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ABSTRACT In recent years, many evolutionary algorithms and population-based algorithms have been
developed for solving many-objective optimization problems. Inspired by the human brainstorming confer-
ence, Brain Storming Optimization (BSO) algorithm was guided by the cluster centers and other individuals
with probability, which can balance convergence and diversity greatly. In this paper, the authors propose a
novel brain storm optimization algorithm formany-objective optimization problem. The algorithm adopts the
decision variable clustering method to divides the variables into convergence-related variables and diversity-
related variables. The decomposition strategy is designed to increases selection pressure for the convergence-
related variables, while the reference point’s strategy is adopted for the diversity-related variables to update
the population and increase the diversity. Experimental results show that the proposed many-objective
brain storm optimization algorithm is a very promising algorithm for solving many-objective optimization
problems.

INDEX TERMS Brain storm optimization, decision variable clustering method, decomposition strategy,
reference point, many-objective optimization.

I. INTRODUCTION
As a typical complex optimization problem, multi-objective
optimization problems (MOPs) are widely exist in engi-
neering and real life, such as groundwater monitoring [1],
PID controller design [2], power quality monitoring [3] and
so on. Nowadays, multi-objective optimization algorithms
have made great progress, and various strategies were also
gradually matured. With the development of the science and
technology, the problems faced by reality are becoming more
and more complex. Most of them show the characteristics of
dynamic, multi-constrained, large-scale, and increased num-
ber of objectives. Generally, we call theMOPswithmore than
three objectives as the many-objective optimization problems
(MaOPs).

Compared with the single-objective optimization prob-
lems, MaOPs are obviously more practical but more com-
plicated. Due to the conflicting nature of the objectives, it is
impossible to find the best solution that is able to optimize
all the objectives simultaneously. Therefore, Pareto-optimal
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solutions, a set of optimal solutions representing the trade-
offs between different objectives, can be achieved, which
is called Pareto Set (PS) in the decision space. The set of
objective functions corresponding to the Pareto-optimal solu-
tions are known as the Pareto Front (PF). As the number of
objectives increases, most multi-objective evolutionary algo-
rithms (MOEAs) for MOPs which involve only two or three
objectives, cannot easily deal withMaOPs for the loss of con-
vergence pressure and the difficulty in diversity maintenance
[4]–[8]. Different methods have been proposed to tackle the
above two issues [9], [10].

Due to the proportion of non-dominated solutions in the
population increases sharply with the number of objectives
increases, nearly all the solutions in a population become
non-dominated with one another [11] in MOPs, which
decrease the convergence pressure. Fig.1 gives the relation-
ship between the proportions of non-dominated solutions in
the population and the number of objectives. It can be seen
that as the number of objectives increases to 6, about half
of individuals in the population are non-dominated solutions.
And when the number is greater than 12, nearly all the indi-
viduals in the population become non-dominated solutions.
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FIGURE 1. The relationship between the proportion of non-dominated
solutions in the population and the number of the objective.

It means that the advantages and disadvantages of individuals
in the population can hardly be distinguished if the dom-
inance strategy is adopted as the criterion for population
selection. The main approaches to solve this problem can
be divided into two categories: one is to modify the tradi-
tional Pareto dominance definition to increase the selection
pressure toward the Pareto front, such as ž-dominance [12],
L-optimality [13], fuzzy dominance [14], grid dominance
[15], θ-dominance [16]. The other is to adopt performance
indicators as selection criterion to distinguish non-dominated
solutions which cannot be distinguished by traditional Pareto
dominance, such as the indicator based evolutionary algo-
rithm [17], the S-metric selection-based evolutionary multi-
objective algorithm [18], a dynamic neighborhood MOEA
based on hypervolume (HV) indicator [19], the fast HV-based
EA (HypE) [20], and the enhanced inverted generational
distance (IGD-NS) indicator based MOEA [21].

It is simple and effective to maintain the diversity of PS
when the number of objectives is 2 or 3 in MaOPs as the
Pareto front is a curve (surface). The candidate solutions
will sparsely be distributed in the high dimensional space
with the increase of objectives, which will lead to the inef-
fectiveness of the traditional diversity maintenance strategy.
The decomposition method, which decomposes MaOPs into
a set of subproblems [22]–[24], is proposed to solve this
problem. There are mainly two categories of decomposition
approaches. One is to decompose MaOPs into a set of single-
objective problems (SOPs), such asMOEA/D algorithm [22],
and several variants of MOEA/D [25]–[29]. The other is
to decompose MaOPs into a set of simple MOPs, such as
MOEA/D-M2M [30], reference-point based many objective
NSGA-II (NSGA-III) [31], and the recently proposed refer-
ence vector guided evolutionary algorithm (RVEA) [32].

During the last decades, a number of population-based
methods, especially evolutionary algorithms and swarm intel-
ligence algorithms such as RVEA [32], MOEA/DD [23]
MMOPSO [33], NMPSO [34], SetGA [35], Nondominated
sorting genetic algorithm, have been successfully used to
solve MaOPs. Although these MaOEAs showed competi-
tive performance, they still cannot achieve good result for
the more difficult MaOPs with discontinuous and irregular
PFs, especially for the MaF test problems recently proposed
in [36].

Some previous interesting works-on embedding cluster-
ing into MOEAs, such as CA-MOEA [37], MaOEA/C [38],
MOEA/DVA [24], LMEA [39], has paid more attention in
recent year for dealing with large-size MaOPs. These algo-
rithms have shown the potential ability for MaOPs with dis-
continuous and irregular PFs.

