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ABSTRACT Cybersecurity is a fast-evolving discipline that is always in the news over the last decade, as the
number of threats rises and cybercriminals constantly endeavor to stay a step ahead of law enforcement. Over
the years, although the original motives for carrying out cyberattacks largely remain unchanged, cybercrim-
inals have become increasingly sophisticated with their techniques. Traditional cybersecurity solutions are
becoming inadequate at detecting and mitigating emerging cyberattacks. Advances in cryptographic and
Artificial Intelligence (AI) techniques (in particular, machine learning and deep learning) show promise in
enabling cybersecurity experts to counter the ever-evolving threat posed by adversaries. Here, we explore
AI’s potential in improving cybersecurity solutions, by identifying both its strengths andweaknesses.We also
discuss future research opportunities associated with the development of AI techniques in the cybersecurity
field across a range of application domains.

INDEX TERMS Artificial intelligence, cybersecurity, cyberattacks, machine learning.

I. INTRODUCTION
Cybersecurity is defined as a set of processes, human behav-
ior, and systems that help safeguard electronic resources.
Analogous toMoore’s law that forecasts the doubling of com-
ponents on an integrated circuit every two years (along with
decreasing costs associated with chip manufacturing), cyber-
criminals are increasingly doubling the effectiveness of their
attack tools for half the cost every few months [1]. Global
cybersecurity spending is expected to exceed $1 trillion from
2017 to 2021 [2], where spending on cybersecurity already
increased by almost 40 percent from 2013 to $66 billion [3].

In the past few years, cybersecurity researchers have
started to explore Artificial Intelligence (AI) approaches
to improve cybersecurity. Likewise, cybercriminals are also
using AI to launch increasingly sophisticated cyberattacks
while hiding their tracks. However, in this work, we focus on
howAI-based cybersecurity solutions could fend off attackers
better, and minimize or prevent data breaches.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

Advances in AI have led to many exciting research results
and systems since its emergence in the 1950s. Further devel-
opments led to the emergence of machine learning and deep
learning [4]. Today, AI has been deployed in far-reaching
application areas, including healthcare, agriculture, space,
law, and manufacturing [5]–[9]. The continuous performance
improvements in computer hardware and software (along
with their decreasing costs), coupled with new paradigms
such as big data and cloud computing, have led to the devel-
opment and deployment of a wide range of AI systems with
varying capabilities. Today, many of these AI systems now
perform a broad range of complex tasks that include learning,
planning, problem solving, decision making, and face/speech
recognition. Since the 1980s, another major development
within the AI field has been the emergence of machine learn-
ing technologies that help computer systems learn and adapt
to various conditions by using their past experiences, patterns,
and knowledge. A decade ago, a subfield ofmachine learning,
also known as deep learning, emerged that enables machines
to discover hidden relationships in their input data, thereby
generating more accurate results for planning and predicting.
Recently, we have witnessed an increasing interest in the use
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of AI and machine learning techniques to fight cyberattacks.
A strong motivation for the use of these techniques stems
from the large amounts of data that are constantly being
produced today, which requires significant resources and time
to analyze and detect any patterns, anomalies, or intrusions in
traffic data.

In a recent report by Juniper research, the authors predict
that the cost of cybersecurity incidents will increase from
$3 trillion each year to more than $5 trillion in 2024, an aver-
age yearly growth of 11 percent [10]. The key sources of
cyberthreats include [11]:

1) Script kiddies: These are novices who have trained to
create cyberattack tools to hack into vulnerable com-
puting systems and to make a quick buck or boost their
ego through such activities.

2) Criminal organizations: These include those involved
in illegal operations, who launch cyberattacks that can
cause a Denial of Service (DoS), steal data or state
secrets as a result of data breaches, seek payments
through ransomware, and so on.

3) Nation states: This involves state-sponsored cyber-
criminal activities perpetrated against enemy nations
with the intent of crippling the victim nation’s economy
or critical infrastructures, causing fatalities, disruption
of state-sponsored programs, or to ultimately topple the
government.

4) Terrorists: They attempt to cause nationwide losses and
major disruptions to society’s critical infrastructures,
such as causing massive power outages in a victim
country through cyberattacks.

5) Spies (including business rivals): They steal trade
secrets to gain an unfair market advantage.

6) Disgruntled employees: Employees who are stressed
and unhappy with their jobs, rifts with management,
or other factors may attempt to cause financial or rep-
utation losses to the organization by carrying out a
cyberattack against corporate resources.

7) External attackers and insider threats: Experts with a
strong knowledge about the operation of computing
resources as well as human behavior, who attempt
to exploit vulnerable systems and gain (mainly finan-
cially) through such acts or simply cause major disrup-
tions to the organization’s normal operations.

One type of threat that’s becoming more prevalent and
continuously evolving in complexity over the years is the
zero-day threat which has not been previously seen by
cybersecurity or software/hardware development staff. Con-
sequently, the attacker exploits the computing resources’
security vulnerability (software or hardware) the same day
it becomes known. When a zero-day attack targets a soft-
ware vulnerability, the patching of the security hole must be
initiated from the software developer or vendor as quickly
as possible. Such security patches take time to be created
and rolled out on a global scale. During this interim period,
all non-patched systems are exposed to the cyberthreat of
the zero-day vulnerability. An example of such a threat is

zero-day malware that can easily penetrate a target system
while bypassing malware detection software such as anti-
virus. Cybercriminals are using advanced techniques for code
obfuscation, defined as concealment of malicious codewithin
‘‘legitimate-appearing code’’ that can be delivered to a vic-
tims’ system in the form of an email attachment. Naïve
users may open these attachments or click an embedded link
to a malicious website, leading to system compromise and
more severe consequences—including data held for ransom,
compromise, and even sensitive data disclosure. Hidden mal-
ware within ads that appear on legitimate websites are also a
clever technique for compromising end-user systems through
zero-day exploits. Even the most up-to-date security software
will not be able to detect obfuscated code embedded within
such adware [12].

The German AV-TEST GmbH research institute for IT
security registers more than 350,000 new malware programs
and potentially unwanted applications every day. In fact,
in 2019, the institute identified more than 140 million
new malware programs, which translates to an equivalent
of 266 types of malware every minute [13].

As the sophistication of cyberthreats increases, the key
drivers pushing for increased cybersecurity at the corporate
level include:

1) Lack of cyber governance skills at the C-level. Exec-
utives such as the Chief Information Security Offi-
cer (CISO) and the Chief Information Officer (CIO),
do not easily make changes in security strategy at the
corporate level. Such changes would safeguard corpo-
rate resources against the ever-evolving and dynamic
nature of cyber threats of contemporary times. The
aggravating factor is the fact that cyber criminals are
not privy to C-Level culture of organizations, and there-
fore cybersecurity is increasingly posing a concern at
executive meetings [1].

2) Opportunities to harness state-of-the-art cybersecu-
rity detection techniques. Current computing systems
become more efficient in data crunching, while at the
same time the data required for cybersecurity analysis
has become available. This trend has advanced cyber-
security analysis techniques such as machine learning,
data mining, and knowledge discovery. Data mining is
a subcomponent of knowledge discovery, where a spe-
cific sequence of steps is applied to data with the intent
of extracting patterns. In addition, knowledge discov-
ery also comprises data cleaning, selection, and the
application of prior knowledge and established tech-
niques for interpreting the results extracted. Machine
learning and data mining significantly overlap, as they
employ similar methods and processes.Whilst machine
learning focuses on classification of data samples and
prediction of events or behaviors, data mining focuses
on the discovery of previously unseen patterns in data
(very much similar to detection of zero-day cyber-
attacks). The advancement of these techniques has
become one of the key drivers for organizations to
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achieve their goals, including their cybersecurity vig-
ilance [14]–[16].

3) Fragmented cybersecurity frameworks. Despite hav-
ing a plethora of frameworks for securing an orga-
nization’s resources against cyberthreats, the choice
remains a largely difficult question for an organiza-
tion’s cybersecurity decision makers. Some industries
such as the insurance sector do not have a proper
reference model to follow to ensure the requisite cyber-
security. This is attributed mainly to the lack of con-
sumer data to build legitimate and illicit profiles,
upon which machine learning or AI techniques can be
applied; definitions of fraud differ between the insur-
ance sector and the banking sector [17]. In the for-
mer case, insurers mainly worry about policies being
opened without a priori customer knowledge, and they
operate in a fragmented regulatory environment. For
instance, unlike banking, the insurance industry is not
tightly regulated in the US, consequently encumbering
the adoption of silver-bullet cyberprevention strategies
because they invariably depend upon regulation. There-
fore, the industry-specific cybersecurity framework,
or lack thereof, hinders the realization of cybersecu-
rity goals in a wide range of industries [18].A similar
concern arises in Supervised Control and Data Acquisi-
tion (SCADA) systems that comprise a range of com-
mercial off-the-shelf hardware and software and rely
upon standardized communication protocols. While
integrity and availability are important cybersecurity
concerns for SCADA systems, confidentiality is sec-
ondary [19]. Precedence is typically given to safety,
reliability, robustness, and maintainability of such sys-
tems, and therefore security takes a backseat [20].

