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ABSTRACT Urban network traffic congestion can be caused by disturbances, such as fluctuation and
disequilibrium of traffic demand. This paper designs a distributed control method for preventing disturbance-
based urban network traffic congestion by integrating Multi-Agent Reinforcement Learning (MARL) and
regional Mixed Strategy Nash-Equilibrium (MSNE). To enhance the disturbance-rejection performance
of Urban Network Traffic Control (UNTC), a regional MSNE concept is integrated, which models the
competitive relationship between each agent and its neighboring agents in order to improve the decision-
making process of MARL. The learning rate is enhanced with a self-adaptive ability to avoid a local
optimal dilemma; Jensen-Shannon (JS) divergence is utilized to define the learning rate of the modified
MARL. A two-way rectangular grid network with nine intersections is modeled via a Cell Transmission
Model (CTM). A probability distribution mechanism, which can update the turn ratio of each approach
dynamically and discretely, is established to represent the segmented route-decision process of the vehicles.
The effectiveness of the proposed control method is evaluated through simulations in the grid network.
The results show the influence of major disturbances, such as fluctuation of vehicle arrival rate, fluctuation
of traffic demand (e.g. a rapidly rising flow and extreme changes in origin-destination distribution), and
disequilibrium of traffic demand (e.g. different arrival flows at each boundary of the urban network), on the
performance of the suggested control method. The results can be used to improve the state of the art in order
to reduce urban network traffic congestion due to these disturbances.

INDEX TERMS Urban network traffic control, distributed traffic signal control system, multi-agent
reinforcement learning, mixed strategy Nash-equilibrium, numerical simulation.

I. INTRODUCTION
In urban networks, traffic congestion can occur for various
reasons [1], including traffic incidents, constraints on net-
work capacity or stochastic fluctuations in demand. Traffic
signal control is an effective method that has been extensively
studied to alleviate this congestion.

Existing signal control methods employed in Urban Net-
work Traffic Control (UNTC) systems can be classified in
several ways. The control type method is mainly catego-
rized as fixed-timed, traffic responsive [2], [3], or predictive
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control strategies. These methods can be further categorized
in terms of hierarchical structure to one of the following
three approaches: centralized approaches, sectional central-
ized approaches or distributed control approaches. In terms of
input mode, they can be divided into online and offline meth-
ods. From the viewpoint of artificial intelligence (AI), some
control methods can be categorized as heuristic algorithms,
expert systems, etc.

In recent years, various optimization algorithms have been
employed to exploit the potential of traffic signal control.
The concept of optimization algorithms is to consider the
optimization of UNTC as a combinatorial problem in nature.
Various meta-heuristic and intelligent algorithms, including
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Genetic Algorithms (GA) [4], Particle Swarm Optimiza-
tion (PSO) [5], Ant Colony Optimization (ACO) [6] and
Bee Colony Optimization (BCO) [7] have been applied to
UNTC to solve these problems. However, the control schemes
obtained by these heuristic algorithms can only be employed
to a stable traffic state.

With the development of Machine Learning (ML) the-
ory and Artificial Intelligence (AI), Reinforcement Learn-
ing (RL) has been applied to the field of traffic control,
which has the powerful advantage of experiential learning.
Multi-Agent Systems (MAS) effective solutions in terms of
negotiation protocol [8], strategy diffusion [9] and network
decision-making [10]. In an urban network, the network
formed by each intersection node is similar to a Social Net-
work (SN) which has been previously studied in the literature
[8], [9], with a correlation between intersections in urban
networks and similar agent relationships in the literature
[9], [10]. Since the structure of interactions between control
behaviors at the intersection is dependent on a hierarchical
UNTC, it is appropriate to analyze the UNTC problem from a
multi-agent perspective. This has promoted the generation of
aMulti-Agent Reinforcement Learning (MARL) method that
combines with the concepts of Game Theory (GT) and RL
based onMAS, in order to accumulate historical experiences.
MARL has been shown to be extraordinarily promising and
has been recognized as a powerful tool to reduce the extent of
network traffic congestion [11], [12]. The main advantages of
MARL are that it can learn from its own experience and adapt
to its environment [13]. Depending on their reward strategy
attributes, existing traffic control systems based on agent-
based RL can be divided into three categories: individual
MARL, group MARL and global MARL. In urban networks,
the global MARL method requires expensive communica-
tion resources and a high CPU performance to achieve the
desired control effect, and it can be difficult to distinguish
states due to its large dimensionality. This can be avoided
with the individual MARL method which uses a distributed
iterative process with individual goals, although it may take
a long time for the results to converge to the same level as
the global MARL. We have observed that there has been
little research into the process of decision-making in MARL.
At the kernel of MARL is the accumulation of historical
experiences that are used for decision-making. This accumu-
lation is designed to obtain the ability to make valid decisions
through trial and error. Any method that can improve this
decision-making by trial and error can enhance the learning
efficiency of the individual MARLmethod. For the improved
individual MARL method, any invalid historical experience
accumulated by the unimproved individual MARL is ignored
at the same iteration level. Although MARL incorporates GT
concepts, most researchers have applied GT to the process
of updating experiences or obtaining equilibrium between
multi-agent system goals. Nash-equilibrium is a method that
is commonly used to measure changes in market structures
[14] and Mixed Strategy Nash-Equilibrium (MSNE) can be
used to solve the uncertainty competition [15]. Since the