Brain Storm Optimization (BSO) was proposed in 2011 by
Professor Shi Yuhui. The algorithm is guided by the cluster
centers and other individuals with probability, which can
balance convergence and diversity greatly. On the basis of
classical algorithm, different researchers have derived a vari-
ety of Multi-objective Brain Storm Optimization algorithms
(MOBSO) focused on their clustering, mutation and the
updating archive sets [40]–[43]. Clustering in the objective
space and elite strategy were taken to improve the conver-
gence performance of MOBSO in [40]. An improved Multi-
objective Brain Storm Optimization algorithm (MMOBSO)
was proposed in which DBSCAN is taken to replace the k-
means clustering and differential mutation to Gaussian muta-
tion [41]. A cyclic crowding distance is designed to update
the archive set to improve the diversity of the archive set
(SMOBSO) [42]. Furthermore, MOBSO was also used to
solve the environmental and economic dispatch problem of
combined heat and power [44].

Based on the evolutionary advantages of BSO and the
selection strategy of clustering, a novel optimization algo-
rithm named Many-objective Brain Storm Optimization
(MaOBSO) algorithm is proposed in this paper to solve
many-objective optimization problems. In the proposed algo-
rithm, the new clustering methods with the reference point
allocation and decision variable clustering are implemented.
The reference point allocation method is performed to
increase the diversity of individuals. The decision variable
clustering is designed to divide the decision variables into
convergence-related variables and the diversity-related vari-
ables, and different mutation operations designed to opti-
mize different categories variable, accordingly it is beneficial
to get the reasonable distribution of PS. The performance
of MaOBSO is evaluated using the DTLZ [45] benchmark
function and the MaF [36] test problems (CEC2018) with a
number of objectives. As wewill see later on, when compared
to five state-of-the-art MOEAs for many-objective optimiza-
tion, MOEA/DD [23], NSGA-III [31], LMEA [39], AR-
MOEA [21], and RVEA [32], MaOBSO performed better on
most of the test problems adopted.

To conclude, the main contributions of this paper are as
follows:
• The adaptive clustering is performed according to the
angles between the individuals and the reference points
in the iteration. The reference points are generated by
the NBI method to enhance the guidance of the algo-
rithm. Moreover, the reference points corresponding to
the individual is taken as a selection in the updating
process of convergence optimization and diversity opti-
mization. Therefore, the reference points in the proposed
algorithm are the learning direction of the individual.
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• The corner points are adopted as the clustering centers
and the clustering operation is designed in the objec-
tive space. A new adaptive clustering method corre-
sponding to the reference point allocation is designed
in the proposed algorithm for MaOBSO. The diversity
of the proposed algorithm is enhanced by learning from
the clustering centers with a certain probability.

• The index of the convergence evolutionary is designed
when the convergence degree of the algorithm reaches a
certain level. The diversity optimization plays an impor-
tant role in the iteration process.

The rest of this paper is organized as follows: the related
works are described in Section II. The principle and imple-
ment process of MaOBSO are listed in Section III. The
comparison of the simulation experiments with the current
algorithms is discussed in Section IV. The conclusions and
outlooks are given in Section V.

II. RELATED WORK
A. BRAIN STORM OPTIMIZATION
BSO algorithm was proposed in 2011 and it was inspired
by the human brainstorming conference [46]. Every thought
generated is regarded as the potential solution. The facilitator
facilitates the process of generating ideas which obey the
Osborn’s original four rules, that is, ‘‘Suspend Judgment’’,
‘‘Anything Goes’’, ‘‘Cross-fertilize (Piggyback)’’, ‘‘Go for
Quantity’’, which produce many possible solutions. In BSO,
two basic operations, which are converging operation (indi-
vidual clustering) and diverging operation (individual updat-
ing), are implemented in each iteration [40]. Converging
operation is a kind of techniques that divides individuals
into several groups (clusters). The goal of clustering is to
make the individuals being similar (or related) to one another
are in the same cluster, and being different from (or related
to) each other in different clusters. The clustering operation
could refine a search area, and a probability value is used to
replacing a cluster center by a randomly generated solution.
This could avoid the premature convergence and the local
optima. Diverging operation is new individual generation
process. A new individual can be generated by one or two
parent individuals. One cluster could refine a search region
and improve the exploitation ability. Two clusters may be
from these clusters and improve the diversity of population.

At present, BSO is widely paid more attention by
researchers coming from various fields. Different new ver-
sions have been proposed for different problems to improve
the performance of BSO algorithm. A modified BSO,
named VGLBSO, adopts the random grouping scheme in
the grouping operator to reduce the algorithm computational
burden [47].MIIBSO algorithmwithmulti-information inter-
action strategy is proposed to avoid the algorithm premature
convergence [48]. A hybrid algorithm which is integrated the
simulated annealing process into the brain storm optimiza-
tion algorithm is proposed to solve continuous optimization
problems in [49].

B. MULTI-OBJECTIVE BRAIN STORM OPTIMIZATION
MOBSO algorithm is proposed firstly in [40]. The algorithm
introduces the strategy of archive set with non-dominated
solutions in each iteration to get a group of solution close
enough to Pareto front and uniform solution. A grid-based
method and a hybrid mutation strategy integrating above
traditional Gaussian-, Cauchy- and Chaotic-based mutation
replace k-means clustering and Gaussian mutation in [50]
to enhance the diversity and avoiding the premature conver-
gence. A random probabilistic decision-making of river for-
mation dynamics scheme to select optimal cluster centroids
during population generation step, and an adaptive mutation
operator were taken in [51] to improve the performance of
IMBSO. Amulti-objective brainstorming algorithm based on
multiple indicators (MIBSO) is proposed in [52] to extend
BSO algorithms. And the combination of the decomposi-
tion technology and multi-objective brain storm optimization
algorithm (MBSO/D) is proposed to improve the search effi-
ciency in [53].

From the discussion above, we can see that MOBSOs have
shown a promising performance when solving MOPs, such
as MOBSO [40], MMOBSO [41], SMOBSO [42] and so on.
But the performance of MOBSOs is seldom investigated in
solving MaOPs.