Research contributions of this work
We summarize themain contributions of this work as follows:

• We present an overview of the cybersecurity threat land-
scape and discuss traditional security solutions (i.e.,
non-AI based solutions) that have been used to protect
from the various threats.

• We discuss the weaknesses of traditional cybersecurity
solutions and describe how emerging AI solutions can
improve cybersecurity.

• Finally, we present some key challenges faced by the
cybersecurity community that must be addressed in the
future.

II. CYBERSECURITY THREATS AND LEGACY
CYBERSECURITY SOLUTIONS
Over the last decade, many types of cyberthreats have
emerged. Next, we briefly review those threats. According
to a recent report [21], the top 10 cyberthreats we face today
include:

1) Denial of Service (DoS) attacks: These attempt to
overwhelm a victim system’s computing resources by
sending an overwhelming number of requests for it to

process within a short period of time. Such attacks can
be carried out in one of several ways: a single attacker
machine can launch a DoS attack against a victim
machine by transmitting a large number of network
traffic packets that appear to be legitimate, to bypass
security controls along the way; multiple attacker
machines can participate in a distributed-style DoS
attack, i.e., a Distributed Denial of Service (DDoS)
attack, resulting in a similar outcome at the victim
machine. DoS attacks are increasingly becoming more
sophisticated and harder to detect, because of the ready
availability of attacker tools, as well as the proliferation
of the CyberCrime as a Service (CCaaS) market [22].

2) Man-in-The-Middle (MiTM) attacks: These are legacy
cyberattacks carried out through the process of inter-
ception of transmitted data on a communication line
between two legitimate communicating parties. The
attacker places itself either physically or virtually
between two communicating parties, A and B, posing
as A to communicate with B through the interception
of A B messages and replacing these with malicious
or tampered messages, and repeating the same process
on the BA communication line, i.e., posing as party B
and speaking to party A. Variant implementations of
such an attack include IP address spoofing, wherein
the malicious actor convinces legitimate systems that
it is a trusted entity, enabling system access for the
actor. A message replay attack involves the repeat
transmission of a previously stored, stale message on
the communication line, perpetrated by the malicious
actor.

3) Phishing and spear-phishing attacks: These are car-
ried out by crafting emails that appear legitimate and
transmitting them to legitimate systems, with the intent
of having the naïve end users click a link and divulge
personal information. Such attacks exploit social engi-
neering principles, wherein emails are made to appear
legitimate to end users, luring them to trust them. Spear
phishing is defined as a carefully designed attack that
involves a thorough background search carried out by
the malicious actor on susceptible victims, for subse-
quent drafting of emails that appear to be very legit-
imate, with the ‘‘from’’ field often containing trusted
email addresses.

4) Drive-by attacks: These are carried out by malicious
actors who skim through the web and search for vulner-
able websites, so that they can implant malware scripts
into the webservers. End users who visit the website
are eventually infected with the malware, leading to
system compromise, disclosure of sensitive data, and
other damage.

5) Password attacks: These can be carried out by shoul-
der surfing user keyboard activity, brute force into a
system using common passwords, and crafting sophis-
ticated passwords through the application of AI tech-
niques [23], [24].
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6) Structured Query Language (SQL) injection attacks:
These are legacy cyberattacks that exploit vulnerabil-
ities in the SQL language by injecting a webpage with
input fields with SQL query code, that when executed
at the webserver, would disclose some or all of the
stored content on a backend database server, possibly
including usernames and passwords.

7) Cross-site scripting attacks: These are carried out
by injecting malicious code in a vulnerable web-
server. Subsequent retrieval of the hosted webpages by
naïve end-users would infect the victim’s machine with
malware. Such malware may transmit user data from
the victim’s machine to the malicious actor’s servers,
and may lead to the subsequent hijacking of web ses-
sions, theft of credentials, installation of key stroke
loggers, capture screenshots, and even taking control
of the victim’s machine remotely.

8) Eavesdropping attacks: These can be carried out by
sniffing out the network communication line and mis-
using obtained data. Malicious actors may either pas-
sively sniff the line and obtain user data or actively
attack the line, replacing messages with fictitious mes-
sages, and masquerade as legitimate users.

9) Birthday attacks: This hash of a message, also known
as a message digest, which can be computed using a
standard algorithm such as the Secure Hash Algorithm-
1 (SHA-1).When this algorithm is applied to amessage
of arbitrary length, the output is a hash value of fixed
length. The birthday attack refers to the attempt by
a malicious actor to find two different messages that
produce the same hash value. Consequently, the orig-
inal message can be replaced with the other message
that produces the same hash value, causing system and
service disruption and data loss. Such attacks apply AI
techniques to discover random messages that produce
the same hash value as a legitimate message [25]

10) Malware attacks: One of the main difficulties to
web-hosting organizations is that their websites can
become the source of malware spread. According to
Symantec’s 2016 threat report, 78 percent of websites
contain a critical vulnerability that can be exploited
by the adversary to allow malicious code to run with-
out any user interaction [26]. Strengthening a web-
site’s defenses involves deploying appropriate security
controls such as web proxies, firewalls, and intrusion
detection systems. A major issue here is the tradeoff
between the right level of security controls and usabil-
ity of websites being hosted. The higher the level of a
website’s usability, the greater the area of vulnerability
for the website.

Network attacks are launched on the environment to
disrupt services, steal individual/corporate data, and gain
network intelligence. Malicious users exploit the Operating
System’s (OS’s) weakness to gain access and tamper with
the OS to achieve their malicious objectives. Some of these
attacks are used to steal individual information, which can be

used to gain access to individual/corporate data. In Table 1,
we classified various network attacks based on their attack
objectives, expected targeted device or application, data/
information exposed when specific attack is underway, type
of environment affected when certain attacks occur, and how
these attacks are detected.

Next, we briefly discuss traditional (non-AI) cybersecurity
techniques for detecting cyberattacks:

1) Game theory: This has been previously applied to
cybersecurity [27]–[29]. The malicious actor is con-
sidered as one player in a game, and the victim’s
machine is the other player. Each player attempts to
maximize his/her incentive through strategic move-
ment, in which the player rationally justifies that the
goal would be reached by the move. Each player’s
behaviors either can be known beforehand or remain
concealed. An example of a game could be a smart
grid environment where the attacker attempts to disrupt
communication between a power system and a home,
whereas the defender attempts to maintain connectivity
between these various entities [30]–[32]. At each step
of the game, the attacker and the defender would adopt
strategies to be successful in their respective goals [33].

2) Rate control:Attacks against the availability of systems
include DoS and DDoS. Rate-control techniques can
minimize the impact on such systems’ operation when
they are under attack by reducing the volume of incom-
ing network traffic, through basic traffic throttling and
redefining permission lists [34].

3) Heuristics: Firewalls and intrusion detection systems
commonly rely on heuristics to identify the most
apt rule for classifying network traffic as legitimate
or anomalous. One such technique [35], performs a
sequence of steps comprising substring matching in
order to identify suspicious website addresses. The
second phase of the presented scheme comprises the
scanning of the web address through the VirusTotal
application (i.e. a website where one can supply a web
address and gets a scored analysis about the degree
of maliciousness of the input website), with the low-
est score of the two scans considered for deciding on
whether to let the data packets into the network or not.

4) Signature-based intrusion detection:A signature-based
intrusion detection system makes use of a database
that may store legitimate signatures corresponding
to normal traffic or attack signatures corresponding
to malicious traffic. The intrusion detection system
matches the contents of incoming network packets with
the stored signatures in real time [36]. This technique’s
drawback is that in the absence of relevant signatures,
intrusion detection systems are limited in their capa-
bilities to accurately detect malicious traffic entering a
network.

5) Anomaly-based intrusion detection: This technique
creates a model of what can be perceived as the
norm. The models can be in terms of rule-based
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TABLE 1. Various types of attacks, their impact, and approaches to detect them.

policies [37], mathematical models [38], and statistical
techniques [39]. Deviations from the norm are regarded
as attacks. When compared to the signature-based
detection, such techniques have the advantage of being
relieved from depending on signature patterns, thereby
removing them from administrative efforts to collect
signatures.

6) Autonomous systems: These have the capability to
self-protect and self-heal, and to ensure reliability
and availability [40], as in the case of the Bionic
Autonomic Nervous System (BANS). This system is
comprised of four different modules, namely, Cyber
Neuron, Cyber Axon, Peripheral Nerve and Central
Nerve. Cyber Neuron is used to protect against spy-
ware and malware. Cyber Axon is an intelligent tool to
recover from damage caused by spyware and malware.
Similarly, Peripheral Nerve provides a robust defense
against DoS/DDoS attacks by establishing a commu-
nication path between multiple cyberneurons deployed
on different devices. Last, Central Nerve serves as a
knowledge base against new attacks and to dissemi-
nate information to other security devices. Collabora-
tive defense by peripheral nerves is proposed to block
DoS and DDoS attacks through cooperation between
devices within the network.

