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ABSTRACT Target detection is critical in many mission critical sensors and sensor network (MC-SSN)
applications. For target detection in complicated electromagnetic environment, DOA estimation using
polarization sensitive array (PSA) has been receiving increased attentions. In this paper, we propose the
parallel co-prime polarization sensitive array (PCP-PSA) which consists of the cocentered orthogonal dipole
triads (CODTs) to estimate two-dimensional direction-of-arrival (2D DOA) and polarization parameters.
The degrees of freedom (DOFs) have been extended due to the co-prime structure, so that the more signals
can be detected and the estimation accuracy is improved. In order to reduce the computation complexity,
we construct a new cross-covariance matrix based on the CODTs, which converts the two-dimensional
DOA estimation into two independent one-dimensional DOA estimations. Then, the spatial smoothing-based
multiple signal classification algorithm(MUSIC) and the sparse representation-based method are applied to
estimate 2D DOA with only one-dimensional (1D) peak searching and 1D dictionary, respectively. Finally,
the polarization parameters are estimated by using the cross-covariance matrix between components of
electric field vector. Compared with previous PSA-based algorithms, the proposed algorithm based on
PCP-PSA can solve the underdetermined 2D DOA and polarization parameters estimation problem and
has better estimation accuracy. Theoretical analyses and simulation results verify the effectiveness of the
proposed methods in terms of computational complexity and estimation accuracy.

INDEX TERMS Parallel co-prime polarization sensitive array, direction-of-arrival estimation, polarization
parameter estimation, polarization sensitive array.

I. INTRODUCTION
In recent years, mission critical sensors and sensor net-
work (MC-SSN) applications, such as target detection and
reliable communication, have received increasing attentions
from both research community and industry [1]–[3]. The
sensors network composed of the scalar sensors used to
target detection on radar with DOA information. Moreover,
in industry[4], the series of the sensors used to construct
the sensors array and networks to get DOA information and
establish communication [5], [6].DOA information [7] is crit-
ical in these MC-SSN applications. Compared with the scalar
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sensor array, DOA estimation using the polarization sensitive
array (PSA) offers better performance in estimation accu-
racy, recognition accuracy and anti-jamming [8]–[10]. There-
fore, various effective DOA estimation algorithms based on
PSA have been proposed [11]–[13]. The Multiple Signal
Classification algorithms(MUSIC) and Estimation of Signal
Parameters via Rotational Invariance Techniques(ESPRIT)
were transferred to PSA. The polarized MUSIC with
multi-dimensional peak searching of DOA and polarization
parameters have been proposed with a long-vector (LV) data
model of the electromagnetic wave signal [13], [14]. A series
of polarized ESPRIT algorithms [15]–[17] based on time,
space, polarization invariance were presented to reduce the
computational complexity. The vector cross-product based

6566 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6421-3481
https://orcid.org/0000-0001-5260-0129
https://orcid.org/0000-0002-1200-8697
https://orcid.org/0000-0003-3565-8323
https://orcid.org/0000-0001-6663-0150
https://orcid.org/0000-0002-3630-8010


C. Hou et al.: 2D DOA and Polarization Parameter Estimation Using PCP-PSA

algorithm [18], [19] can estimate the parameters without
ambiguity, where only a single six-component vector-sensor
is used. In general, algorithm using PSA can achieve better
performance with the vector structure of electromagnetic
signal.

As the modern electromagnetic environment is becoming
more complex, the increasing number of the radiation sources
and wide distribution density is become a common situation.
In this situation, the number of incident signals usually is
unknown, and underdetermined (the number of signals is
more than the number of array elements) DOA estimation
problems are becoming more and more common. Therefore,
research on under-determined DOA estimation has important
practical significance.