structure of MAS is similar to the structure of the market
to some extent, the concept of MSNE in GT can be con-
sidered to improve the decision-making process of MARL.
Additionally, there has been little research on the learning rate
of MARL. In previous studies, the learning rate of MARL
has been usually defined as a constant or a time-varying
attenuation resulting in applications using MARL requiring
feedback-based learning and acclimatization with an offline
pattern. However, using an attenuation to represent the learn-
ing rate leads to a high learning time cost when faced with
new situations and the method is insensitive to fluctuations
in state after convergence. Therefore, there are two signifi-
cant components of MARL requiring further study: (a) the
decision-making process, which is fundamental in increasing
the rate of convergence inMARL; (b) the learning rate, which
plays a critical role in the sensitivity of MARL.

In this article, we suggest a distributed urban network
traffic signal control method based on concepts and mech-
anisms inspired by GT and MAS. We design a decentral-
ized multi-agent architecture without hierarchy, where each
agent represents a traffic signal controller assigned to each
signalized intersection in the urban network. In this architec-
ture, each agent communicates and competes with adjacent
agents. Additionally, each agent accumulates experience and
increases its adaptive capacity for disturbances in the urban
network by using an improved MARL algorithm. We par-
ticularly focus on considering a global perspective to the
decision-making process of MARL, and on enhancing the
method’s ability to quickly adapt to local disturbances within
urban network area.

The main contributions of this study to the advancement of
the state of the art are summarized as follows:

(1) The framework of MARL is modified to improve its
management of disturbance-based traffic congestion in urban
networks. Spatial and temporal stochastic disturbances are
considered and the improvedMARL framework is capable of
disturbance detection within the local area and self-learning
at high speed for disturbance mitigation.

(2) The notion of MSNE in GT is integrated into the
decision-making process of MARL to enhance its ability
to resist disturbances and prevent disturbance-based urban
network traffic congestion. The modified decision-making
process accelerates the convergence process of MARL and
can reduce the MARL online learning time.

(3) The Jensen-Shannon (JS) divergence is introduced to
define the learning rate of MARL to provide self-adaptive
ability to manage new scenarios generated in the urban net-
work. This method enhances the sensitivity of MARL after
convergence and improves the accumulation of new experi-
ences when faced with state transitions.

The remainder of this article is organized as follows.
In Section II, we present a literature review with focus on
various control methods, multi-agent systems and multi-
agent reinforcement learning applied to traffic signal con-
trol. In Section III, the main concepts and mechanisms of
basic GT and MARL are firstly introduced and a proposed
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distributed control method for urban networks and pseudo
code of corresponding algorithms are then described in detail.
In Section IV, a detailed description of the numerical sim-
ulation framework for performance assessment is provided.
In Section V, a numerical simulation in terms of related
parameters, application scenarios and contrast methods is
given and the results are analysed. Finally, conclusions of this
work are given in Section VI.