7) End user security controls: Current end-user devices
such as mobile phones, smart portable devices (iPads),
and personal computers require in-built security rather
than add-ons [41]. End users might not update

their devices with the latest security patches, with
some vendors attempting to push automatic updates,
in order to install security patches. The Wannacry ran-
somware [42], [43] attack is an example of an attack
wherein the latest security patches provided by the
vendor were not applied on all the end-user devices.
Most of the time users are not aware of the impli-
cations of not applying the patches. In some cases,
although some users may be aware of this fact, they
do not either take the requisite action for securing their
devices or they carry out incorrect procedures, expos-
ing the devices through other vulnerabilities. A sug-
gested control [41] is to perform ‘‘out of sight’’ secu-
rity, where automatic updates are pushed by vendors
directly to end-user devices without the user’s involve-
ment. However, the challenge would be that software
vendors must ensure that the security updates guard
against new attacks (also known as zero-day attacks)
and work seamlessly with all pre- existing software on
the end-user device.

III. ARTIFICIAL INTELLIGENCE
AI is concerned with howmachines can think or act correctly,
given what they know [44]. This universal definition includes
how closely machines can think or act like humans (Fig. 1).
At one end of the spectrum, machines are deemed to be
intelligent if they can maximize the outcome on every state
of the process. At the other end of the spectrum, the Turing
Test [45] sets the standard on machine intelligence. Under
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FIGURE 1. Spectrum on intelligent measures from thinking humanly
through the Turing Test, to acting humanly to maximize the outcome.

this test, a computer communicating with a human is said to
have intelligence when the human cannot distinguish whether
the responses come from a computer or a human. At both
sides of the spectrum, AI embodies computing areas such
as natural language processing, knowledge representation,
logic, automated reasoning, machine learning, mathematics,
and game theory. Early AI applications gave rise to thinking
machines that solved puzzles such as geometry [46], checker
games [47], and a family of blocks-world problems.

After the proliferation of the Internet in the late 1990s,
software that behaved like humans gained popularity in
terms of agent-based AI, commonly called bots. Ethical bots
were made to spider the Internet for the benefit of search
engines, yellow pages, and recommendation lists. They pro-
vide protection against vandalism inWikipedia articles where
anybody can contribute as authors [48]. In contrast, mali-
cious bots also emerged to cheat in online games [49], post
spams [50], [51] and spread malware [52]. In mimicking
online games, bot programmers analyzed the traffic flow
between the game console and server to reverse engineer the
game code [49], [53]. In posting spams, the bots mimicked
the behavior of human when online, such as surfing the pages
before posting a message in a forum, rather than continuously
posting messages [51]. Malicious bots discourage cyber ser-
vices to function properly, costing the service providers to
have disheartened online visitors. As a result, some of the
cybersecurity research investigated solutions that can detect
and protect again malicious bots. Studies found that game
bots were active longer, were less social e.g. exchanging
items or participating in an auction, and have less variations
in their sequence of actions when compared to human [49].
Furthermore, game bots are more interested to collect items,
while human players seek to collaborate with other players
to complete challenges/quests [48]. Similarly, spambots and
malware bots can be detected from their behaviors being
different than human, that can be detected through some
distinctive communication patterns [50], [52].

The most relevant AI applications to the cybersecurity
area are in intrusion detection systems [54]. Cybersecurity
solutions often perform traffic analysis, where the Inter-
net traffic is classified as either legitimate or malicious.
At the dawn of the Internet, cyberattacks were identified
with rule-based systems, where attacks could be detected
based on their signatures. Over the years, as the number of
Internet-connected devices and their applications increased,
observing the huge amounts of network traffic being gen-
erated in real-time and creating rules which analyze this
traffic have become time-consuming and make security

protection systems behave defensively rather than proac-
tively. Coupled with this trend, technological advances are
also benefiting attackers who are developing new sophisti-
cated attack strategies that can avoid detection by current
security systems [4]. As the cyberthreat landscape contin-
ues to rise, we need advanced tools and technologies which
can help detect, investigate, and make decisions faster for
emerging threats. AI has the potential to intelligently ana-
lyze and automatically classify large amounts of Internet
traffic. Today, cybersecurity solutions, based on ML tech-
nologies, are being used to automate the detection of attacks
and to evolve and improve their capabilities over time.
ML-based solutions are being used in intrusion detection
systems [55]–[57] as they can handle large volumes of data
and a wide range of data attributes (e.g. a large number of
table columns) used for classification [54], [55]. Machine
learning techniques learn from the collected Internet traf-
fic to distinguish the malicious from the legitimate traffic
class. It is worthwhile pointing out that due to the pervasive-
ness of machine learning in addressing cybersecurity issues,
the adoption of the ‘‘machine learning’’ terminology has
become interchangeable with ‘‘Artificial Intelligence’’ in the
cybersecurity field.

A. MACHINE LEARNING
Conventionally, machine learning methods can be classified
into two categories: supervised and unsupervised learning.
In supervised learning, data samples are labeled according
to their class (e.g., malicious or legitimate). Training data,
or data labeling is usually performed manually, requiring
humans to detect data patterns with their classes. The trained
data is input to an algorithm to create a mathematical model,
which can output the predefined classes given new data sam-
ples. In unsupervised learning, no data labeling or training
is required. Instead, the algorithms determine the degree
of coherence/dispersion among data samples, systematically
creating classes, and then classifying these samples according
to the quality of data coherence within the class and data
modularity between the classes.

However, discussions in machine learning blur the dis-
tinction between supervised/unsupervised machine learning
algorithms. Mathematical, statistical, and probabilistic meth-
ods are used by machine learning techniques, allowing unsu-
pervised algorithms to label the data used by supervised
algorithms [58]. This shows that taxonomy perspectives are
converging, making it less essential to define machine learn-
ing algorithms based on whether they are supervised or unsu-
pervised [59]. Henceforth, we present an in-depth discussion
of machine learning algorithms from a taxonomy perspective
as described in [60], but in this section, we discuss the pre-
dominant machine learning techniques that are effective for
cybersecurity solutions.

Machine learning algorithms process data samples based
on their determining factors, commonly called features. The
data input is processed as a table of rows and columns, with
rows serving as data samples and the columns representing
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FIGURE 2. An example of a decision tree that classifies network traffic into attack and
normal traffic type.

their features. Naïve Bayes is a machine learning technique
used to classify data based on the Bayesian theorem [61]
where the features are assumed to originate from independent
events. The technique uses the computed probability of each
class over all instances as the basis to find the probabil-
ity of new data samples belonging to the class. Although
the performance of Naïve Bayes classifiers degrades when
more features come from dependent events, it is widely
adopted [62]–[65], because it can inherently accept such a
naïve assumption (that each feature comes from independent
events) while still yielding acceptable results [66].

B. DECISION TREES
A decision tree is a technique used to create a set of rules
from the training data samples. The algorithm iteratively finds
a feature that best categorizes data samples. The iterative
division creates a sequence of rules for every side of the
categories, resulting in a tree-like structure, until data samples
with only one class are found after a division. Fig. 2 shows
a decision tree example that classifies network traffic using
rules that lead to normal or attack traffic classifications. The
tree shows that, for example, if the flow of the traffic is
low, but the duration of the traffic pattern is long, then it is
classified as an attack. The technique provides an intuitive
method for detecting cybersecurity issues, because it shows
the result of a decision according to the feature values, as what
is required by classifying observed events in cybersecurity
as either legitimate or an attack. For example, the flow rate,
size, and duration were used by decision trees to detect DoS
attacks in addition to source/destination error rates [67]. Fur-
thermore, in detecting command injection attacks to robotic
vehicles, decision trees were employed to categorize values
from CPU consumption, network flow, and the amount of
data written [68]. This technique’s benefit is that once the
effective series of rules has been found, intrusion detection
systems can classify Internet traffic in real time. The quality
of generated real-time alerts is one of the most important
attributes in detecting cyberattacks.

A different approach is the Rule-Learning technique [69],
which seeks to find a set of feature values for each itera-
tion while maximizing a score that defines the classifica-
tion result’s quality—for example, the number of incorrectly

classified data samples. Such an approach is similar to
decision trees in that it generates a set of rules for clas-
sification. While decision trees find the best feature val-
ues that lead to a class, a rule-learning technique finds a
set of rules that can describe a class. The advantage of a
rule-learning technique is that it can factor human expert
advice in generating rules. Consider a study that employed
28 features to detect DoS attacks in cloud networks [70].
The features consisted of computer and network indicators,
such as Input/Output (IO) reads, memory used, TCP flags
detected, and the number of system resources opened. It gen-
erated a set consisting of rules derived from the features
(e.g. IO_reads greater IO_reads(average)), and employed
feature-ranking algorithms to discern the most relevant rules
in finding the class. Afterward, the study employed human
experts to optimize the rules, such as removing redundancies.
Thus, the technique is suitable for intrusion detection systems
where the configurations are mainly rule-based. Furthermore,
the technique was generally employed as a performance
benchmark to other machine learning techniques in detecting
network intrusions [71], [72].