The aforementioned algorithms can not solve the
under-determined problem that the number of signals is
more than array elements, and the inter-element spacing
limit of less than or equal to half a wavelength also restricts
the estimation performance [20], [21]. In order to solve
these problems, coprime array is proposed as a new sparse
array technology, which provides a new idea for solving the
underdetermined DOA estimation problem. Co-prime array
(CPA) [22]–[25] was presented to improve the degrees of
freedom (DOFs) and estimation accuracy. By vectorising
auto-covariance matrix array of the received data, the DOFs
of the CPA could reachO(MN ) with onlyO(M+N ) physical
sensors when m and n are co-prime numbers. M and N sep-
arately express the number of two subarrays’ array elements
in the CPA. The parallel co-prime array (PCPA) [25]–[27],
three-parallel co-prime array (TPCPA) [28], and co-prime
planar array (CPPA) [20]–[21], [29], [30] are constructed by
vectorising the cross-covariance matrix of multiple subarrays
for 2D DOA estimation. In order to solve the correlation
during the vectorisation, the spatial smoothing(SS) technique
based MUSIC [31]–[37] was introduced to the CPA. Subse-
quently, the sparse representation (SR) framework based CPA
algorithms [37]–[42] were developed to extend the DOFs.
In summary, setting up the sensors array with the one or
two dimensional co-prime structure can improve the DOFs,
thereby more signals can be detected. Meanwhile, the array
aperture is extended because of the sparse configuration of
CPA, which improves the estimation performance. However,
the CPA has not been introduced to the polarization sensitive
array models.

In this paper, we propose a parallel co-prime polar-
ization sensitive array (PCP-PSA), and construct a novel
cross-covariance matrix. Compared with the existing esti-
mation algorithm based on PSA, the proposed model dra-
matically increases the DOFs since the co-prime structure
is constructed, which is applicable to underdetermined sit-
uations and improves the estimation performance. More
importantly, in order to reduce the computational complex-
ity, the four parameters estimation problem (2D DOA and
2D polarization parameters) is decoupled into two 1D-DOA
parameter and one 2D parameters parameter estimation.
Through the vectorisation operation, a virtual uniform linear

FIGURE 1. Parallel co-prime polarization sensitive array.

array (ULA) with M (N + 1) DOFs is constructed. Then
proposing separately using SS based MUSIC or SR based
method in sequence to estimate the angle of 2D DOA. The
simulation results indicate that the proposed algorithm has
superior performance on parameter estimation than existing
PSA based estimation algorithm.

The remainder of this paper is organized as follows. The
problem is formulated in Section 2. The DOA estimation and
polarization parameter estimation of the proposed algorithm
are explicitly described in Section 3, respectively. The numer-
ical simulations are conducted to validate the effectiveness
of the proposed algorithm in Section 4. Finally, the paper is
concluded in Section 5.

II. PROBLEM FORMULATION
A. PARALLEL CO-PRIME POLARIZATION SENSITIVE
ARRAY
Consider a parallel co-prime polarization sensitive array that
consists of two uniform linear subarrays in the xoy plane,
as shown in Figure 1. The elements here in are all the
cocentered orthogonal dipole triads (CODTs) whose three
dipoles parallel to x−, y− and z−axis, respectively.The sub-
array 1 has 2M sensors with equal interelement spacing
Nd1,whereas the subarray 2 hasN sensors with equal interele-
ment spacingMd1, where d1 = λ/2 is a fundamental spacing,
and λ is the signal wavelength. The displacement spacing
between the two subarrays is d2 = λ/2. The numbers M
and N are co-prime, without loss of generality, assume that
M < N . Obviously, the PCP-PSA contains 2M +N physical
sensors.

B. 2D DOA ANGLES DEFINITION
In the three-dimensional space, a pair of two-dimensional
angles is required to characterize the incident direction of
the electromagnetic wave signal. As illustrated in Figure 2,
θk ∈ [0, 2π ) and φk ∈ [0, π/2] denote the azimuth angle
measured from the positive x−axis to the projection of the
incident direction on the xoy plane and the elevation angle
measured from the vertical z−axis, respectively, whereas α ∈
[0, π] and β ∈ [0, π] are spatial angles measured from
the positive x−axis and the positive y−axis, respectively.
These two pairs of two-dimensional spatial angles both can
be used to determine the DOA of incident signal, and have
the following relationship.{

cosα = sinφ cos θ,

cosβ = cosφ sin θ,
(1)
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FIGURE 2. The definition of two-dimensional DOA.