C. MOTIVATIONS OF OUR APPROACH
Due to the size of the non-dominated solutions in the popu-
lation increases sharply as the number of objectives increase,
the advantages and disadvantages of individuals in the popu-
lation can hardly be distinguished when the classical update
strategy of the archive set of original MOBSO. Inspired
by the achievement of other swarm intelligent optimiza-
tion algorithm for MaOPs, a novel Many-objective Brain
Storm Optimization Algorithm is proposed in this paper.
In the proposed algorithm, the decision variable classification
strategy is designed to divide the decision variables into
the convergence-related variables and the diversity-related
variables. The different optimization methods are carried
out according to their characteristics respectively. For the
convergence-related variables, we use the idea of the divide-
and-conquer to improve the optimization efficiency. The
penalty-based boundary intersection (PBI) method is adopted
to evaluate the individuals and make trade-offs. For the
diversity-related variables, the individuals in the population
are guided by the cluster centers and learn from each other by
the probability to enhance the diversity of the population. The
benchmark functions of DTLZ and MaF are used to evaluate
the performance of MaOBSO.

III. MANY-OBJECTIVE BRAIN STORM OPTIMIZATION
ALGORITHM
In this section, the details of MaOBSO are described.
We present the main framework of MaOBSO firstly. Then
the main three components, i.e., the initialization procedure,
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the converging operation, and the diverging operation, are
discussed in the following sections.

Algorithm 1 The Main Framework of MaOBSO
Input: M (numbers of objectives), Emax (maximum number
of evaluation), Po (Probability of selecting a new individual
with an individual), Pc (Probability of selecting new individ-
uals with a cluster center);
Output: final population;
1: P← Initalize(M );
2: Generate reference vectors w with NBI;
3: [w, cluster]← VectorAllocation(P,w,M );
4: [DV,CV]← VariableCluster(P);
5: subCVs← InteractionAnalysis(P, CV);
6: while termination criterion is not fulfilled do
7: if Convergence condition is not fulfilled then
8: P← ConverOptimi(P, subCVs);
9: end if
10: P← DiverOptimi(P,Po,Pc, DV, w, cluster);
11: end while

A. THE MAIN FRAMEWORK OF MaOBSO
The main framework of MaOBSO is listed in Algorithm 1.
As the same as the other swarm intelligent optimization
algorithm, the initialization procedure generates population
P while the reference points w by NBI firstly. Then the
converging operations including the individual clustering
and decision variables clustering are designed secondly. The
individual clustering adopts the allocation strategy of the
reference points. The corner points are used as the clus-
tering centers to cluster the reference points. The decision
variable classification strategy divides the variables into
the convergence-related variables and diversity-related vari-
ables. Lastly, the diverging operation, which includes the
convergence-related variables and diversity-related variables,
are optimized respectively. The convergence-related variables
optimization uses roulette method to select parents’ indi-
viduals and binary crossover to generate new individuals,
the updating individuals use PBI as the standard. The smaller
the PBI value, the better the individual. The diversity-related
variables optimization uses the process of selection andmuta-
tion in original BSO. And the updating of the population is
given by the reference points. The implementation details of
each component inMaBSOwill be explained in the following
subsections.

B. THE INITIALIZATION PROCEDURE
The initialization procedure of MaOBSO contains two main
aspects. One is the initialization of parent population P (line
1 in Algorithm 1), the other is the generation of reference vec-
torsw (line 2 in Algorithm 1). To be specific, the initial parent
population P is randomly sampled via a uniform distribution.
The reference points in the objective space are generated by
the Normal-Boundary Intersection (NBI) method proposed

FIGURE 2. The process of generating reference points.

FIGURE 3. The relationship between H, M and p.

by Das et al [54]. The process of generating reference points
with 3 objectives is shown in Fig.2, where r1, r2, and r3 are
the dimensions of the objective, respectively. If p divisions are
considered along each objective, the total number of reference
points (H ) in anM -objective problem is given by:

H = CM−1
M+p−1 (1)

It can be seen from the formula (1) that H will increases
with p when M is fixed. The relationship between H , M and
p is shown in Fig.3.
From the Fig.3, we can see that H is very sensitive to p, as

the number of objective increases. H will close to 100 when
M = 7, p = 3, and evenH = 364 whenM = 10, p = 3. This
leads more pressure on the computational burden. If we solve
this problem by loweringH , it will make the reference points
sparely lay along the boundary. Fig.4(a) shows the reference
points of 3 objectives by single-layer. So we present a two-
layer reference point generation method the same as the refer-
ence [31]. The main process includes three steps. Firstly the
boundary reference points B = {B1, B2, . . . ,BH1} and the
inside reference points I = {I1, I2, . . . , IH2} is produced,
the number of reference points are H1 = Cp1 M + p1 − 1
and H2 = Cp2 M + p2− 1. Then the parameter I inward is
reduced by a shrinkage factor τ ∈ [0, 1] which computed by
the formula I = (1−τ )/m+τ ∗I . Finally, the reference points
is obtained byP = I∪B, and the total number of the reference
points is H = H1+H2. Fig.4(b) shows the reference points
of M = 3, p1 = 1, p2 = 1, τ = 0.5 by two-layer.
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FIGURE 4. Reference point schematic of M=3, p=2.

C. CONVERGING OPEREATION
The converging operation is the clustering procedure. It con-
sists of two parts: individual clustering and decision vari-
ables clustering. Individual clustering means the clustering
methods in the original BSO algorithm. The objective of
individual clustering is to cluster the population, and find the
clustering center in the iteration at first. Then the clustering
center is served as a guide and the other individuals learn from
them. The individual clustering realizes the multiple classes
parallel local search process. It increases the diversity of indi-
viduals and improves the search efficiency of brainstorming
process. The decision variables’ clustering is the processing
of variables in MaOPs. Different variables affect the Pareto
frontier with the different degree. So, the variables should be
classified and optimized with different mutation operations
according to their different categories.