C. K-NEAREST NEIGHBORS
The k-Nearest Neighbor (k-NN) technique learns from data
samples to create classes or clusters. It was first proposed as a
non-parametric pattern analysis [73] to find the proportion of
data samples in a neighborhood that yields a consistent esti-
mate of a probability. The neighborhood was set as k-number
of data samples according to a distance metric, usually the
Euclidian distance to create clusters. The votes from all k
neighbors decide how new data samples can be assigned to
one of the clusters.

Fig. 3 illustrates the above technique. A new data sample
(the red dot) was added to the data. In this example, the win-
ning vote came from the highest number of data samples from
one neighboring cluster. Hence, when k = 3, the sample was
put into Class 2.When k= 9, the sample was put into Class 1.
This technique is computationally complex even for small

values of k. However, it is attractive for intrusion-detection
systems because it can learn from new traffic patterns to
reveal zero-day attacks as its unseen classes. Active research
in this area thus seeks to find how k-NN can be used for
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FIGURE 3. The k-Nearest Neighbor (k-NN) algorithm classifies data in
class 1 and class 2, based on the k nearest data samples in the
neighborhood from the new data sample.

FIGURE 4. Support Vector Machines (SVMs) find a plane that separates
data samples.

real-time detections of cyberattacks [74]. Recently, the tech-
nique was employed to detect attacks such as data tampering
and false data injection against industrial control systems [75]
and smart grids [76]. It performs well when the data can be
represented through a model that allows the measurement
of their distance to other data–for example, in terms of a
Gaussian distribution [75] or a vector [76].

D. SUPPORT VECTOR MACHINES
The Support VectorMachines (SVMs) [77] technique extends
linear regression models. While classifying data samples,
SVMs find a plane that separates data samples into two
classes (as shown in Fig. 4).
The separating plane can be shaped to form linear, non-

linear, polynomial, Gaussian, Radial, sigmoid, and so on
depending on the function employed (called a kernel) [78].
SVMs can also separate multiclass data (that is, not only data
to be classified into two classes such as legitimate versus
attack class as what the previous examples showed, but rather
data to be classified into more than two classes) by employing
more than one plane. This makes SVMs an attractive tech-
nique that can be used to analyze Internet traffic patterns,
which often consist of several classes such as HyperText
Transfer Protocol (HTTP), File Transfer Protocol (FTP), Post
Office Protocol 3 (POP3), and Simple Mail Transfer Proto-
col (SMTP) [79].

SVM is a supervised machine learning technique, which
requires training data to create a classification model. There-
fore, it is used in applications where attacks can be simu-
lated [80]. For example, network traffic generated from the
penetration testing conducted on a network system was used
as the training data. SVM was employed to create a mathe-
matical model to find a plane the penetration test traffic from
normal traffic. A variation on its use creates a 1-class model
for the normal traffic, while the model can be employed to
detect anomalies when attack traffic was introduced [81].
From these perspectives, the benefit of SMVs enables the
development of attack detection models through simulations.

E. ARTIFICIAL NEURAL NETWORKS
The Artificial Neural Networks (ANNs) learning technique
is inspired from how neurons in the brain work [82]. ANN
techniques model neurons in terms of a mathematical equa-
tion that reads a series of data samples to output a target
value. The equation closely resembles the linear regression
equation where data attributes of a sample are weighed to
yield an output value. The ANN algorithm iterates until
the output value is within the range of an acceptable error
from the target value. In each iteration, the neurons learn by
correcting their weights by measuring how far the error is
from the target value, when given certain patterns identified
from the data samples. When the error becomes negligible,
the algorithm yields a mathematical equation that outputs an
informative value such as the class, when given unseen data
samples. ANN techniques can distinguish patterns that range
from noisy to incomplete data samples. They are suitable for
intrusion-detection systems because they adapt to new forms
of communications.

In a cybersecurity study [83], an ANN application used
the Cascade Correlation Neural Network (CCNN) [84] which
adds new hidden units to the hidden layer, step by step.
When new events are detected, new hidden nodes are added
to the network and only those are trained with the newly
collected data thereby enabling a runtime adaptive and scal-
able system. In this work, the CCNN allows the train-
ing of the network with new data and does not need to
retrain the whole network with the original data to learn
from desktop-platform traffic patterns to detect port scan-
ning to mobile networks. During the past decade, the rise of
mobile devices has created new traffic patterns, causing pre-
viously built detection models obtained from desktop traffic
to become obsolete. Port-scanning activities against mobile
devices differed in their frequency of received packets and the
number of ports scanned per second. The study showed that
ANN port-scanning detection performance was comparable
to other algorithms’ performance, such as Decision Trees.

Another benefit of ANN is that it can detect zero-day
attacks, because it can learn from recent incidents. For exam-
ple, traffic patterns from having DoS attack incidents were
fed to ANNs as the labeled training data, allowing the neurons
to adjust their weights and detect unseen DoS attacks [85].
When incidents such as DoS attacks occurred, the victim can
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testify that an attack has occurred, as opposed to other inci-
dents (e.g., system penetration) where the attackers can cover
their tracks, leaving the victim as gullible. Thus, ANNs is
a suitable detection technique for cybersecurity applications
where the attack class can be labeled when an incident (such
as DoS) occurred, allowing the detection system to learn from
the incident.

F. SELF-ORGANIZING MAPS
Self-Organizing Maps (SOMs) [86] take ANNs to the next
level, namely, to self-adjust the neurons’ weight to output a
2- or 3-dimensional (2D or 3D) map showing how the data
can be grouped. The technique learns by finding the correla-
tions that exist in data samples. Adjacent data samples share
more similar features than the ones further away, thereby
clustering data and providing an output in the form of a map.
SOMs are computationally complex, making it unsuitable
for real-time intrusion detection. Their major benefit lies in
their ability to visualize the data, which is therefore useful
in visualizing network anomalies [87]. Without visualiza-
tion, the outputs from intrusion-detection systems are hard
to analyze. Visualization tools allow network operators to
picture the normal pattern of traffic data (e.g., in terms of
protocol interactions and traffic volume), thereby equipping
them to effectively find anomalies in network traffic, includ-
ing zero-day attacks. Although visualization approaches can
point to anomalous events effectively, it still requires trained
eyes to find anomalies in the data. Therefore, SOMs were
employed as a complementary tool for detecting cyberat-
tacks.

Since SOMs illustrates data in a 2D or 3Dmap, it is suitable
to visualize multidimensional data (e.g., when the data in
a table have a large number of columns). In other words,
SOMs reduce the dimensionality of data. Although there are
other dimensional reduction techniques (such as Principal
Component Analysis and Curvilinear Component Analysis),
they do not visualize anomalies suitable for interpreting
cyberattacks [87], [88]. In detecting web attacks, for example,
the dimensions taken from the HTTP request header were
the protocol, userAgent, acceptEncoding, acceptCharset, and
connection. SOMs were employed to visualize such mul-
tidimensional data to a 2D map, employing colors to dis-
tinguish anomalous web traffic [88]. Similarly, SOMs were
employed to detect botnets by reducing 5D data (i.e., proto-
col, source/destination IP, source/destination port numbers)
to a 2D map, effectively classifying botnets from normal
traffic on the map [89].

G. BIOLOGICALLY INSPIRED TECHNIQUES
Cyberintrusions may come not only from network traffic,
but also from offending human language such as profanity,
insults, hate speech, and racist/sexist remarks [90], [91].
To distinguish offending language from normal, Natural Lan-
guage Processing (NLP) [92] applications have emerged.
NLP derives semantics from language structures such as the
use of punctuation, sentence length, or a group of words

frequently found together in a sentence. This allows NLP to
detect sentiments, by identifying groups of words that are
different from those labeled as normal [90].

Many biologically inspired and evolutionary algo-
rithms [93] are suitable to detect offending human
languages. The most popular algorithm is Deep Neural Net-
works (DNNs), a derivative of ANNs. DNNs employmultiple
hidden layers, allowing algorithms to process latent variables
that are otherwise unrecognized when only one layer is used.
These are suitable for NLP applications, because they can
learn from language structures to derive semantics [94].
DNNs allowed the labeling of words with their role in the
sentence (e.g., adjective, noun, verb, or conjunction), finding
phrases (noun phrases and verb phrases), and recognizing
named entities (i.e., persons, companies, and locations).