C. ARRAY SIGNAL MODEL
Assume that K far-field and narrowband signals, which have
travelled through a homogeneous isotropic medium, impinge
on the electromagnetic vector sensors. Then, the electric field
vector of the k− th unit-power completely polarized incident
source is expressed in Cartesian coordinates asex,key,k

ez,k

 =
− sin θk cos γk + cosφk cosφk sin γkejηk

cos θk cos γk + cosφk sinφk sin γkejηk

− sinφk sin γke−jηk

 (2)

where θk and φk are defined in subsection 2.2, and γk ∈
[0, π/2] and ηk ∈ [−π, π) denote the auxiliary polariza-
tion angle and the polarization phase difference, respectively.
Since CODT sensors can receive all three components of
electric field vector, the received data model of two subarrays
can be expressed as

x[1](t) =

x
[1]
x (t)
x[1]y (t)
x[1]z (t)

 =


K∑
k=1

a[1] (θk , φk) ex,ksk (t)+ n[1]x (t)

K∑
k=1

a[1] (θk , φk) ey,ksk (t)+ n[1]y (t)

K∑
k=1

a[1] (θk , φk) ez,ksk (t)+ n[1]z (t)


=

A[1](2,8)Exs(t)+ n[1]x (t)
A[1](2,8)Eys(t)+ n[1]y (t)
A[1](2,8)Ezs(t)+ n[1]z (t)

 (3)

x[2](t) =

x
[2]
x (t)

x[2]y (t)
x[2]z (t)

=


K∑
k=1

a[2] (θk , φk) ex,ksk (t)+ n[2]x (t)

K∑
k=1

a[2] (θk , φk) ey,ksk (t)+ n[2]y (t)

K∑
k=1

a[2] (θk , φk) ez,ksk (t)+ n[2]z (t)


=

A[2](2,8)Exs(t)+ n[2]x (t)
A[2](2,8)Eys(t)+ n[2]y (t)
A[2](2,8)Ezs(t)+ n[2]z (t)

 (4)

where superscript (·)[i] (i=1,2) denotes the sequence num-
ber of subarray, and the subscript x, y and z denote
the components corresponding to three dipoles. s(t) =
[s1(t), · · · , sK (t)]T is the signal vector where superscript

(·)T denotes transpose operation, and n[i]ζ (t)(i = 1, 2, ζ =
x, y, z) is the complex noise vector. A[1](θ, φ) and A[2](θ, φ)
are the spatial steering matrices of subarray 1 and 2,the

k − th column are a[1](θk , φk ) = [ejτ
[1]
(1,k) , · · · , ejτ

[1]
(2M ,k) ]and

a[2](θk , φk ) = [ejτ
[2]
(1,k) , · · · , ejτ

[2]
(N ,k) ],respectively, where

τ
[1]
(m,k) = 2π (m− 1)Nd1 sinφk cos θk/λ and τ [2](m,k) = 2π (n −
1)Md1 sinφk cos θk+d2 sinφk sin θk/λ is spatial phase factor.
In addition, we make some assumptions as follows.

1) The received signal data is statistically independent
among the sensors, dipoles and snapshots.

2) The complex noise is supposed to be temporally and
spatially white Gaussian and uncorrelated with the sources.

3) There is no mutual coupling effect among the sensors
and dipoles.

III. PARAMETER ESTIMATION
A. TWO-DIMENSIONAL DOA ESTIMATION
The second-order statistic of the array received data is utilized
to estimate the parameters. The cross-covariance matrix of
x-componets of two subarrays is

Rx = E
[
x[1]x (t)

(
x[2]x (t)

)H]
= A[1](θ, φ)Sx(A[2]θ, φ)H ,

(5)

where Sx = ExE[s(t)sH (t)]EHx = diag(σ 2
1 ‖ex,1‖

2,
σ 2
2 ‖ex,2‖

2, · · · , σ 2
K‖ex,K‖

2) is the signal cross-covariance
matrix of x−componets, and σ 2

k denotes the power of k−th
signal. The superscript (·)H denotes the complex conjugate
transpose operation, E[·]denotes the expectation operation.
Similarly, the cross-covariance matrices of y−componet and
z−componet can be obtained as

Rx = E
[
x[1]y (t)

(
x[2]y (t)

)H]
= A[1](θ, φ)Sy(A[2]θ, φ)H ,

(6)

Rx = E
[
x[1]z (t)

(
x[2]z (t)

)H]
= A[1](θ, φ)Sz(A[2]θ, φ)H ,

(7)

where Sy = diag(σ 2
1 ‖ey,1‖

2, σ 2
2 ‖ey,2‖

2, · · · , σ 2
K‖ey,K‖

2) and
Sz = diag(σ 2

1 ‖ez,1‖
2, σ 2

2 ‖ez,2‖
2, · · · , σ 2

K‖ez,K‖
2). It can be

seen that there are no noise terms in the cross-covariance
matrices, hence it would less affected by noise. According
to (2), the following quality can be obtained

‖e(x,k)‖2+‖e(y,k)‖2+‖e(z,k)‖2 = 1, k = 1, 2, · · · ,K .