1) REFERENCE POINT ALLOCATION
As the discussion above, the individual clustering proce-
dure adopts the reference point allocation. The principle
of the allocation of the individual is corresponded to the
reference points by the angle between the individual and
the reference points. From the point of mathematical model,
the corner points play an important role in the diversity of
algorithms, especially the breadth of distribution. Therefore,
the corner points can be indirectly more potential. Compared
with other individuals, it is more positive role that the cor-
ner point serves as the clustering center in the evolution of
BSO algorithm. When the reference points are allocated, the
individual is also clustered as followed. Algorithm 2 (line 3 in
Algorithm 1) is a specific process of clustering and allocating
reference points. The corner point in the reference points is
serves as the cluster center, and the reference points w are
clustered by the k-means clustering method. The angles are
calculated between all individuals and all reference points,
and we obtain the angles matrix of N×N . Then the reference
points correspond to the individuals which the smallest angle
in thematrix. Finally, the clustering results based on reference
points are corresponding to the individual, so the process
achieves the adaptive clustering of the population.

Fig.5 shows the clustering result of the reference points
when M = 3 ∼ 8 in the benchmark function DTLZ1,
where the solid points and the bold lines are the cluster center,
and the higher probability of these points and lines has a
positive effect on the scalability of the archive set in the new
individual.

Algorithm 2 Vector Allocation (P,w,M )
Input: P (population), w (reference point /vector),

M (objectives);
Output:w (allocated vector), cluster(clustering result);
1: cluster← k-means clustering of w with corners as

clustering centers;
2: Angle← calculate the angles of each individual in P to w;

/∗Angle is a matrix of N × N , Angle[i][j] is the angle
of ith individual with jth vector, and N is population
size ∗/

3: for k = 1 to N do
4: sortindex[i]← j; /∗[i, j] is the subscript of the

minimum in Angle∗/
5: Q1← row i of Angle;
6: Angle←Angle/Q1;
7: Q2← column j of Angle;
8: Angle←Angle/Q2;
9: w′[k]← w[sortindex[i]];
10: cluster’[k]←cluster[sortindex[i]];
11: end for
12: w← w′;
13: cluster←cluster’;

FIGURE 5. The result of reference point clustering.

2) DECISION VARIABLE CLUSTERING
Different variables of the problem have different effects on
the final PS. It is very sensitive to decision variables changes
for some problems. If a variable is changed slightly, the fit-
ness value is far away from the real Pareto front or has a great
impact on the overall uniformity. Take the following MOP as
an example: min f1 = x1 + x2

min f2 = 1− x1 + x2
subject to : xi ∈ [0, 1] , i = 1, 2

(2)
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FIGURE 6. The fitness distribution obtained by perturbing x1 and x2
respectively.

Fig.6 shows the sampling points obtained on the MOP for-
mulated in (2) by perturbing one variable between [0,1]
while fixing the others. If changing the value of x2 within
the defined domain when x1 is fixed, it can be seen that
the fitness to be close or far from the Pareto front. And
changing x2 in x = (x1, x2) can only result in a decision
vector which equals x, dominates x or is dominated by x.
So x2 affects the convergence of the MOP. If changing x1
when x2 is fixed, it can be seen that the step size of x1 has
an effect on the uniform distribution of PS. And changing x1
in x = (x1, x2) can only result in a decision vector which is
incomparable or equivalent to x. So x1 affects the diversity of
the MOP.

As a consequence, there is a huge difference of variables
in MaOP, the variables affect the convergence which is called
convergence-related variables and the variables affects the
diversity which is called diversity-related variables. In terms
of convergence-related variables, it is necessary to find the
optimal value to make the PS close to or even distributed on
the Pareto front. And in terms of diversity-related variables, it
makes the Pareto solution reasonable and more uniform dis-
tribution (uniform distribution of diversity-related variables
does not lead to uniform distribution of PS due to the MOP
is not linear problem). Therefore, different optimize strate-
gies for convergence-related variables and diversity-related
variables are adopted, which are helpful to the reasonable
distribution of the final PS.

In MOEA/DVA [24], decision variables are divided into
position variable (homogeneity related variables), distance
variable (convergence related variables), and mixed vari-
able (mixed related variables). New individuals obtained by
changing a dimension of the individual, and new individuals
are non-dominated sorted. If the number of optimal front
individuals is equal to the total number of individuals, this
decision variable is position variable, while the number of
optimal front individuals is 1 as distance variable. Otherwise
it is mixed variable. In LMEA [39], decision variables are
divided into two categories, uniformity-related variables and
diversity-related variables, mixed variables were analyzed
their impact on the diversity and convergence of the problem.
Perturbing the values of each variable are normalized and the
sample solutions generated, a line is generated to fit each set
of normalized sample solutions, the angle between each fitted

line and the normal line of hyperplane f1+ f2+ . . .+ fM = 1
is calculated, a larger angle indicates the variables have a
great impact on diversity, and a smaller angle means that the
variables have more contribution to convergence.

Our proposed decision variable clustering method
divides the variables into convergence-related variables and
diversity-related variables initially. Algorithm 3 (line 4 in
Algorithm 1) gives the detail of the proposed decision vari-
able clustering method. An individual is randomly select and
one variable is perturbed n times while the other variable
is fixed, we can obtain a population of n×1 related to this
variable. The non-dominated sorting algorithms are used
to obtain non-dominated fronts and reflect the features of
this variable. The sequential search strategy (ENS-SS) and
the tree-based efficient non-dominated sorting (T-ENS) are
designed for MaOP by Zhang et.al. [55], [56]. At last, the
k-means clustering method is adopted to divide the decision
variables into two clusters based on the features of each vari-
able. Therefore, the variables in the cluster having a smaller
non-dominated front are identified as diversity-related and
the other are identified as convergence-related.

