTB2015/TB50’’. The top two methods
are highlighted in red and blue, respectively.

We further investigated the capability of the MADual
tracker to handle various challenging conditions. Aswe know,
Wu et al. [12] categorized the OTB2015 sequences accord-
ing to 11 attributes and constructed several subsets with
specific challenging conditions. We analyzed the tracking
performance of the MADual method under different chal-
lenging conditions. Figure 9 shows the bar charts, in terms
of OP and DP, respectively. We can see that MADual is
always ranked within the top three, in terms of both OP and
DP. This indicates that the proposed tracker generally per-
forms well in dealing with different challenging conditions.

FIGURE 9. The performance, in terms of (a) OP and (b) DP, of 13 trackers
under different challenging conditions on OTB2015.

Specifically, in terms of OP, MADual performs favorably
against all of the state-of-the-art methods in five challeng-
ing cases, including deformation (DEF), in-plane rotation
(IPR), out-of-plane rotation (OPR), scale variation (SV), and
illumination variation (IV). As for the cases of occlusion
(OCC), background clutters (BC) and motion blur (MB), our
MADual still outperforms MDNet, but is in second position,
in terms of the success rate, just behind the ECO method.
As shown in Figure 9(b), with IPR, OPR, SV and IV chal-
lenges, MADual outperforms all the other trackers in terms
of distance precision. In the cases of the DEF and BC chal-
lenges, our method outperforms MDNet, and is ranked sec-
ond. In the cases of OCC, OV, LR and MB, the performance
of the MADual tracker takes third position. To summarize,
our MADual achieves the best performance in most of the
difficult scenarios.

D. EVALUATION ON TC-128 AND UAV123
The UAV123 dataset consists of 123 aerial videos, with more
than 110k frames. The TC-128 dataset contains 128 color
videos. We used the same metrics and training dataset as
those used on OTB in our experiments. Those state-of-the-art
trackers that provide publicly-available results on TC-128 or
UAV123 are used for comparison. Specifically, ECO [20],
RTMDNet [41], PTAV [17], DeepSRDCF [4], SRDCF [21],
and KCF [31] were evaluated on TC-128. ECO, RTMDNet,
SRDCF and KCF were evaluated on UAV123.

Figure 10 illustrates the precision and success plots of
the proposed MADual tracker and all the other algorithms
evaluated on TC-128. It can be seen that our method is
ranked first in terms of DP, in particular, it outperforms the
state-of-the-art method ECO by 1%. However, our MADual
achieves the success plot of 59.5%, which is slightly lower
than ECO. Figure 11 shows the precision and success plots
of the different methods on the UAV123 dataset. The results
show that our MADual tracker is obviously superior to ECO,
in terms of the distance precision and overlap success rate.
In detail, our method outperforms ECO by 1.0% and 2.4%,
in terms of DP and OP, respectively.

FIGURE 10. Precision and success plots on theTC-128 dataset.

E. EXPERIMENT ON VOT CHALLENGES
In this part of evaluation, we use 87 training sequences from
OTB2015, excluding the videos included in VOT2015 or
VOT2016, for offline training.
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FIGURE 11. Precision and success plots on the UAV123 dataset.

We use the official version 6.0.3 of the Visual Object
Tracking toolkit to compute and plot the reset-based per-
formance measures, including accuracy, robustness and
expected average overlap. Herein, the accuracymeasures how
well the bounding box predicted by a tracker overlapswith the
ground-truth bounding box in terms of IoU. The robustness
measures the frequency of tracking failures. The expected
average overlap (EAO) measures the overall performance,
which takes both accuracy and robustness into account quan-
titatively. The detailed formulation of these metrics can be
found in [60].

1) VOT2015 CHALLENGE
The VOT2015 dataset consists of 60 sequences. We com-
pare the proposed MADual tracker with the top 5 trackers
in the VOT2015 challenge [15]. Likewise, we compare our
tracker with several recently proposed algorithms, including
HCFTs [18], TADT [61] and three Siamese network-based
trackers (SiamRPN [3], SiamFCNext22 [28] and SiamRPN-
Res22 [28]), as their results were reported, and they represent
the state-of-the-art tracking algorithms. All the results are
summarized in Figure 12 and Table 4. From Figure 12, our
MADual achieves the best result, significantly better than
SiamRPNRess22 [28], which is ranked second. The results
in Table 4 show that our MADual outperforms SiamRPN-
Res22 and MDNet by 7.1% and 7.9%, respectively, in terms
of EAO. Although the performance of our proposed tracker
is slightly lower than MDNet in terms of accuracy (A),
it achieves better performance in terms of robustness (R).

FIGURE 12. Expected average overlap (EAO) plot for VOT2015.

TABLE 4. The comparison of the proposed MADual with the top
5 trackers in the VOT2015 challenge and some recently proposed
state-of-the-art methods, in terms of overlap, failures, and expected
average overlap (EAO), using the VOT toolkit (version 6.0.3).