(8)

Therefore, a new cross-covariance matrix can be constructed
as

R = Rx + Ry + Rz = A[1](θ, φ)S
(
A[2](θ, φ)

)H
, (9)

where S = diag(σ 2
1 , · · · , σ

2
K ) is the covariance matrix of

signals. It is obviously that R only involves DOA angles but
not the polarization parameters. According to the relationship
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between (θ, φ) and (α, β), the new cross-covariance matrixR
can also be written as

R = A[1](β)S̃
(
A[2](β)

)H
, (10)

where

a[1](βk ) = [1, ej2πNd1 cosβk/λ, · · · , ej2π (2M−1)Nd1 cosβk/λ]T

and

a[2](βk ) = [1, ej2πMd1 cosβk/λ, · · · , ej2π (N−1)Md1 cosβk/λ]T

denote the k-th column of A[1](β) and A[2](β), respectively.
S̃ = SAH

d (α) is a diagonal matrix where AH
d (α) =

diag(ej2πd2 cosα1/λ, · · · , ej2πd2 cosαK /λ). It is worthy to note
that the 2D DOA angles (α, β) have been separated into
two independent parts in (10), and the angle α has been
transformed into the diagonal entries of the matrix S̃.

By using the vectorisation operator, the new cross-
covariance matrix R can be transformed into a vector form
as

r = vec(R) =
(
A[2](β)

)∗
� A[1](β) · s = B(β) · s, (11)

where � and (·)∗ denote the Khatri-Rao product and conju-
gate operation, respective. s is a column vector that consists of
the diagonal entries of S̃, b(βk ) = [a[2](βk )⊗ a[1](βk )] is the
k−th column of B(β) = [b(β1),b(β2), · · · ,b(βK )] where ⊗
denotes the Kronecker product. The vector r can be regard as
the received signal data from a virtual linear array with the
sensor locations at

L = {x[1]i − x
[2]
j | 0 ≤ i ≤ 2M − 1, 0 ≤ j ≤ N − 1}, (12)

where x[1]i is the location at x−axis of the i−th element of
subarray 1, and x[2]j is the location at x−axis of the j-th
element of subarray 2. s is the single-snapshot signal data,
and B(β) is the corresponding steering matrix. Benefiting
from the co-prime characteristic of numbersM andN , we can
construct a virtual ULA with sensor locations at

L̃ = {ld1, 0 ≤ l ≤ M (N + 1)− 1}, (13)

By extracting the entries and rows corresponding to the loca-
tions in L̃ from r and B(β), the single-snapshot received data
of virtual ULA can be given by

z = B̃(β) · s, (14)

where B̃(β) = [b̃(β1), b̃(β2), · · · , b̃(βK )] is the correspond-
ing steering matrix in which b̃(βK ) = [1, ej2πd1 cosβk/λ, · · · ,
ej2π (M (N+1)−1)d1 cosβk/λ]T is the k−th column of B̃(β). It can
be seen that the DOFs of the PCP-PSA are extended from
2M +N toM (N + 1), which allows that the DOA angles can
be estimated under the underdetermined condition.

Since the vectorisation operation in (11) induces correla-
tion between the incident signals, hence, the signal model in
(14) would be considered as K ‘correlated’ incident signals
impinging on the virtual ULA. Due to the correlation of sig-
nals and only single available snapshot in (14), the subspace-
based DOA estimation algorithm cannot be applied directly.

The spatial smoothing method can effectively recover the
rank of the array covariance matrix, so that the correlated
signals can be estimated by subspace-based algorithm. On the
other hand, the sparse representation based DOA estimation
algorithms can handle the correlated problem naturally, and
can work properly even if the snapshot is insufficient. In the
following, the forward/backward spatial smoothing (FBSS)-
MUSIC algorithm [32] and `1−norm penalty-based sparse
recover algorithm are used to estimate the DOA angle β.
According to (14), the virtual ULA withM (N +1) sensors

can be divided into P1 overlapping subarrays with P2 sensors
in each subarray, and P1,P2 satisfy P1+P2 = M (N +1)+1.
If the subarrays are arranged with forward spatial smoothing,
the first subarray consists of the sensors located at 0 to (P2−
1)d1. The received signal data of the p−th subarray is

zfp = z(p : p+ P2), (15)

where p = 1, 2, · · · ,P1. Then, the forward spatial smoothing
covariance matrix of the virtual ULA can be calculated by