Algorithm 3 Variable Cluster (P)
Input: P(population);
Output:DV(diversity-related variables); CV (convergence-
related variables);
1: sample← random select a individual from P;
2: D← the length of decision variables;
3: for i = 1 to D do
4: Sample← perturb the ith decision variable of sample for

n times to generate a matrix Sample; /∗n is a
user-defined parameter(e.g. 20), Sample is a matrix of
n× D, which is only different in ith column ∗/

5: FrontNo[i]← nondominated sorting for Sample to obtain
nondominated fronts; /∗FrontNo[i] is the fronts
of individual in Sample∗/

6 end for
7 [CV,DV]← k-means is used to cluster the decision

variables into two sets based on FrontNo;
8: if mean (FrontNo[CV]) > mean(FrontNo[DV]) then
9: CV← DV;
10: DV← {j = 1, . . . ,D|j /∈CV};
11: end if

Table 1 shows the clustering results of different algorithm
which is including MOTL/DVA, LMEA and MaOBSO on
16 decision variables with 5 objectives and 15 decision vari-
ables with 10 objectives about the DTLZ benchmark function
set. It can be seen that MaOBSO has the same performance
as LMEA. And the proposed decision variable clustering
method of MaOBSO has lower computational complexity.
Compared with MOEA/DVA, the clustering results are the
same for DTLZ1∼4 and DTLZ7 when the Pareto front is a
spatial surface. For the benchmark function of DTLZ5 and
DTLZ6, the PF are spatial curves, all of the algorithms have
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TABLE 1. The decision variables clustering result of three algorithms on DTLZ benchmark function set.

same diversity variables, while partial convergence-related
variables in MaOBSO are identified as mixed variables in
MOEA/DVA.

D. DIVERGING OPERATION
1) VARIABLE INTERACTION ANALYSIS
In order to solve large-scale problem, it is necessary to
decompose a large-scale optimization problem into several
small-scale optimization problems. If the independence of
variables is known in advance, variables can be divided
into many low-dimensional variables subcomponents, so it
is helpful to solve high-dimensional variables problems. The
separability and nonseparability of decision variables in SOP
can be definite as follows:
f (x) is called a separable function if and only if each deci-

sion variable xi, i = 1, . . . , n can be optimized independently.

arg min
(x1,...,xn)

f (x1, . . . , xn)

= [arg min
x1

f (x1, . . . , xi, . . . , x) , . . . ,

arg min
xi

f (x1, . . . , xi, . . . , x) , . . . ,

arg min
xn

f (x1, . . . , xi, . . . , x)]. (3)

Otherwise, f (x) is called a nonseparable function.
The variables of separable functions can be optimized

separately, which can improve the efficiency of optimization.
For convergence-related variables, it is necessary to find the
optimal value to make the PS close to or even distributed on
the Pareto front, so the optimization of convergence-related
variables can be similar to single-objective optimization.

The proposed MaOBSO algorithm adopts multiple judg-
ments to analyze the variable interaction of convergence-
related variables. The definition of the interaction for two

decision variables xi and xj as follows: if there exist x, a1,
a2, b1, and b2 meeting

f (x)|xi=a2,xj=b1 < f (x)|xi=a1,xj=b1 ∧

f (x)|xi=a2,xj=b2 > f (x)|xi=a1,xj=b2
f (x)|xi=a2,xj=b1 = f (x1, . . . , xi−1, a2, . . . , xj−1, b1, . . . , xn)

(4)

Algorithm 4 (line 5 in Algorithm 1) is the interaction analysis
process of convergence-related variables. Firstly, an empty
set subCVs of interacted variable subgroups is initialized.
And then, the convergence-related variables in CV are
assigned to different subgroups based on the formula (4) to
judge the interaction [39]. If a variable has interaction with at
least one existing variable in subCVs, the variable interaction
analysis will no longer be conducted, which improve com-
putational efficiency. And the two variables are putted into
the same subgroup. Otherwise, it is putted a new subgroup.
Each convergence-related variable is putted into a subgroup
by the process above. To be noted that if the convergence-
related variables are fully separable, the number of subgroups
is |CV|; if the variables are fully non-separable, the number
of subgroups is one.

2) VARIABLE OPTIMIZATION
When the clustering procedure and variable interaction anal-
ysis are completed, MaOBSO starts to optimize different
categories variables. The convergence-related variables are
optimized by a convergence optimization method as detailed
in Algorithm 5 (line 8 in Algorithm 1). While the diversity-
related variables by diversity optimization method detailed in
Algorithm 6 (line 10 in Algorithm 1).

In the convergence optimization method, a new individual
is generated by binary crossover (SBX) between the parent
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Algorithm 4 Interaction Analysis(P, CV)
Input: P(population), CV(convergence-related variables);
Output:subCVs(set of groups of convergence-related vari-
ables);
1: subCVs← 8;
2: for all the v ∈CVdo
3: CorSet← 8;
4: for all theGroup∈subCVs do
5: for all the u ∈Group do
6: flag← false;
7: for i = 1 to nCor do

/∗nCor is a user-defined parameter ∗/
8: p← Randomly select an individual from P;
9: if v is interacted with u in p then
10: flag← true;
11: CorSet←CorSet∪{Group};
12: break;
13: end if
14: end for
15: ifflag then
16: break;
17: end if
18: end for
19: end for
20: ifCorSet == 8 then
21: subCVs←subCVs∪{{v}};
22: else
23: subCVs←subCVs/CorSet;
24: Group← all variables in CorSet and v;
25: subCVs←subCVs ∪{Group};
26: end if
27: end for

populations which are selected by roulette according to the
fittest survival principle in evolutionary theory. As a promis-
ing performance for many-objective optimization reported in
[31]. PBI, as a variant of the normal-boundary intersection
method [22], is adopted as the standard, where equality con-
straint is handled by a penalty function. The algorithm is
defined as

min gpbi
(
x|w, zmin

)
= d1 + θd2 (5)

where:

d1 =

∥∥∥(f (x)− zmin
)T
w
∥∥∥

‖w‖
(6)

d2 =

∥∥∥∥f (x)− (zmin
+ d1

w
‖w‖

)∥∥∥∥ (7)

where d1 is the distance from point f of all objectives to
point of the minimum of all objectives, which can measure
the convergence of x; and d2 represents the distance between
point f and points w, which can measure the diversity of x.
The relationship between f (x), d1 and d2 is shown in Fig.7.