Generative Adversarial Networks (GANs) [95] are also a
derivative of ANNs. The techniques seek to find features from
data samples, given their classes. GANs consist of two sets
of neural networks: one is used to generate features and the
other is used to evaluate how features model the data. Their
applications to cybersecurity include detecting steganogra-
phy [96], where one set of neurons generated samples of
fake images, and the other set of neurons distinguished the
generated fake images from real ones. The two sets of neurons
compete against each other to reach their goal of either gen-
erating undetectable fake images, or successfully distinguish-
ing fake ones from real, while updating their weights in each
iteration.

Overall in this section, we showed how AI techniques
could improve cybersecurity solutions. The current trend
shows that machine learning techniques seem to be the
most popular AI-based solutions, especially when it comes
to detecting network intrusions. However, as cyberattacks
become more sophisticated and complex, the efficacy and
efficiency of other AI-based solutions discussed here must be
further explored to better evaluate their true potential in the
field of cybersecurity. In the next section, we discuss how AI
could be deployed in various application domains to bolster
their cybersecurity posture.

IV. APPLYING AI TO STRENGTHEN CYBERSECURITY FOR
VARIOUS APPLICATION DOMAINS
The Internet continues to evolve in terms of the number of
users, its size, heterogeneity of devices, and the number and
type of applications that are being developed to run over the
internet. Today, similar to electricity, water, and gas, the Inter-
net has become an important utility in the daily lives of people
around the world. As more devices connect to the Internet,
they face increasing risks of being exposed to all kinds
of cyberattacks. To protect these Internet-connected devices
along with their users, cybersecurity has become indispens-
able. Fig. 5 illustrates the role of AI in assisting cybersecurity
in three areas namely, the Internet (section IV-A to IV-D),
Internet of Things (IoT; section IV-E to IV-G), and criti-
cal infrastructure (section IV-H). The figure also illustrates
the structure for the following discussions in this section:

VOLUME 8, 2020 23825



S. Zeadally et al.: Harnessing AI Capabilities to Improve Cybersecurity

FIGURE 5. Applying AI to cybersecurity in various application domains.
Larger bubble sizes reflect the heightened role of AI.

AI applications grow from two main drivers–the degree of
interconnectedness, and the demand for having secure sys-
tems.

A. THE INTERNET
From an AI perspective, cyberattacks are malicious patterns
that differ from legitimate Internet traffic. To distinguish
malicious traffic from legitimate traffic, intrusion-detection
systems have been developed by employing AI techniques
because of their capability to examine a large amount of data
and adapt to the changing nature of Internet traffic. Recent
cyberattacks have targeted network infrastructure, business
logic, and users.

B. NETWORK INFRASTRUCTURE (BOTNET)
Most Internet services involve client-server communications.
Attackers can preempt access to servers or prevent the server
from serving client requests, as in DoS attacks. In a botnet,
the attackers first compromise several hosts (using Trojans
or other types of malware), which the attacker then controls
and issues specific requests to execute tasks. For instance,
in a DoS attack, these compromised machines can be used to
overwhelm a server with a large number of requests, leaving
no resources to handle requests from legitimate users.

DoS attacks have become an increasingly serious threat as
the botnets they use grow in complexity and run on multiple
platforms from computers, mobile devices, and IoT devices.
One study [97] detected DoS attacks launched by IoT devices
by employing features suitable to characterize IoT network
behaviors. They observed that IoT devices communicate with
a limited number of endpoints when running applications,
so two features were proposed to reflect this: a) the number
of distinct destination IP addresses, and b) the number of dis-
tinct IP addresses within a 10-second window. Other features
proposed were interpacket arrivals, and the first and second
derivatives of interpacket arrivals. This reflects a sudden
influx of packets sent by the IoT device. The study showed
that decision trees achieved 99 percent accuracy in detection.
Since most IoT devices must pass a single gateway (such as a
home router), DoS attacks generated from IoT devices can

be prevented when gateways adopt the proposed detection
method.

New DoS attacks techniques are launched as new ser-
vices emerge. Recent examples include DoS attacks on smart
meters [98], [99]. Each of these meters also act as a router
in the meshed network of smart meters. In [98], the authors
found that injecting an attack packet to a meter could generate
a high volume of route packets, updating other meters to
change their routing information in a way that prevents data
packets from reaching their destination. As such, the meters
in the network exhaustively attempted to get the data packet
to reach the destination, which caused the network to become
unavailable. In [99], the authors observed that the wireless
modules of smart meters are vulnerable to a jamming attack.
To detect a jamming attack, they analyzed the distribution of
distance of the incoming wireless signal to a point calculated
as central to the network. As new services and computing
platforms emerge, we expect new, more complex DoS attack
techniques will emerge.

Recent studies [100]–[102] focused on detecting DoS
attacks within the Software-Defined Network (SDN) envi-
ronment. Network management through SDN differs from
traditional forwarding protocols. While traditional routers
forward traffic according to their routing tables, SDN col-
lects and programmatically analyzes network data before
forwarding network traffic. This makes DoS attack detection
in an SDN environment a novel challenge [103]. The work
in [100] constructed 68 features derived from packets that an
SDN system switched from its data plane, before the system
forwarded packets to the control plane. These features were
extracted from statistics (the ratio, entropy, count, size and
flow of packets) of the Internet Protocol (IP), Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), and
Internet Control Message Protocol (ICMP) packets and flags.
With Deep Learning algorithms, the work showed that it
detected DoS attacks with 95.65 percent accuracy.

Deep Learning is seen as a suitable solution for detecting
DoS attacks in an SDN environment [101], [102]. The authors
of [101] employed 20 features, such as the protocol, port, and
packet size, and so on. The authors showed that a derivative of
Deep Learning called Long Short-Term Memory can detect
DoS attacks with 99.88 percent accuracy. The work in [102]
employed a set of features, such as the number of connections
within a 2-second window, duration of connections, number
of connections to the same service (as the current connection),
protocol type, and amount of data flow in each direction.
It showed that DNNs excelled in other AI techniques, such as
SVMs, Naïve Bayes, and Decision Trees in terms of accuracy.
The work showed that DNNs performed well, although only
a small number of features were defined, because DNNswere
able to create hidden/latent variables that were considered
as additional features, as opposed to other machine learning
techniques that do not create features.

SDN employs AI techniques to adapt to changes in the
computing environment, and learn from past network data
to analyze new traffic patterns and predict security trends.

23826 VOLUME 8, 2020



S. Zeadally et al.: Harnessing AI Capabilities to Improve Cybersecurity

However, two limitations have not been addressed in the liter-
ature [100]–[102] when AI is used for detecting cyberattacks
on SDNs. First, how AI can be used for real-time detec-
tions has not been discussed. Detecting DoS attacks requires
real-time decision making to classify malicious and legiti-
mate traffic, but the solution provided through AI techniques
are evolutionary in nature, which requires several computing
iterations to generate the appropriate output. Although the
work in [101] tested how the proposed system performed in
real time, the test was done after a classification model was
obtained from training data. To the best of our knowledge,
no study has proposed an AI technique for SDN to detect
DoS attacks in real time. Second, SDN by its nature does
not address detecting application-layer attacks [103]. Detect-
ing DoS attacks on application-layer protocols require either
deep-packet inspection or other non-centralized techniques.
This is another opportunity where AI could be applied, as we
discuss in the next section.

C. APPLICATION LAYER
As servers run the crucial business applications of an orga-
nization, attacking servers is an attractive venue to assault
either the organization running services or their users. Until
recently, application-layer attacks have focused on protocols
such as HTTP, Domain Name Service (DNS), or Session
Initiation Protocol (SIP). For example, when the new version
of the web browsing communications protocol HTTP/2 was
introduced, novel DoS attack modeling and detection was
proposed in [104]; the authors demonstrated how to bypass
intrusion detection systems. HTTP/2 had a flow-control
mechanism at the application layer, which did not exist in
HTTP/1.1. Flooding a type of the flow controls preempted
a server running HTTP/2 services, while maintaining a low
number of connections to the target server. This bypassed
known detection systems, which regard network events show-
ing high numbers of connections as attacks [105]. When
the proposed HTTP/2 flood traffic was launched against
an HTTP/2 service, AI techniques (Naïve Bayes, Deci-
sion Trees, and Rule Learning) showed a higher percentage
of false alarms than when the same AI techniques were
employed to detect HTTP/1.1 DDoS attacks, which demon-
strated that they bypassed known intrusion-detection systems.
In detecting attacks, SVMs showed no false alarms, given a
proposed set of features relevant to HTTP/2 detection [104].

The current application-layer attack landscape has shifted
from preventing information flow to manipulating informa-
tion’s meaning. With the advent of online social networks,
a new breed of cyberattack has emerged that aims to dis-
seminate false information so that recipients behave or make
decisions according to what the adversary intended [106].
Probably the most influential false information was when
fake news influenced the 2016 US presidential campaign,
thereby affecting national security interests [107]. False
information can affect individuals, too, because it manifests
itself not only in terms of fake news, but also in cyberbul-
lying and online grooming to control the victim’s behavior.