Rf
=

1
P1

∑P1

p=1
zfp(z

f
p)
H . (16)

Similarly, if the subarrays are arranged with backward
spatial smoothing, the first subarray consists of the sensors
located at P1 d1 to (P1 + P2 − 1)d1. The received signal data
of the p−th subarray is

zbp = z(P1 + 1− p : P1 + P2 − p), (17)

where p = 1, 2, · · · ,P1. Then, the backward spatial smooth-
ing covariance matrix of the virtual uniform linear array can
be calculated by

Rb
=

1
P1

∑P1

p=1
 (zbp)

∗(zbp)
T . (18)

where  is a P2×P2 permute matrix with back-diagonal of 1.
Thus the FBSS covariance matrix can be obtained as

Rfb
=

1
2
(Rf
+ Rb). (19)

Appling the FBSS covariance matrix to the conventional
MUSIC algorithm, the DOA angle β can be estimated. Note
that the FBSS covariance matrix is a full-rank P2×P2 matrix,
hence, it is can be used to estimate the DOA angle β for
P2 − 1 incident signals. According to the theory of spatial
smoothing, the element number in one subarray and the sub-
array number are mutually restricted, and estimation perfor-
mance would degrade when either of them is too large or too
small. Then the sparse representation based DOA estimation
algorithm is discussed. By discretizing the whole β angle
domain, a sampling grid β̄1, β̄2, · · · , β̄Q with� K is formed.
Assume the grid is dense enough so that the actual DOA
angles βk (k = 1)K only lie within the grids. To obtain denser
grids with less computational complexity, the multiresolution
grid refinement [43] can be used. Then the data vector z in
(14) can be sparsely represented as

z = φ(β̄) · u. (20)
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where φ(β̄) = [b̃(β̄1), b̃(β̄2), . . . , b̃(β̄Q)] ∈ C(M (N+1)×Q)is
an overcomplete dictionary, and u = [u1, u2, · · · , uQ]T is a
K−sparse coefficient vector with uq 6= 0 if ∃β̄q = βk and
uq = 0 otherwise. It can be seen that φ(β̄) only depends
on the DOA angle β, whereas u depends on the other DOA
angle α and the signal power. Hence, the estimation of DOA
angle β can be obtained by solving the following optimization
problem

min
û
‖z− φ(β̄ · û)‖2 + µ‖û‖1. (21)

where ‖ · ‖2 and ‖ · ‖1 denote the `2− and `1−norm, respec-
tively. µ is the regularization parameter that balances the
trade-off between the residual error of z and the sparsity of
û. In fact, the above optimization problem is a second-order
cone program (SOCP) problem [44], and can be efficiently
solved by off-the-shelf optimization software package such
as CVX. Therefore, the DOA estimation problem turns out to
be that of recovering theK sparse vector u and detecting the
locations of nonzero elements therein. Once the estimation
of DOA angle β is obtained, the steering matrix B̃(β) of the
virtual ULA in (14) can be calculated as

B̂(β̂) = [b̂(β̂1), b̂(β̂2), . . . , b̂(β̂K)], (22)

where {β̂k}Kk=1 is the estimation results. Then, the estimation
of vector s can be calculated by the least squares method
as

ŝ = (B̂H B̂)−1B̂Hz, (23)

where (·)−1 represents the matrix inverse operation. There-
fore, the estimation of {αK }Kk=1 can be obtained by

α̂k = cos−1(−λ arg(ŝk )/2πd2), (24)

where ŝk is the k-th entry of ŝ, and arg(·) represents the
argument. It is obviously that the DOA angles {αk}Kk=1 and
{βk}

K
k=1 are paired automatically.

B. POLARIZATION PARAMETER ESTIMATION
In this section, we estimate the polarization parameters based
on the DOA estimation results. From (5) to (7), the cross-
covariance matrices between the x−, y−components of sub-
array 1 and z− component of subarray 2 can be constructed
as

Rxz = E
[
x[1]x (t)

(
x[2]z (t)

)H]
= A[1](θ, φ)Sxz

(
A[2](θ, φ)

)H
,

(25)

Ryz = E
[
x[1]y (t)

(
x[2]z (t)

)H]
= A[1](θ, φ)Syz

(
A[2](θ, φ)

)H
,

(26)

where Sxz = diag(σ 2
1 ex,1e

∗

z,1, · · · , σ
2
k ex,K e

∗
z,K ) and Syz =

diag(σ 2
1 ey,1e

∗

z,1, · · · , σ
2
K ey,K e

∗
z,K ) both are diagonal matrices.