Algorithm 5 ConverOptimi (P, subCVs)
Input: P (current population), subCVs(set of groups of

convergence-related variables);
Output: P (new population)
1: for i = 1 to N do/∗N is population size ∗/
2: [p1, p2]← select parents by roulette wheel based on

the PBI of P;
3: for j = 1 to C do /∗C is subCVs size ∗/
4: for d = 1 to B do /∗B is subCVs[j] size ∗/
5: p′← SBX(p1[d]p2[d]);
6: offspring← s[d] = p′;

/∗s is the ith individual of P∗/
7: end for
8: P← the better one is retained to update P by

comparing the PBI of s and offspring;
9: end for
10: end for

FIGURE 7. The relationship between f (x), d1, and d2.

θ is a user-defined penalty parameter which can be used
to balance the convergence and diversity of the solution in
formula (5). Therefore, PBI can measure the pros and cons
of a solution more comprehensively with a single value. The
smaller the PBI value, the better the individual. In addition,
as described in the previous section, after the independence of
the convergence-related variables is judged, each independent
variable is optimized one by one.

Algorithm 5 (line 8 in Algorithm 1) is the convergence
optimization process of convergence-related variables. When
two parents by roulette wheel based on the PBI of P are
selected, the new variables in subCVs are generated by SBX
between the parents which are selected by roulette wheel, so
a new individual offspring is generated and P is updated by
comparing the PBI of parent and offspring.

The objective of the diversity optimization method is to
generate a new individual which has the variation of single
individual so as to maintain the diversity of the population.
Herewe draw on the idea of generating asmany individuals as
possible without constraints in the brain storm optimization
algorithm. Algorithm 6 (line 10 in Algorithm 1) describes the
diversity optimization process of diversity-related variables
in detail. The process is listed in the following.

Firstly, one or several existing individuals randomly
selected by the probability Po and the probability Pc in the
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Algorithm 6 DiverOptimi (P,Po,Pc, DV, w, cluster)
Input:P (current population), Po(Probability of selecting

an individual with an individual), Pc(Probability
of selecting an individual with a cluster
center),DV(diversity-related variables), w(reference
point/vector),cluster(cluster of each individual)

Output: P (new population)
1: for i = 1 to N do/∗N is population size ∗/
2: if random < Po then
3: if random < Pc then
4: pselect← the corner of the cluster of s; /∗s is

the ith individual of P∗/
5: else
6: pselect← randomly select an individual in the

cluster of s;
7: end if
8: else
9: pselect← randomly select two individuals from P

and weighted summation;
10: end if
11: offspring[i]← mutation of p select;
12: end for
13: POP← P∪offspring;
14: P← Selecting the POP based on the reference point

to generate new P

corner point. Secondly, the new individuals are generated by
adding noise to the DV of the randomly select individuals
with mutation operation. In original brain storm optimization
algorithm, the mutation operation adopts Gaussian mutation.
During the process of searching, it is central to balance
the ability of the exploration and the exploitation. Gaussian
variation cannot make full use of information in the current
population and the operation complexity is high. Therefore,
we adopt differential evolution mutation to generate new
individual based on the selected individual(s), and setting
the open probability pr to enhance the diversity of the algo-
rithm. In section IV, we give the simulation result comparison
between the two mutation operations. The update process of
the population is similar to the reference point assignment
process, which was given in Algorithms 2. The angles of all
points are calculated and selected one by one.

Moreover, the convergence optimization index is set
in the MaOBSO algorithm for avoiding the unnecessary
search. When the mean variance of the convergence-related
variables is less than a certain threshold, the convergence
optimization process will stop. The certain threshold is set
to 0.01 according to the empiric value in this paper.

IV. SIMLATION EXPERIMENTS AND ANALYSIS
In this section, five state-of-the-art MOEAs for many-
objective optimization, namely MOEA/DD [23], NSGA-III
[31], LMEA [39], AR-MOEA [21], and RVEA [32] is simu-
lated to compare with our proposedMaOBSO algorithm. The

performance of MaOBSO in solving MaOPs is verified by
different kinds of benchmark function.

In the following subsections, the benchmark functions and
the relating performance metrics for comparison analysis is
introduced firstly. And then the parameter settings are listed.
The simulation results with different algorithms are discussed
in details and the results are analyzed lastly.

A. BENCHAMARK FUNCTION
The classic DTLZ benchmark function set, which was pro-
posed by Deb in 1999 [45], and theMaF test problems, which
was proposed in [36], are selected to valid the performance of
the given algorithms in this paper. For each DTLZ instance,
the number of decision variables is set to D = M + K -1,
whereM is the objective number, K = 5 is used for DTLZ1,
K = 10 is used for DTLZ2-DTLZ6, and K = 20 is used for
DTLZ7. For MaF1-MaF7 instance, the number of decision
variables is set to D = M + K − 1, K = 10 is used for
MaF1-MaF6, and K = 20 is used for MaF7. For MaF8 and
MaF9 instance, the number of decision variable is D=2. For
MaF10-MaF12 instance, the number of decision variables is
set to D = K + L, with K denoting the number of position
variables and L denoting the number of distance variables.
And the parameter settings are K = M − 1, L = 10. For
MaF13 instance, the number of decision variable is D=5. For
MaF14 andMaF15 instance, the number of decision variables
is set to D = 20 × M . In our experiments, the number of
objectives varies from 3 to 10, i.e.,M ∈ {3, 5, 8, 10}.