II. LITERATURE REVIEW
UNTC is one of the most difficult problems in the field
of traffic control and has been widely explored over the
last few decades. In earlier studies, the most representative
achievement was TRANSYT, which was a signal control
strategy proposed by Robertson [16] which has been applied
with various derivative versions [17]–[19]. Since then, several
classic control strategies have emerged, such as SCOOT [3],
OPAC [20] and RHODES [21]. However, all of these sys-
tems employed the control mechanisms along arterial routes
where there is major demand, but did not consider the impor-
tant network-wide control effect. There are various model-
ing methods that have been employed in the UNTC field,
such as Model-Predictive Control (MPC) [22]–[24] and the
Max Pressure (MP) control [25]–[27]. As these techniques
have developed further swarm intelligence techniques have
appeared in UNTC during the last decade and some repre-
sentative methods have already been mentioned in Section I.
These control methods or systems are all optimization solu-
tions in nature. Some of these methods can be regarded as
expert systems, which are adaptations of historical offline
optimal solutions, and the other methods can be classified
as heuristic algorithms, which are optimal solutions that are
searched online. In order to achieve a global optimal solution,
most of these methods have a centralized or hierarchical
architecture. The architecture has a centralized solution pro-
cedure but the complexity rises exponentially as the network
range increases. This can be addressed using a flexible clus-
ter balancing centralized method and decomposed solution
procedure, as suggested in [28]. However, since all of the
above approaches are open-loop control methods, the per-
formance of these methods approaches a bottleneck as the
complexity is increased. Therefore, these systems are suit-
able for stable traffic conditions but have weak resistance to
disturbances.

As an alternative, reinforcement learning (RL) has shown
strong potential for self-learning closed-loop optimal traffic
signal control in a stochastic traffic environment [13], [29].
MAS are a sub-field of Artificial Intelligence (AI) that are
widely employed in many fields [30]–[33], and provide prin-
ciples for constructing complex multi-agent systems and
mechanisms for coordinating the behavior of independent
agents. Game Theory (GT) provides tools to model MAS
as a multiplayer game and provides a rational strategy for
each player in a game [34]. Various studies have used MAS
architecture, including in combination with the fuzzy logic
theory [35], embedded in the model predictive control [36]

TABLE 1. The representative MARL researches in the field of UNTC.

and integrated with a biological immune system [37]. The
most recent research effort focuses on developing distributed
approaches using multi-agent technology [38]–[39]. These
provide an appropriate approach for the application of MAS
in UNTC.

The MARL method combines RL theory [46] with MAS
and promotes the development of UNTC theory. Some repre-
sentative research results from employing MARL in the field
of UNTC are listed in TABLE 1. This table also compares the
algorithm selection, including the process of action selection
and the learning rate employed by researchers. The decen-
tralized traffic control problem is an excellent application
scenario for MARL due to the dynamicity and randomness
of the traffic system [11], [47]. The advantages and disad-
vantages of MARL have been discussed in Section I, and can
also be reviewed in [34]. There are various improved algo-
rithms of MARL which accelerate the convergence process
of multi-agent system to Nash-equilibrium, such as Minimax
Q-Learning (Minimax-Q) [48], Nash Q-learning (Nash-Q)
[49] and Correlated Q-Learning (CQ) [50]. Q-Learning (QL)
algorithms consider the influence of the expected Q value
(i.e. the final Q-function of equation (2) in Section III.B)
on the convergence process of MARL. In addition, there
are also some methods to accelerate MARL convergence,
such as Motivated Reinforcement Learning (MRL) [51] and
Equilibrium Transfer (ET) [52]. MRL can accelerate MARL
convergence by employing a motivated mechanism to sup-
plement the reward function. In UNTC, a similar effect can
be achieved using a reasonable definition for the reward
function. However, ET may be difficult to integrate with
traffic control systems due to different historical situations
at different intersections.

Framework analysis of MARL shows that this is a feasible
approach to accelerate MARL convergence, as this approach
shows a preference for the potential optimal action during the
action selection process. The rationality of this approach has
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FIGURE 1. Overview of methods in Section III.

been discussed in Section I. However, the existing literature
has a lack of research and ε greedy and softmax are typically
used as the action selection strategies [46].

An effective algorithm should have the ability to jump out
of the local search area and the learning rate has a strong
influence on this aspect. However, there is also a lack of
research into the MARL learning rate in the existing litera-
ture. In early studies, the MARL learning rate was usually
set as a constant. In later studies, the learning rate was given
a gradually decreasing form which considers both the rapid
replacement of incorrect experiences in the early stage of
learning and stability due to convergence in the later stage
of learning with the iterative process revised by an embed-
ding algorithm, such as Simulated Annealing (SA) [53]. The
disadvantages of both of the above patterns and the necessity
of improving the learning rate of MARLwere fully discussed
in Section I.