By using the vectorisation operator, we can get

rxz = vec(Rxz) =
(
A[2](θ, φ)

)∗
� A[1](θ, φ) · sxz, (27)

ryz = vec(Ryz) =
(
A[2](θ, φ)

)∗
� A[1](θ, φ) · syz, (28)

where sxz andsyzare column vectors consist of the diagonal
elements of Sxz and Syz, respectively. Since 2D DOA angle
estimation results are obtained, sxz and syz can be estimated
by LS method as

ŝxz = (ÃH Ã)−1ÃHrxz, (29)

ŝyz = (ÃH Ã)−1ÃHryz, (30)

where Ã =
(
A[2](θ̂ , φ̂)

)∗
� A[1](θ̂ , φ̂) can be calculated

with {θ̂k , φ̂k}K(k=1). Therefore, the estimation of polarization
parameters can be obtained by

γ̂k = sin−1θ

√√√√ ŝxz,k cos θ̂k + ŝyz,k sin θ̂k
−σ 2

k sin φ̂k cos φ̂k
, (31)

η̂k = − arg(ŝxz,k sin θ̂k − ŝyz,k cos θ̂k ), (32)

where ŝxz,k and ŝyz,k are the k−th entries of ŝxz and ŝyz,
respectively. σ 2

k =
∣∣ŝk ∣∣2 is the power of k-th signal which

can be obtained from the results of (23). It can be seen that
the polarization parameter estimates {γ̂k , η̂k}Kk=1 and DOA
angle estimates {θ̂k , φ̂k}Kk=1 are also paired automatically in
the process of the least square operation.

IV. SIMULATION RESULTS
In this section, a series of numerical simulations under dif-
ferent conditions are conducted to investigate the estimation
performance of the proposed algorithm. The results are com-
pared with the PCPA algorithm [20], TPCPA algorithm [23],
and LV-MUSIC algorithm [7]. The parallel co-prime array is
used in the proposed algorithm and PCPA algorithm, and the
co-prime numbers are M1 = 5 and N1 = 7, hence, there
are 17 physical sensors and 40 DOFs. The there-parallel co-
prime array is used in the TPCPA algorithm, and co-prime
numbers areM1 = 4 andN2 = 5, hence, there are 18 physical
sensors and 47 DOFs. The array used in the LV-MUSIC is
same as the proposed algorithm.Moreover, the array elements
are CODTs for the proposed algorithm and LV-MUSIC algo-
rithm, whereas they are scalar sensors for PCPA and TPCPA
algorithm.

A. THE SPATIAL SPECTRUMS UNDER THE
UNDERDETERMINED CONDITION
In this subsection, we compare the spatial spectrums of the
DOA angle β under the underdetermined condition. Assume
there are K = 18 far-field uncorrelated narrowband signals
impinging on the array. The DOA angle β are distributed
within 18◦ to 154◦ with step of 8◦, the DOA angle α are
distributed within 13◦ to 77◦ with step of 8◦, the auxiliary
polarization angle γ and the polarization phase difference η
are randomly distributed within the ranges of (−90◦,90◦) and
(−180◦,180◦), respectively. The snapshot number is 500 and
the SNR is 10dB.

We firstly compare the spatial spectrum of the proposed
algorithm based on SR with that of the PCPA algorithm.
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FIGURE 3. The spatial spectrum comparison of sparse representation
based algorithms. The SNR is 10dB and the snapshot number is 500. The
dotted line represents the real DOA angle β and the solid line represents
estimated result.