False information can seriously affect both national security
and people’s wellbeing; and detecting false information has
become a modern application-layer cybersecurity issue.

AI has proven to be a versatile technique to detect false
information [108]–[110], as it can quickly analyze a large
amount of data. For example, in [108], the authors analyzed a
corpus of 11,000 articles, including news from Reuters, local
news, and blogs, and about 29 percent of articles of the corpus
were labeled as fake. Their work classified fake news with
77.2 percent accuracy using Stochastic Gradient Descent,
an iterative optimization algorithm. The authors of [109]
proposed correlation-based classifiers, analyzed more than
150,000 tweets, and showed that the proposed classifiers
performed with 47 times greater precision than when the sys-
tem was not employed in classifying messages. The authors
of [110] analyzed 4.4 million Facebook messages and classi-
fied them into fake and legitimate ones. By employing Naïve
Bayes, Decision Trees, AdaBoost, and RandomForest, fake
news was separated from legitimate messages with 86.9 per-
cent accuracy.

Fake news must be detected as early as possible. Hence,
a work [111] proposed an early fake news-detection method
by employing a family of ANNs. The work measured the
time and structure of the propagation path in how news
spread. It employed two derivatives of ANNs, i.e., Recurrent
Neural Networks (RNNs) (which resemble directed graphs)
and Convolutional Neural Networks (CNNs, a derivative of
DNNs with more hidden layers). The CNNs measured the
time propagation of news, while the DNNs measured the
structure of propagation path of news, creating a tree-like
structure representing how news spread from one user to
another. The work was able to detect fake news in social
media with 85 percent accuracy on Twitter and 92 percent
on Sina Weibo within 5 minutes of when the first fake news
was posted.

Furthermore, detecting false information borrows knowl-
edge from linguistics [112] to classify texts. Here, the text
classification approaches [108], [109], [113], [114] expand
observations and features required in cybersecurity to imple-
ment automatic detection methods. The features such as
grammatical mistakes and choice of words are adopted from
linguistic cues, which are then mapped into machine learning
features. In addition, adopting specific terms with the lin-
guistic cues, it is possible to identify bomb threats on Twit-
ter [109], and identify the authenticity of Twitter users such
as online predators [114], [115]. These works showed that
automatic detection techniques for false information improve
human wellbeing, and demonstrate AI’s capability to use new
features.

In text-classification tasks, a favored feature is tf-idf, which
is short for term-frequency and inverse document frequency.
The value of term-frequency increases with the number of
common terms found in a document, while the value of
inverse document frequency does the reverse. Many false
information-detection techniques [109], [113], [116] have
expanded the tf-idf feature together with other linguistic cues
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such as phrases, grammar, negatives, and punctuation. SVMs
can detect satirical sentiment in sentences that are poten-
tially misleading news [113], whereas with Naïve Bayes,
it is possible to classify topics on Twitter to detect spam or
phishing [117]. DNNs have shown their ability to detect hate
speech in tweets with 93 percent accuracy [116].

Despite recent advances in text classification tasks, detect-
ing cyberattacks at the semantic level is still in its infancy.
Studies that employed tf-idf [109], [113]–[115], [117]
required human intervention to supply relevant words such as
‘‘dead’’ or ‘‘bomb’’ to detect threats [109], and ‘‘age,’’ ‘‘yr,’’
or ‘‘year’’ to detect predators [115]. This shows that, despite
the use of AI, cyberthreat detection at the current application
layer still requires human intelligence intervention. Further-
more, some studies [110], [111], [115], [118], [119] rely on
features other than linguistic cues. Examples of these nonlin-
guistic features in detecting fake news in Twitter include the
existence of URLs in tweeted messages [110], [118], the ratio
of followers/followees on Twitter [118], [119], the number of
tweets, the existence of hash tags, users’ time zone [115], and
the timestamp of when a tweet was sent [111]. These features
are specific to social media, rather than part of linguistic cues.

D. HUMAN LINK AND MALWARE
Probably the weakest link in cybersecurity is the human
who is the end user of the Internet. Humans are focused
on their business tasks rather than constantly dealing with
the ever-increasing number of cyberattacks. While machines
can be re-engineered to mitigate some of the well-known
cyberthreats, humans require constant training based on past
and updated issues. This requirement is one of the main
reasons behind the success of malware spreading through
modern phishing techniques [120].

Malware is software (such as a virus, Trojan, or worm) that
has malicious intent. Phishing is a method that attempts to
trick human users to perform what an adversary intends to
do, such as clicking a link or an executable file. Such actions
either trigger the spread of malware or induce the victims
to reveal their sensitive information. Traditionally, phishing
techniques leverage human weaknesses in their sensory sys-
tems, such as through fake emails or websites [121], causing
victims to be unable to distinguish them from legitimate
ones. Current phishing techniques are more sophisticated in
that they exploit the human limit in becoming omniscient.
To avoid falling for phishing hooks, users must assess the
target’s legitimacy, and often this can be done by inspecting
the code behind the links [122], which may require some
specialized expertise. This is an area where AI can be used
to augment human intelligence.

Instead of having to learn all the rules on how to detect
phishing, these rules act as the features for AI techniques.
The authors of [123] proposed an approach that uses SVMs to
detect links, leading to false banking websites. The approach
uses five features: IP address, Secure Sockets Layer (SSL)
certificate, number of dots in the URL, web address length,
and blacklist keywords. Legitimate banking websites show

a legitimate domain name instead of an IP address, have
an SSL certificate, have relatively short URL lengths in the
domain, and are not part of a subdomain (higher number of
dots). Furthermore, the method collected a bunch of words
commonly used in phishing websites. The results showed
that the method was able to detect zero-day phishing with
98.86 percent accuracy. This research demonstrates that with
AI training, we can address the human weaknesses in cyber-
security awareness.

Adversaries continue to exploit human weaknesses,
as seen in attacks on modern websites and online social
media. Modern websites improve web browsing experi-
ences using JavaScript to increase user-browser interactiv-
ity and browser response time. Adversaries can leverage
JavaScript either to insert malware or phish users. Detecting
JavaScript-compromised websites requires advanced knowl-
edge in coding, causing such compromised websites to
become nearly impossible to detect by the average human
user. Furthermore, recent techniques spread malware through
online social media by phishing for users to click on a link,
causing users to unintentionally download malware (also
referred to as drive-by-download) [124]. In response, AI tech-
niques have been employed to detect malicious JavaScript
websites [125], [126] and drive-by-download attacks [127].
In this case, AI techniques have been employed to analyze
JavaScript word sizes, the distribution of coding characters,
frequency of bytecode in strings, commenting style, and
sensitive function calls, to overcome human limitations in
detecting and analyzing such features. Furthermore, another
approach based on AI has been used to detect an obfus-
cated malicious JavaScript [128], and provide fail-safe mech-
anisms to prevent malware spread after users have been
phished [129].

In the area of usable security, the goal is to create usable
yet secure systems for the average human user. One approach
to increase cybersecurity awareness of the average human
user is by using some forms of games [130]. The game
sharpens players’ vigilance in detecting fake URL forms
that appear similar to the authentic ones; for example, dis-
tinguishing the fake URL ‘‘www.paypa1.com’’ from the
authentic ‘‘www.paypal.com’’. In [131], the authors exam-
ined 28 papers that discuss cybersecurity training games.
While the results from the examined papers revealed that
the players liked the game, those papers did not show
how effective the games were. Their sample sizes were
small, the participants were selected (rather than randomly
invited), and the effect size (i.e., the difference in cyber
awareness between the group that played the game and a
control group) was not studied. Furthermore, critics argue
that such training games suffer from privacy and trust
issues [132]. Such training games require algorithms to learn
about users’ belief in their own ability to accomplish a certain
goal [133], their attitudes toward software updates, creat-
ing strong passwords, identifying potentially malicious links,
and using appropriate hardware (e.g., backup data). When
information learned from the algorithms went into the hands
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FIGURE 6. From Internet of Content to Internet of Things (Short Message
Service [SMS]) [134].

of an adversary, the information would become useful ingre-
dients to create tailored phishing attacks toward a target. The
escalated issue would be when if such data becomes public or
available to unauthorized parties, leading to privacy and trust
issues.

E. THE INTERNET OF THINGS
Computers have become smaller, portable, and more power-
ful and affordable. The ubiquity of mobile devices such as
phones and tablets became the dawn of the IoT era. Today,
many devices (from toys, appliances, and vehicles to indus-
trial control systems) are equipped with networking capabil-
ities and Internet connectivity that makes the IoT possible.
Fig. 6 illustrates the evolution of technologies that have led
to the emergence of the IoT. Other paradigms such as cloud
computing, big data, and fog computing are enabling mobile
devices with limited resources to access a wide range of
services remotely.