2) VOT2016 CHALLENGE
The video sequences in VOT2016 are the same as those
in VOT2015, while the ground-truth bounding boxes are
precisely re-annotated. We compare our tracker against the
top five trackers, i.e. C-COT [19], TCNN [62], SSAT [6],
MLDF [6] and Staple [16], in the VOT2016 challenge,
as well as three recent state-of-the-art trackers, TADT [61],
SiamFCNext22 [28], and SiamRPNRes22 [28]. In addition,
ECO and MDNet are selected for comparison. ECO is con-
sidered because of its excellent performance on the OTB
series datasets, and MDNet, because of its correlation to
the proposed MADual. The top three trackers, in terms of
the EAO ranking plots, are SiamRPNRes22, MADual and
ECO,which have similar performance, as shown in Figure 13.
Table 5 shows the detailed performance of the different meth-
ods in terms of A, R and EAO. We also summarize the
no-reset AO measures, which was officially added in the
VOT2016 competition evaluation. As shown in Table 5, our
tracker is ranked first in terms of robustness and EAO, and
ranked second in terms of the AO metric.

FIGURE 13. Expected average overlap (EAO) plot for VOT2016.

As described in [6], all the sequences in the VOT2016 chal-
lenge are per-frame annotated with visual attributes, such as
camera motion, illumination change, occlusion, size change,
motion change, etc., which correspond to the most difficult
tracking tasks. Based on the attribute annotations, we further
investigate the ability of the MADual tracker to handle chal-
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TABLE 5. Comparison of the proposed MADual with the top five trackers
in the VOT2016 challenge and five state-of-the-art methods proposed in
recent two years, in terms of overlap, failures, expected average overlap
(EAO), with the use of the VOT toolkit (version 6.0.3).

lenging tracking scenarios. Table 6 summarizes the robust-
ness, accuracy and EAO of the different trackers, suffering
from different visual attributes or challenges. From the table,
different trackers perform differently in terms of accuracy,
robustness and EAO over the different attributes. The top
three best-performing trackers, in terms of accuracy, are
SSAT, SiamRPNRes22, and our MADual. However, in terms
of EAO, ECO takes the place of SSAT to squeeze into the
top three performers. Therefore, SiamRPNRes22 and our
MADual perform very well, in terms of both accuracy and
EAO. However, SiamRPNRes22 falls behind the top three,
while our MADual is significantly better than all the other
state-of-the-art trackers in terms of robustness. In summary,
our MADual is always ranked in the top three, which implies
that it performs very well in terms of accuracy, robustness,
and EAO. In other words, our MADual performs well in
diverse visual attributes, which shows its power to handle
different challenging sequences.

In detail, our MADual achieves the best performance in
terms of accuracy on the size-change attribute, i.e. A=0.528,
which is 2.3% higher than that of SiamRPNRes22, which
is ranked second. Under both camera motion and occlusion,
the MADual tracker achieves the third place in terms of the
same metric, and MADual is only 0.7% lower than that of
the SiamRPNRes22, which is ranked first on the occlusion
attribute. We notice that SSAT achieves the first place in
terms of accuracy among all the other listed trackers, with
respect to all the visual attributes. The reason for this is that
SSAT concentrates on estimating the tightest bounding box
of targets, and is an extension of the MDNet framework.
To this end, SSAT introduced a segmentation technique,
and further inferred whether or not a target was occluded.
When the target is occluded, training examples from that
frame are not extracted for updating the tracker. However,
in terms of robustness or EAO, SSAT falls behind the top
three best-performing trackers.

In terms of robustness, our MADual performs favorably
against all the evaluated trackers on all the visual attributes,
as shown from the R table in Table 6. This implies that our
MADual fails the least over all the different visual attributes.

In detail, MADual achieves significantly better performance
in terms of robustness, i.e. R = 0 and 0.285 on the illumi-
nation change and occlusion attributes, respectively, and they
achieve a significantly lower robustness score, compared to
that of the second best tracker ECO. Regarding the other
three visual attributes, i.e. motion change, size change, and
camera motion, MADual achieves second place, with results
of 0.182, 0.546 and 0.113, respectively.

From the performance of EAO shown in Table 6, MADual
performs slightly worse than SiamRPNRes22, in general.
To be more specific, our tracker achieves the best perfor-
mance, and EAO, being the second best, has its performance
21.2% higher than SiamRPNRes22 on the motion-change
attribute. On occlusion and camera motion, our MADual
is ranked second in terms of EAO, which are 0.306 and
0.385, respectively, and outperforms ECO and SiamRPN-
Res22 by 8.5% and 4.9%, respectively, on the occlusion
attribute. In addition, our method is ranked third, behind
SiamRPNRes22 and ECO, with the EAO value of 0.384 on
the size-change attribute. Only on the attribute of illumination
change, ourMADual is ranked fourth. The reason for thismay
be that the corresponding accuracy is low, which drag down
the EAO performance.