The uniform spatial grid in β angle domain is formed with
interval of 0.1◦. The regularization parameter µ is 0.3 for
the proposed algorithm and 1 for PCPA algorithm. As it
can be seen in Figure 3, both these two algorithms can
obtained the correct estimation of β under the underdeter-
mined condition. However, the PCPA algorithm has larger
estimated bias than the proposed algorithm, and there are
visible pseudo-peaks in the spatial spectrum. This certifies
that the proposed algorithm has better estimation stability
than PCPA algorithm. Then, we compare the spatial spec-
trums of the proposed algorithm based on FBSS-MUSIC
with different sensor number of each overlapping subarray,
as shown in Figure 4. It is obviously that sensor number
of subarrays seriously affects the spatial spectrum. When
the subarrays contain fewer sensors, the deviations of some
peaks increase since more entries in the original covariance
matrix R are missed. For example, there are some accuracy
loss when the DOA angle β are 18◦, 26◦, 146◦, 154◦. This is
mainly because the spatial smoothing only uses the diagonal
area elements of the covariance matrix of the virtual uniform
linear array. In this situation, when the subarrays contain
fewer sensors, more non diagonal area elements will be lost.
When the subarray contains more sensors, the orthogonality
of signal- and noise-subspacewould decrease since the spatial
smoothing time reduces. Therefore, as previously discussed,
the moderate choice of subarray sensor number is significant.

FIGURE 4. The spatial spectrum comparison of the proposed algorithm
based on FBSS-MUSIC. The spatial spectrums are under the conditions
that the subarrays contain 18, 25 and 35 sensors, respectively.

B. ESTIMATION PERFORMANCE VERSUS SNR AND
SNAPSHOT NUMBER
In this section, we discuss the 2D DOA and polariza-
tion estimation accuracy versus SNR and snapshot num-
ber. Assume there are K = 4 far-field narrowband
signals whose DOA angels and polarization parameters
(α, β, γ, η) are (115◦, 35◦, 20◦, 20◦), (50◦, 65◦, 40◦,−25◦),
(70◦, 130◦,−30◦, 40◦) and (100◦, 150◦,−60◦, 55◦), respec-
tively. The regularization parameter mu is set as 1.2. The
entire spatial domain is considered, and the searching step
or grid interval is 0.1◦◦. When the snapshot number is fixed
to 500, the SNR varies from 5dB to 30dB with the step size
5dB; when the SNR is fixed to 10dB, the snapshot number
varies from 100 to 1000 with the step size 100.

Figure 5 and 6 show the root mean squared errors (RMSEs)
of 2D DOA estiamtion versus SNR and snapshot number.
It can be seen that the RMSEs of DOA for these algorithms
all decrease with the increase of SNR and snapshots. Due
to the reconstructed cross-covariance matrix, the proposed
algorithm outperforms than the other algorithms. In the case
of low SNR and few snapshots, the orthogonality of the
signal- and noise-subspace in the MUSIC-based algorithms
is affected, leading to a slight increase of the estimation
RMSE than SR-based algorithms. Moreover, since the entries
in the covariance matrix of data vector z would be missed as
we discussed in the first simulation, the proposed algorithm
based on SR has more accurate estimate results than that
based on FBSS-MUSIC.

Next, Figures 7 and 8 show the estimation accuracy of the
polarization parameters versus SNR and snapshot number.
Similar to the RMSE curves of DOA estimation, the RMSEs
of polarization parameters decreases with the increase of
SNR and snapshots. As shown in Figure 7, in the case of low
SNR, the proposed algorithm has more accurate estimation
results since the usage of cross-covariance matrix which is
less affected by noise. When the SNR is high, LV-MUSIC
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FIGURE 5. The RMSE of DOA angle estimation versus SNR. The snapshot
number is 500, and the sensor number of overlapping subarray in the
proposed algorithm based on FBSS-MUSIC is 25.

FIGURE 6. The RMSE of DOA angle estimation versus snapshot number.
The SNR is 10dB, and the sensor number of overlapping subarray in the
proposed algorithm based on FBSS-MUSIC is 25.

algorithm have smaller estimate RMSEs of polarization
parameters than the proposed algorithm based on FBSS-
MUSIC. The main reason is that the proposed algorithm
estimates the polarization parameters based on DOA esti-
mation results. The DOA estimation deviation would cause
more estimation bias in the process of polarization parameter
estimation. This would not appear in the LV-MUSIC algo-
rithm. However, the proposed algorithm based on SR has
enough accurate DOA estimation, so that it has the smallest
polarization parameter estimation RMSE.