B. PERFORMANCE METRICS
The Inverted Generational Distance (IGD) [57] is used to
evaluate the convergence performance and diversity perfor-
mance of the algorithm, which is defined as:

IGD
(
S,P∗

)
=

∑
x∗∈P∗ dist (x

∗, S)
|P∗|

(8)

where the PS of S is obtained by the algorithm, P∗ is the
point on the true Pareto front of the benchmark function.
In theory, the scale ofP∗ is infinite. But the true Pareto front is
represented by a finite set of points in practice. The IGD value
is the average distance between a point on the true Pareto front
and the PS by MaOBSO algorithm. The larger is the distance
between the true Pareto front and PS by MaOBSO algorithm,
the big is the IGD value, so the IGD value reflect the con-
vergence performance of MaOBSO. If PS is inhomogeneous,
that means no solutions in local area. The parameter IGD
is becoming larger as the shortest distance from the Pareto
front to this area increases. Therefore, IGD can also reflect
the diversity of algorithms. According to the analysis above,
the smaller the IGD value, the better the overall performance
of MaOBSO algorithm.

C. PARAMETER SETTING
The parameters of the different kinds of algorithms, espe-
cially the MaOBSO algorithm proposed in this paper, are
set in this subsection. For comparison, some parameters such
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TABLE 2. Setting of population size in MaOBSO, where p 1 and p 2 are
parameters controlling the numbers of reference points.

as the population size and termination condition are set as
the same value as the comparative algorithms suggested in
the corresponding references. Some parameters such as the
objective number are set differently, according to the com-
plexity of the problem. And some parameters such as the
probability are set according to our experience. Therefore,
we present the parameters of the six algorithms, which are
summarized as follows.

1) POPULATION SIZE
The population size of MaOBSO, MOEA/DD, NSGA-III,
LMEA, RVEA is equal to the number of the reference points.
As recommended in [31] and [39], for objectives withM ≥8,
the two-layer reference points generation method is adopted.
The setting of the population size in MaOBSO is presented
in Table 2, where p1 and p2 are the number of divisions in
the boundary layer and inside layer respectively. The other
algorithms adopt the same population size settings with the
same number of objectives.

2) TERMINATION CONDITION
The termination condition is the maximum number of eval-
uations. The maximum number of evaluations is set to
100000 for all considered algorithms.

3) CROSSOVER AND MUTATION
For the SBX, the distribution index is set to ηc = 30 and
the crossover probability is pc = 1.0. For the polynomial
mutation, the mutation probability is pm = 1/D and its
distribution index is ηm = 20. For DE mutation, the mutation
probability is pr = 0.6.

4) THE OTHER PARAMETERS
The penalty parameter θ in PBI is set to 5 for all algorithms.
For MOEA/DD, the neighborhood size is T=20, and the
neighborhood selection probability is δ = 0.9. For LMEA,
the number of selected solutions and the number of perturba-
tions for each selected solution in decision variable clustering
are set to nSel=2 and nPer=4, respectively, and the number
of selected solutions in decision variable interaction analysis
is set to nCor=6. For MOEA/DVA, the number of interaction
analysis and the number of control property analysis are set
to NIA=6 and NCA=50. For RVEA, the index of control the
change rate of the penalty function and the frequency of the
reference point adaptation are set to α = 2 and fr = 0.1

respectively. For MaOBSO, the probability of selecting an
individual with an individual is Po = 0.6. The probability
of selecting an individual with a cluster center is Pc = 0.3.

D. COMPARISON WITH FIVE COMPETITIVE MAOEAS
1) COMPARISON RESULTS ON DTLZ
Table 3 shows the comparison results in the mean IGD value
of MaOBSO and the other five algorithms after 30 inde-
pendent runs, where the best result on each test instance
is shown in a gray background. From the second last row
of Table 3, we can see that LMEA obtains the best results
in 10 out of 28 cases.MaOBSO andMaOBSO-GS (MaOBSO
adopt Gaussian mutation) respectively obtain the best results
in 8 and 7 case, while MOEA/DD, NSGA-III and RVEA
are unable to perform best on any test problem and AR-
MOEA performed best in 3 case, which proves the advan-
tage of MaOBSO on DTLZ1-DTLZ7 problems. The last
row of Table 3 shows that the rank of MaOBSO is bet-
ter than MOEA/DD, NSGA-III, LMEA, AR-MOEA, RVEA
and MaOBSO-GS. Therefore, it is concluded that MaOBSO
showed a superior performance over its six competitors on
DTLZ1-DTLZ7.

As can be seen from the table, the overall performance
of MaOBSO is relatively good. Compared with MOEA/DD,
NSGA-III, LMEA, AR-MOEA, RVEA, MaOBSO-GS, and
MaOBSO algorithms have the same order of magnitude,
the performance of MaOBSO is better than the other algo-
rithms. In the same benchmark function, the IGD value
increases with the increase of the number of objectives, which
indicates that the challenge of optimization by increase of the
number of objectives. With the increasing of the number of
objectives, the population is more distributed discretely in
the objective space. This makes the diversity of population
more difficult to be maintained. In the different benchmark
function, DTLZ1-DTLZ4 owes more standardized PF, most
algorithm shows good performance. But for DTLZ5-DTLZ7,
algorithms are more influenced by the number of objectives.

From the table, we can get that the performance of these
algorithms are similar for DTLZ1 and DTLZ2. Owing to
DTLZ3 have a large number of local extreme points, the per-
formance of NSGA-III decreases significantly as the number
of objectives increases. Compared with other algorithms,
MaOBSO shows better ability in maintaining the diversity
for the function DTLZ4. For DTLZ5 to DTLZ7, the per-
formance of MOEA/DD, NSGA-III, LMEA, AR-MOEA,
RVEA, MaOBSO-GS and MaOBSO are better and stable
because all of them have different retention mechanism,
which can get more uniform frontier. In terms of algorithm
stability, the standard deviation of MaOBSO is small, which
indicates that the algorithm has good stability.