Since the demand for higher data rates keeps increasing,
researchers introduced fog computing services by provision-
ing the platform and application closer to the user. Fog
computing distributes servers to minimize network roundtrip
delays, especially for Content Delivery Networks (CDNs).
So, fog computing improves website performance [135], and
provides real-time energy [136] and carbon footprint [137]
management. Furthermore, advances in telecommunications
technologies led to the development of vehicular networking
applications, which enable fast data transfers between mobile
devices [138]–[140].

F. PRIVACY
As Internet-connected devices become smaller and pervasive,
their ability to capture data surpasses humans’ ability to

become aware of their activities (in capturing data). Devices
collect information such as voice, geolocation, surround-
ing temperature, and ambient illumination to improve user
experience. However, studies [141]–[143] show that col-
lecting such information can serve malicious intent. Intelli-
gent virtual assistants (such as Amazon Alexa, Apple’s Siri,
and Google Home) can be used to illegitimately open a
smart (garage) door, or record private conversations [143].
One study [141] showed that devices can be used to find
a place in an airport to smuggle, cyberbully, spread fear,
and divert one’s browsing journey to serve advertisements.
Devices also can be used to tag a location or person with
crime-related incidents [142].

Traditionally, privacy has been addressed through secure
authentication mechanisms, such as encryption and security
certificates. These mechanisms shift in the IoT, as devices
are mobile, with data stored in the cloud. AI techniques can
be used to maintain private communications when routing
paths dynamically change, and when a third party stores
the data. For example, learning automata was adopted to
distribute secure certificates to moving vehicles [144], and
artificial immune system algorithms were adopted to securely
self-organize Wireless Sensor Network (WSN) ad hoc con-
nections to serve mobile gadgets [145]. In WSNs, different
IoT devices such as mobile gadgets dynamically join and
leave the network. This causes traditional security measures
such as port security (i.e., restricting traffic only to a known
Media Access Control (MAC) address) inapplicable. Thus,
in [145], the authors proposed features such as packet receiv-
ing rate, packet mismatch rate, and energy consumption per
packet received from a device to describe a device’s behav-
ior. They used artificial immune system algorithms to clas-
sify a device’s behavior as normal/abnormal. Upon detecting
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abnormal behavior, unencrypted packets were dropped. This
shows why an increasing number of Internet-connected
devices require new privacy solutions. Furthermore, because
substantial amounts of data are stored in the cloud, pri-
vacy concerns arise in relation to how sensitive data can be
accessed by cloud operators. To address this issue, intelligent
algorithms were employed to distribute sensitive data into
several cloud servers [146], making it impractical for cloud
operators to eavesdrop.

Secure authentication mechanisms also made use of
well-known biometrics and human behavior metrics. How-
ever, issues arise when authentication devices cannot find a
good fit under varying operating conditions. To address these
issues, AI techniques (such as Genetic Algorithms) have been
used to enable robust performance and accurate detection of
face, fingerprint, and voice recognition in different operating
environments [147].

One disruptive technology that can bypass legisla-
tion to promote privacy is blockchain [148]. Blockchain
allows a network of peer-to-peer non-trusted comput-
ers to store encrypted data without a central authority’s
involvement. AI techniques are used in conjunction with
blockchain [149]–[151] to facilitate blockchain applications.
In [149], AI techniques enable blockchain applications to
guarantee secure communications between two IoT devices.
Security measures that allow two IoT devices to remotely
communicate have traditionally been based on some cen-
tralized systems. Thus, blockchain was proposed to allow a
pair of remote IoT devices to communicate securely with-
out using a centralized system. Information obtained from
Reinforcement Learning stored in the blockchain was used
to assess whether the communicated data fulfills the end
devices’ access control policies, allowing automatic resource
sharing between IoT devices.

The work in [150] described how the healthcare sector
could derive medical data for predicting potential diseases or
medical issues while respecting patients’ privacy. Classifica-
tion and prediction algorithms require substantial data, which
conflicts with the patients’ interest in sharing their medical
data. Blockchain could be employed to record such medical
data, allowing patients guaranteed privacy while enabling
them to take control of their personal data, such as managing
access privileges. By having a platform that protects their
privacy, patients have more trust in storing personal data
and biomarkers (e.g., blood parameters, waist circumference)
useful for providing health status and risks. AI techniques
such as DNNs could be used to derive features such as
biomarkers and tumor tissues from medical imaging data
before being recorded to the blockchain. RNNs could be used
to identify chronic conditions and predict potential diseases
(e.g. cardiovascular or diabetes) from medical records.

In [151], AI techniques such as similarity learning were
employed in a smart, contract-based, data-trading system.
But a controversy arises when the data downloaded by the
purchaser is not consistent with what the provider claimed.
Thus, similarity learning was employed in [151] to calculate

the distance between the purchaser’s and provider’s data
features, thereby verifying the data’s consistency. This shows
that AI roles in privacy will incorporate legal, regulatory,
and ethical frameworks, as sharing personal data can benefit
human wellbeing.

G. CYBER-PHYSICAL SYSTEMS
Cyber-Physical System (CPSs) integrate communication,
computation, and monitoring functions. They collect data
using sensor networks and embedded systems and respond
to the environment through software components and actua-
tors [152]. The fundamental CPS concepts are being deployed
worldwide, as countries compete to become a dominant
player in this domain. The phenomena described in CPS
are behind the motivation for the economic development in
Germany’s ‘‘Industry 4.0’’ [153], China’s ‘‘Made in China
2025’’ [154], and western countries’ ‘‘Smart City’’ [155],
where manufacturing processes are automated, and suppliers
at different locations link to each other. CPS may be viewed
as the new AI-driven economy.

One of the earliest requirements that motivated intelligent
manufacturing was to develop products within a shorter time.
AI techniques were employed to autonomously collect data
and collaboratively accomplish tasks to produce electronic
circuit boards [155], control systems to perform real-time
analysis on remote hydroelectric power plants [156], and
assess reliability and safety on railway control systems [157].
Another major driver behind employing AI in intelligent
manufacturing was the education sector, which requires
adaptability to individual learners. To meet this requirement,
educational software using intelligent agents was developed,
to adapt to students’ learning pace by adjusting levels of
difficulty on presented exercises [158].

AI techniques are suitable to address the requirements of
CPS, because they yield accurate predictions and estimates
of outputs. The energy management sector was among the
early adopters of AI techniques, to predict temperature given
the changing environment [159], [160]. In this case, fuzzy
networks were used to control air conditions for the desired
temperature output. On a larger scale, power distributions
demand improved energy quality, capacity, and reliability.
AI techniques such as genetic algorithms and neural networks
have also been adopted in this area [161], [162]. They are
used to solve profit management problems, where selling
and buying to/from the grid are subject to varying energy
tariffs [163].

The need for CPS stems from the ubiquity of small devices,
which enhances the capability to collect data, thereby pro-
viding the opportunity to process big data. This is an area
where AI applications in CPS converge with AI applications
in cybersecurity, because often data is remotely collected via
processing systems. In this case, cybersecurity issues include
how to collect data with a high level of trust, transmit it
securely, and share it while preserving the data’s integrity and
privacy. The AI applications in CPS converge with previous
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discussions on secure networks, reliable data, and privacy
issues.

AI applications’ convergence in CPS with cybersecurity
is readily apparent in smart agriculture [164], where sen-
sors are installed in the soil to collect temperature informa-
tion and levels of nitrogen and carbon. Farmers combine
their sensor data with real-time data of weather predictions
to make informed decisions in utilizing water and fertil-
izer to develop an irrigation-monitoring system. The sys-
tem is employed in AI techniques, using genetic algorithms
to calculate the threshold for an acceptable temperature.
Sensor-based systems use cloud applications to store and
process the various sensors’ data, thereby providing farmers
with real-time data. This allows farmers to reach optimum
crop-production quality. Cybersecurity issues arise if any of
these cyber entities can be attacked–from sensor-infecting
malware, the integrity of data transmitted through the net-
work, and the availability of cloud computing resources to
the irrigation system, to whether sensor data can be shared.
Failure to address such cyber issues can seriously affect crop
harvesting.

H. CRITICAL INFRASTRUCTURE
Critical infrastructures are assets that fundamentally sup-
port national security and society [19]. These infrastruc-
tures include power (oil, gas, electricity, and nuclear),
water, air traffic control systems, and telecommunications.
Thus, safeguarding critical infrastructures are of paramount
importance, because people’s daily activities and lives depend
on their availability and integrity. Previous discussions
showed how cybersecurity has expanded in its scope from
network intrusion detection systems to how human well-
being could be improved. The shift was motivated by dif-
ferent sectors, such as health and education. Additionally,
the critical infrastructure sector also fuels the development of
AI techniques to enhance cybersecurity.

Cybersecurity’s role in critical infrastructures is mainly
associated with securing SCADA systems. They are the main
infrastructure’s control systems (consisting of computing
nodes that communicate with other nodes). SCADA systems
typically reside on Operational Technology (OT) networks
of the organization. As these OT networks and Information
Technology (IT) networks become more closely intertwined
and connected to the Internet, they are increasingly vulnera-
ble to external and internal cyberattacks [165].