III. FRAMEWORK OF MULTI-AGENT REINFORCEMENT
LEARNING (MARL) BASED ON REGIONAL MIXED
STRATEGY NASH-EQUILIBRIUM (MSNE)
The framework described in this section is briefly illus-
trated in FIGURE 1 as three parts from top to bottom.
The upper part of the figure is the Mixed Strategy Nash-
Equilibrium (MSNE) schematic, which will be described in

detail in Section III.A. The middle part shows Multi-Agent
Reinforcement Learning (MARL), whose related concepts
will be defined in Section III.B. After coupling MARL with
MSNE, the lower part of the figure gives a brief schematic
diagram of the framework proposed in this paper: Multi-
Agent Reinforcement Learning based on regional Mixed
Strategy Nash-Equilibrium (MSNE-MARL). The framework
of MSNE-MARL will be described in detail in Section III.C.
Two key improvements to the MARL framework will be
described in Section III.C.4 and III.C.5. The corresponding
algorithm is subsequently summarized in Section III.D. All
parameters relating to GT, MARL and MSNE-MARL are
listed in TABLE 2.

A. BASIC GAME THEORY (GT)
The concept of Game Theory (GT) was first proposed by
Neumann and can be generally divided into two types: zero-
sum games and general-sum games. In zero-sum games,
the sum of benefits of each player is absolute. Zero-sum
indicates a complete conflict of interest in which a player
gains benefits at the expense of the others’ benefits. In con-
trast, players have both compatible and conflicting interests
in general-sum games. This situation provides a feasible pre-
condition for the pursuit of higher overall rewards and has
been widely studied by scholars.

In this section, we will first introduce some basic concepts
of a game in strategic (or normal) form and briefly introduce
the concept of Nash equilibrium [54], which is the baseline
solution concept for general-sum games [49].
Definition 1: A game in strategic (or normal) form G is a

tuple 〈J , S,U〉 [55]. The elements of the tuple are described
in TABLE 2.

In a game with complete information, a pure-strategy indi-
cates that only one specific strategy can be adopted for each
given set of information. We can regard a mixed strategy as a
generalization of the strategy selection.
Definition 2: A mixed strategy σi is a probability distribu-

tion over the pure-strategy space Si [55]. The space of player
i’s mixed strategies and the concept of relevant parameters
are introduced in TABLE 2.

According to Definition 2, the payoff of player i to profile
σ is as follows:

∑
s∈S

(
I∏
i=1

σj
(
sj
))

ui (s) (1)

Note that player i’s payoff to a mixed-strategy profile is a
linear function of player i’s mixing probability σi.

The concept of a Nash-equilibrium solution has attracted
much research interest as it exists for a broad class of
games.
Definition 3: A Nash-equilibrium is a profile of strategies

such that each players’ strategy is an optimal response to
the other players’ strategies. A mixed-strategy profile σ ∗ is
a Nash equilibrium for all players i ∈ J , ui

(
σ ∗i , σ

∗
−i

)
≥

ui
(
si, σ ∗−i

)
for all si ∈ Si [55].
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TABLE 2. Parameters relating to GT, MARL and MSNE-MARL. The existence of a Mixed Strategy Nash Equilib-
rium (MSNE) has been proven for some cases.
Theorem 4: Every finite strategic-form game has a mixed-

strategy equilibrium[56].
It is worth noting that Theorem 4 does not assert the

existence of equilibrium with nondegenerate mixing.

B. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
Multi-Agent Reinforcement Learning (MARL) can be
regarded as an extension of Reinforcement Learning (RL) in
Multi-Agent System (MAS) [57]. RL combines the two fields
of supervised learning and Dynamic Programming (DP) [46],
yielding a powerful Machine Learning (ML) system [11].
MARL can mainly be described by introducing the concept
of Q-Learning (QL). QL, which stores value functions in the
form of a Q factor, is an RL method applied widely.
Definition 5: The Q-learning basic elements of a multi-

agent reinforcement learning is a tuple〈J ,X ,A,R〉. The ele-
ments of the tuple are described in TABLE 2.