In summary, our MADual is the only one that is ranked
the top three in terms of all the three metrices: A, R and
EAO, so achieves the best overall performance. In partic-
ular, our MADual is prominent in the robustness perfor-
mance on all the challenging conditions, ranked first for
all the visual attributes. The reason for MADual achieving
this performance can be deduced from the following facts.
A target object is associated with a certain motion pattern.
Even if the object suffers from appearance variation due to
complex conditions, such as deformation, occlusion, rota-
tion, size changing, as well as camera motion and motion
change, the motion features obtained by C3D can maintain
the connection of the target object in the different frames.
With the help of the motion features, the MADual tracker can
still locate the target under severe conditions. The complex
scenarios that appear in some of the frames can be regarded
as the noise of the regular motion pattern of the object being
tracked in a local temporal region. As the motion pattern
described by C3D is based on multiple consecutive frames
(e.g. 16 in this paper), the influence of these noises on the
motion features is limited. On the contrary, relying only on
the appearance features obtained by C2D to locate the target
object in the current frame, the tracking may easily fail in
two cases. One case is that a very similar object distractor
appears, such that the target object cannot be distinguished
from the similar object. The other case is that the target object
changes greatly and becomes significantly different from its
appearance model. Different from the previous methods [1],
which predict the location of the same target in the subse-
quent frames simply by using an appearance model, they
may be affected by large appearance variations or may be
distracted by a similar semantic object, so they perform
poorly.
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TABLE 6. The overall accuracy (A), robustness (R) and average overlap (EAO) averaged over the attributes on the VOT2016 dataset. The attributes tested
include camera motion (Cam), illumination change (Illu), motion change (Mot), occlusion (Occ), and size change (Size). Red, blue and green fonts indicate
the top-3 trackers, respectively.

FIGURE 14. Qualitative evaluation of MADual, MDNet, ECO and SiamRPNRes22 on 10 challenging sequences (from left to right and up to down: Bird1,
Box, Freeman4, Girl2, Human3, Jogging2, Jump, MotorRolling, Soccer, Trans) from OTB2015.

F. QUALITATIVE EVALUATION
Figure 14 provides the visual comparison of the best per-
formed trackers, including SiamRPNRess22 [28], MDNet
[1], ECO [20], and ourMADual, on 10 challenging sequences
from OTB2015. Overall, our MADual is able to locate targets
accurately in complicated scenes.

In the ‘Bird1’ sequence, the target undergoes the out-of-
view challenge, as shown in the 163rd frame. From frame
204, all the methods lose their tracking of the target object,
while the proposed MADual tracker can recover its track-
ing. In the ‘Girl2’ sequence, the target is occluded, and

suffers from deformation and scale variations. Our MADual
and the MDNet methods perform tracking with satisfactory
performance, while ECO and SiamRPNRess22 completely
drift away from the target. The similar challenging scenario
occur in the sequence ‘human3’, and our MADual tracker
can still track the changing object successfully. In the ‘Jump’
sequences, the object undergoes severe deformation and rota-
tion. All the methods, except the proposed MADual tracker,
locate the object wrongly. On the contrary, our tracking
algorithm estimates the bounding box precisely. In these
sequences, the target objects exhibit heavy occlusion, motion
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blur deformation, scale variations, and rotation and back-
ground clutter. For clarity and better presentation, only the
results from the top three trackers on OTB2015: i.e. SiamRP-
NRess22, MDNet, and ECO, and our MADual, are shown.
Overall, our MADual is able to locate the targets well in
complicated scenes.

V. CONCLUSION
In this paper, we propose a new parallel network structure for
tracking, namelyMADual, which can effectively integrate the
spatial-temporal information in a collaborative way, so as to
improve tracking performance. In this method, the convolu-
tional 3D (C3D) network is introduced to extract the inter-
nal spatial and temporal information, which is integrated to
produce semantic motion pattern features. The convolutional
2D (C2D) network is employed as another branch to extract
the appearance features. We combine the outputs of C3D
and C2D to build up a dual-branch architecture, fulfilling the
external spatial-temporal synergy. With the use of the Inverse
Temporal Training and FIRST strategies, the proposedMAD-
ual framework is trained to achieve efficient object tracking.
Extensive experiments were conducted on the OTB series
dataset, the TC-128 dataset, the UAV123 dataset, and the
VOT datasets. The experiment results show that the proposed
method achieves a highly promising tracking performance,
and is especially good at handling challenging conditions,
such as deformation, scale variation, illumination changes,
etc.

In our future work, we will formulate the proposed idea
of hierarchical spatial-temporal structure into a real-time
framework, such as SiamFC. This is expected to improve the
tracking efficiency, as the current architecture is induced from
the non-real-time MDNet tracker.
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