Despite these risks and their inherent vulnerabilities, criti-
cal infrastructures must be resilient against such cyberattacks.
Hence, one of the requirements and challenges is to maintain
a critical infrastructure’s business continuity [19]. Maintain-
ing the SCADA systems’ resiliency can be accomplished
by applying AI techniques. For example, in wind turbine
generators, faults could be predicted by employing Artificial
Neural Networks (ANNs) that monitor ambient temperature,
generator speed, and pitch angle of the generator power
outputs [166]. In controlling water systems, AI techniques
such as k-NN, Decision Trees, and SVMs were employed

to classify different anomaly events, including cyberattacks
and hardware failures [167]. Furthermore, AI techniques such
as SVMs and ANNs have been used to provide access con-
trol to SCADA systems based on users’ dynamic attributes,
such as location, time of use, and the user’s work shift
(when the user works onsite) [168]. Using AI to build robust
resiliency will remain an active research area, because of
the high importance of the critical infrastructure sector in
society.

Other AI techniques, such as propositional logic, have
been adopted in the area of critical infrastructure protection.
In [169], the authors proposed a logic-based framework to
enforce security policies for system authorization in SCADA
systems, because the authentication process in this environ-
ment requires complex mapping between user privileges and
system rules. In such a framework, rules are distributed across
system nodes, so that they can derive the sets of actions
the user can perform on each node. When a user with a
certain privilege sends a command to a destination node, both
the user privilege information and the command are sent to
an authorization server. The server analyzes the information
received, generates a token, and forwards all the information
(i.e., user privilege, command, and token) to the destination
node. The node analyzes the token with its local autho-
rization policy, to allow/disallow the command’s execution.
Thus, the proposed logic-based framework promotes scalable
authentication in SCADA systems, because the authorization
decision of allowing/disallowing commands takes place at
destination nodes.

Intelligent algorithms employing logic have also been pro-
posed to self-heal SCADA systems’ communications chan-
nel [170]. SCADA systems secure their communication with
remote nodes using session keys. In the event of a node fail-
ure, it is critical for the node to immediately re-establish the
communications channel before any unauthorized user/agent
takes control over the re-establishment of the communica-
tions channel. Thus, in [170], the authors proposed distribut-
ing re-keyingmaterials to the remote nodes, which is required
to generate a new session key. The re-keyingmaterials consist
of a series of numbers generated from amathematical formula
(i.e., bivariate polynomial). Similarly, generating a session
key goes through mathematical and logic processes to gener-
ate a session key. Thus, after a remote node is recovered from
an unavailability incident on its communication channel,
the node can generate a session key, effectively self-healing
the communications channel.

Furthermore, mathematical models also have been used
to self-heal electrical distribution systems upon encounter-
ing faults [171]. After such events, the self-healing system
determines which network zone to isolate based on a set
of 22 features such as the cost of power losses, power demand
at each node, and the voltage magnitude at each node. The
system employed set theory to cluster the features. Afterward,
the system fed these clusters to a series of mathematical mod-
els (i.e., backward/forward sweep load-flow algorithms) that
represent the steady-state of electrical distribution systems.
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TABLE 2. As the Internet evolves, the role of AI in cybersecurity also increases.

Thus, both logic and mathematical methods are being widely
used to meet the cybersecurity requirements of the critical
infrastructure sector.

Table 2 summarizes the discussion results of this section.
As the Internet evolves, the role of AI in cybersecurity
will broaden. AI techniques are being employed in applica-
tions that are critical to national security and human well-
being. Not only are AI approaches being used to solve
problems rationally, but also to make machines think and act
like humans.

V. FUTURE CHALLENGES AND RESEARCH
OPPORTUNITIES
A. THE RACE BETWEEN DEFENSE, OFFENSE, AND
HUMANITY
Recent AI research advances in cybersecurity have fueled the
race between the white hat (defenders) and black hat (offend-
ers) hackers. Attackers can employ AI to mimic human
behavior to achieve personal pride, power, or financial advan-
tage. AI has led to the creation of intelligent agents that
automatically click advertisements, play online games, and
buy and resell best-seller seats for concerts [172]. AI has
also manipulated public opinion in Venezuela by retweeting
political content [173] and has affected the US presidential
election by spreading tailored news [107]. Future research
opportunities in cybersecurity are determined by how divid-
ing lines can be drawn between developments and basic
needs.

AI’s use in cybersecurity impacts three major stakeholders:
white hat hackers, black hat hackers, and end users (human-
ity). The white hat and black hat hackers are the cohorts who
promote the development of AI techniques. However, it is
difficult to find the dividing line between the two groups to
regulate technological deployment, because one’s advance-
ment follows the other’s advances. Hence, it is imperative to
investigate how AI can be employed for human basic needs
and for developing cybersecurity controls.

B. INFRASTRUCTURE
The use of AI in cybersecurity is viewed as a race between
law enforcement and cyberattackers. The leader in the race

will be determined by his/her access to technical knowledge
and the supporting computing infrastructure. AI algorithms
are computationally expensive, because they are evolutionary
by nature. Therefore, developing fast algorithms for the AI
solutions shown in Table 2 should be an active research area.
For example, to detect malware, hashing algorithms have
been developed to input to the k-means clustering algorithms,
to enable fast clustering of common data samples [174].
Developing relevant algorithms has become part of the recent
race, but hardware development is another crucial part.

C. HARDWARE AND PLATFORM
Having access to state-of-the-art computing infrastructure
will help solve AI problems efficiently and with efficacy.
As the number of computing devices increases, the volume
of traffic will also increase, thereby making it necessary to
perform data analysis quickly. Consequently, analyzing data
by using AI techniques requires high-end computing plat-
forms. To address this challenge, cluster computing solutions
such as Apache Spark and Hadoop have been employed to
analyze cyber traffic [175], [176]. At the high end, quantum
computing will be the breakthrough technology that helps
solve complex computing problems. NASA’s quantum com-
puter [177] has been able to solve complex problems in a
fraction of time–it is 100 million times faster [178] than
traditional computers.

D. RESOURCES
Having easy access to the required resources when needed
is crucial in implementing workable computing solutions.
Currently, energy is seen as the scarce resource for many
computing needs. For instance, Bitcoin blockchain consumes
an equivalent energy of 29 average Australian households for
a full day, only to commit one block [179].

When intelligent computers start to consume a signif-
icantly larger chunk of resources which are shared with
human beings, ethical issues regarding the use of AI will
arise. One issue would be if intelligent machines have
their own rights. In one way, the issue may seem irrel-
evant because computers are viewed as having no con-
sciousness [180]. In another way, researchers have started
to debate whether intelligent computers should have rights
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regardless of the definition of consciousness [181]. The adop-
tion of AI in cybersecurity extends the arguments on how
to share scarce resources between intelligent computers and
human. This will in turn motivate regulators to go back to
the drawing board to justify what serves as development
and basic needs. Ethical issues will also remain a future
challenge when it comes to how AI can be employed for
cybersecurity.

VI. CONCLUSION
As the speed and sophistication of attacks increase, AI has
become an indispensable technology in the cybersecurity
area. This article showed how cyberthreats have increased,
evolved in their complexities, and broadened their scope.
We underscored how past cyberthreats remain relevant
to future risks. We presented a comprehensive review of
cyberthreats and solutions. In particular, we described how
cyberattacks can be launched on different network stacks and
applications, along with their impact. Cyberthreats will con-
tinue to rise, even as the community identifies cyberthreats
and develops solutions using a wide range of technologies
and techniques.

In contemporary research, AI techniques have demon-
strated their promise in combating future cybersecurity
threats. The techniques propose a range of intelligent
behaviors—from how machines can think to act humanly.
Recently proposed AI-based cybersecurity solutions largely
focused on machine learning techniques that involve the use
of intelligent agents to distinguish between attack traffic
and legitimate traffic. In this case, intelligent agents act as
humans whose task is to find the most efficient classifica-
tion rules. However, the cyberattack landscape today morphs
from disrupting computers to sowing disorder in society and
disturbing human wellbeing. We discussed this phenomenon
in terms of how advances in technologies are transforming
the ways cyberattacks can be launched, detected, and miti-
gated. Through such advances, AI’s role in cybersecurity will
increase continuously. Novel AI techniques must be devel-
oped to quickly detect and mitigate threats that impend upon
societal and humanwellbeing. In all likelihood, cybersecurity
solutions will expand from intelligent agents acting humanly
to thinking humanly.

Although AI’s role in solving cybersecurity issues con-
tinues to be investigated, some fundamental concerns exist
surrounding where AI deployment can become regulated. For
instance, as intelligent machines become more integral solu-
tions for humanity, these machines increasingly will consume
fundamental resources for life. When humans and machines
compete for scarce resources, a new form of governance
will promulgate. This in turn will engender a new research
avenue.
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