For further observation, Fig.8 shows the non-dominated
solutions by the seven algorithms among 30 runs in the
objective space on 10-objective. For DTLZ1 and DTLZ2,
the six algorithms have good performance. But NSGA-III
is poor in terms of diversity. AR-MOEA and RVEA are
bad in terms of diversity. For DTLZ3, NSGA-III is poor in
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TABLE 3. The Comparison of IGD between MaOBSO several algorithms on DTLZ.

terms of both convergence and diversity. The six algorithms
have good convergence performance for DTLZ4. From the
perspective of diversity, the NSGA-III and LMEA have poor
diversity performance. The distribution breadth and unifor-
mity of the optimal solution set are not ideal in the objec-
tive space. And the most of Pareto optimal solutions are
distributed in the border. In addition, some objectives are
‘‘missing’’, which make the optimal solution set is difficultly
distributed on the whole non-dominant frontier. However, due
to MaOBSO-GS and MaOBSO ability to generate new indi-
viduals without constraint, the performance of MaOBSO-GS
and MaOBSO are best, while MOEA/DD, AR-MOEA and
RVEA showed slightly worse performance. For DTLZ5 and
DTLZ6 with degenerate frontier, the performance of LMEA
than the other algorithms, which reflect the real frontier
completely and uniformly. MaOBSO-GS and MaOBSO has
good convergence but poor diversity, and the other algo-
rithms have poor convergence and diversity. For DTLZ7 with
discontinuous frontier, the performance of LMEA is also
the best. NSGA-III, MaOBSO-GS and MaOBSO also per-
form better, while the diversity of another algorithm is
poor.

To sum up, compared with several current popular algo-
rithms, MaOBSO shows good competitiveness. For the
many-objective optimization problem with regular frontier,
MaOBSO performs better. For the problem with irregular
frontier, the proposed algorithm is slightly inferior to LMEA
in diversity, but the overall performance is better than the
other algorithms.

2) COMPARISON RESULTS ON MAF
Table 4 shows the mean IGD comparison results of MaOBSO
and the other algorithms onMaF test problems, where the best
result on each test instance is shown in a gray background.
From the second last row of Table 4, MaOBSO shows a supe-
rior performance, it’s the best results in 15 out of 45 cases.
MOEA/DD, NSGA-III, LMEA, AR-MOEA, and RVEA are
respectively best in 3, 1, 14, 6, and 6 cases. From the last row
of Table 4, the overall performance of AR-MOEA is best,
LMEA is second, and MaOBSO is better than MOEA/DD,
NSGA-III and RVEA. Therefore, MaOBSO showed com-
petitive performance over its five competitors in most MaF
problems.
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FIGURE 8. Results of several algorithms under the 10 objectives DTLZ benchmark function set.

MaF1 is gained by inverting the PF of DTLZ1, LMEA
shows the best performance on all the objectives. MaF2 is
modification DTLZ2 by increasing the difficulty of conver-
gence, and all the objective have to be optimized simultane-
ously in order to reach the true PF. The proposed algorithm
MaOBSO perform best in all case of MaF2. MaF3 has a con-
vex PF and there are a large number of local fronts. RVEA can
solve the problem well. MaF4’s shape by inverting the shape
of DTLZ3, and MaF5 has a badly-scaled PF and a highly
biased distribution, MaOBSO solve it very well. Regarding
MaF6 with degenerate PF, AR-MOEA and LMEA gain the
best results in the case of 5, 8 and 10 objectives, respectively.
MaF7 and MaF11 have a characteristic with a disconnected
PF, MaOBSO shows a competitive performance, as it obtains
the best results in MaF7 of 5 objective and MaF11 of 5 and

8 objectives, while it is outperformed by LMEA in MaF7
with 8 and 10 objectives and AR-MOEA in MaF11 with
10 objectives. One important characteristic of MaF8 is its
Pareto optimal region in the decision space is typically a 2D
manifold, LMEA obtain the best result in the instance with
all objectives. Regarding MaF9, it is characterized with the
points in the regular polygon (including the boundaries) and
their objective images are similar in the sense of Euclidean
geometry, AR-MOEA is best in the case of 5 objective, while
LMEA perform best in the cases of 8 and 10 objectives. For
MaF10 with PF of complicated mixed geometries, RVEA
and AR-MOEA obtain the best results in the case of 5 and
10 objectives, respectively. on MaF12 which has scaled con-
cave PF together with complicated fitness landscapes, LMEA
can best solve this problem in all objectives. Concerning
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TABLE 4. The Comparison of IGD between MaOBSO several algorithms on MaF.

MaF13 with degenerate PFs and complicated variable link-
ages,MaOBSO solve it verywell in the cases of all objectives.
At last, MaF14 and MaF15 with complicated fitness land-
scape with mixed variable separability, especially in large-
scale cases, MaOBSO gave a median performance among all
the compared MaOEAs.

Based on the above comparison results, we can conclude
that the proposed MaOBSO shows more competitive perfor-
mance in irregular frontier.

V. CONCLUSIONS AND OUTLOOKS
MaOBSO is proposed in this paper to improve the con-
vergence and diversity of MaOPs. The proposed algorithm
adopts decision variable clusteringmethod to divides the vari-
ables into convergence-related variables and diversity-related
variables. The different optimization strategies suitable to
different categories variable are designed respectively. A new
adaptive clustering strategy according to the characteristics of
corner points is proposed for many-objective brainstorming
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algorithm. The simulation results show that the algorithm has
good performance.

In the future, it is interesting to investigate the performance
of MaOBSO for a wider range of problem, such as compli-
cated Pareto frontier problems, real-life problems, large-scale
many-objective optimization problems and so on. Moreover,
improving the universality of MaOBSO is also considered as
part of our future work.
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