C. RUNNING TIME COMPARISON
the last simulation, the running time of 2D DOA estima-
tion under the same conditions is compared. The simu-
lation results are obtained using a PC with an Inter(R)
Pentium(R) G2010 2.8 GHz CPU and 8 GB RAM by running
the Matlab (Ver. R2016b) codes in the same environment.
Assume there are four signals. The entire spatial domain is
considered, and the searching step or grid interval is 0.1◦,
300 Monte Carlo trails are carried out with 10 dB SNR and

FIGURE 7. The RMSE of polarization parameter estimation versus
snapshot number. The SNR is 10dB, and the sensor number of subarray in
the proposed algorithm based on FBSS-MUSIC is 25.

FIGURE 8. The RMSE of polarization parameter estimation versus SNR.
The snapshot number is 500, and the sensor number of subarray in the
proposed algorithm based on FBSS-MUSIC is 25.

500 snapshots. We compare the proposed algorithm with
the LV-MUSIC algorithm and PCPA algorithm, then their
algorithm complexity analysis and average running time are
shown in Table 1. It can be seen that the running time of
the proposed algorithm based on FBSS-MUSIC is drasti-
cally reduced compared with LV-MUSIC algorithm. This is
mainly because the proposed algorithm constructs the virtual
ULA, and only 1D peak searching is required to estimate
2D DOA. On the other hand, since the spectrum function
of the proposed algorithm is simpler than LV-MUSIC algo-
rithm, the computational amount of spectrum function on
each searching point is also reduced. In addition, the proposed
algorithm based on SR has the similar running time with
PCPA algorithm, which is consistent with the aforementioned
analysis of theoretical computational complexity.

In this subsection, we discuss the major computational
complexity of the proposed algorithm. The construction of
virtual ULA and its data vector z requires O(MNL) flops.
In the algorithm based on FBSS, comparing with the Kroenke
product in the algorithm, the rest of algorithm complexity
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TABLE 1. Comparison of the average running time.

is negligible. Therefore, the complexity of the algorithm
mainly comes from the operation of the matrix. In addi-
tion, in the algorithm based on the SR. When the number
of array elements is the same, the algorithm complexity of
parameter estimation algorithm under the sparse representa-
tion is huge, and it is usually several times more expensive
than DOA parameters estimations. Therefore, the dictionary
mainly determines the algorithm complexity of the algorithm
based on the SR. The estimation of spatial angle β based on
FBSS-MUSIC or sparse recover requires O(NβP32) or O(Q

3)
flops, respectively, where Nβ denotes the searching point
number in angle β domain; the estimation of spatial angle
α requires O(M (N + 1)K 2). Typically assuming Nβ ,Q,L �
P2 > K ,M ,N , therefore the computational complexity of
the proposed algorithm is mainly in the 1D peak searching
process of FBSS-MUSIC or solving the optimization prob-
lem in (21). By comparison, the current 2DMUSIC-like algo-
rithms need 2D peak searching process, such as LV-MUSIC
algorithm [7], which requires O(NθNφ(2M + N )3) flops
where Nθ and Nφ denote the searching point number in
azimuth and elevation domain. This would lead much more
computational amount than the proposed algorithm based on
FBSS-MUSIC. On the other hand, 2D DOA estimation based
sparse recover all need to solve the optimization problem
which requires the similar computational complexity as the
proposed algorithm based on SR.

V. CONCLUSION
In this paper, a novel 2D DOA and polarization parame-
ter estimation algorithm based on parallel co-prime polar-
ization sensitive array is proposed. We construct a new
cross-covariance matrix that does not contain polarization
parameters, thus the 2DDOAand polarization parameters can
be estimated separately. Through a vectorisation operation,
the virtual ULA is constructed. Therefore, the DOFs of the
array increase and more signals can be detected with the
limited number of physical sensors. Then, the FBSS-MUSIC
with 1D peak searching with 1D dictionary and SR-based
method are used for DOA estimation. The FBSS-MUSIC
method needs to construct overlapping subarray to solve
the correlation of signals, thus causing the loss of DOFs.
In contrast, the SR based method can naturally process the
correlated signals and fully utilize the DOFs, achieving the
detection of more signals and higher estimation accuracy.
Since the co-prime structure is applied to PSA, the DOFs of
the array are extended. Meanwhile, due to the sparse place-
ment of sensors, the array aperture is increased and themutual
coupling is weakened. From the simulation results, it can be
seen that these advantages make the proposed algorithm can

solve the underdetermined estimation problem and compared
with PCPA algorithm, PCP-PSA algorithm provides better
estimation stability in underdetermined conditions.
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