The updating procedure of QL can be simply defined.
In this procedure, agent i starts with arbitrary initial values
Q1
i (xi, ai) for all xi ∈ Xi, ai ∈ Ai and updates its Q-values

according to equation (2).

Qk+1i (xi, ai) = (1−α)Qki (xi, ai)

+α

[
rki (xi, ai)+ γ max

a′i∈Ai(x
′
i)
Qki
(
x ′i , a

′
i
)]
(2)

Lemma 6: Assuming that all states xi ∈ Xi and actions
ai ∈ Ai have been visited infinite times and that the learning
rate α satisfies certain constraints, equation (2) converges
to Q∗i (xi, ai).
Lemma 6 has been proven by Watkins and Dayan in 1992.

For specific details of the proof see [58].
Combining the above definitions, the Q-learning algo-

rithm performed by each agent can be summarized in
ALGORITHM 1 which is O (n× T ).

C. MSNE-MARL FRAMEWORK
In this section, MSNE theory (described in section III.A) and
MARL theory (described in section III.B) are used to design a
distributed traffic signal control method for an urban network.
Since an urban network consists of numerous signalized inter-
sections and links, we suggest a fully decentralized frame-
work, where each agent is associated with a single signalized
intersection. The architecture is horizontal (i.e. there is no
hierarchy between agents, and all agents communicate and
interact by sharing data on the traffic state of each of their
relevant links). Regional games are achieved between neigh-
boring agents based on the traffic state of segments connect-
ing the intersections in the urban network. In this framework,
each agent makes its own decisions autonomously based on
the regional MSNE and by adopting data from neighboring

19754 VOLUME 8, 2020



Z. Qu et al.: Distributed Control Method for Urban Networks Using MARL

Algorithm 1 Pseudo-Code of Q-Learning Algorithm
Input: the learning rate α; the discount rate γ ;

the coefficient of greed ε; the set of state X ;
the space of action A; the number of agents n

Initialize: the simulation time t ← 0; the step of simula-
tion k ← 0

for i = 1, . . . , n do
if xi ∈ Xi, ai ∈ Ai, Xi ∈ X , Ai ∈ A do
Qki (xi, ai)← random

end if
end for

While t ≤ Tdo
for i = 1, . . . , n do
random seed: seed ← random
If seed ≤ ε do
select ai ∈ Ai (xi) randomly
else
ai = argmax

ai∈Ai(xi)
Qki (xi, ai)

end if
calculate: rki (xi, ai)
update the Q-value according the equation (2)

end for
t = t + 1, k = k + 1

end while

FIGURE 2. Diagrammatic drawing of MSNE-MARL framework.

agents and collected from the intersection. FIGURE 2 illus-
trates the suggested Multi-Agent Reinforcement Learning
based on regionalMixed Strategy Nash-Equilibrium (MSNE-
MARL) distributed control framework.

In the following sub-sections, the various components
of the MSNE-MARL framework shown in FIGURE 2 are
defined. It should be mentioned that the iteration series k is
omitted from the following formulae in order to make them
easier to understand and simplify their expression.

1) STATE SPACE
A MAS must maintain n Q-functions, one for each agent
in the system. In previous studies, the state space has been
divided into two categories: the independent state space and
the joint state space. Let |Xi| be the size of agent i’s state
space Xi. Assuming that |X1| = . . . = |Xn| = |X |, the total
number of entries in the independent state space and the joint
state space are n |X | and |X |n respectively. Therefore, in terms
of state space complexity, the number of states in a MAS
with an independent state space is linear. This is superior to
a MAS with a joint state space, where the number of states
grows exponentially with the number of agents. Therefore,
it is appropriate to select an independent state space and a
smaller value of |X |.
Definition 7: Assuming that any signal-controlled intersec-

tion has four approaches in an urban network, the state of
agent i , can be expressed as: xi ←

[
xei , x

w
i , x

s
i , x

n
i

]
. Let dir

represent one element of {e,w, s, n}. xdiri , the component of xi,
representing the state of dir approach at intersection i, which
can be defined by integrating formula (3) and formula (4).

cdiri =
yji
ymax
ji

(3)

xdiri =


free, cdiri < ϕfree
resistance, ϕfree ≤ cdiri < ϕjam
jam, cdiri ≥ ϕjam

(4)

In this paper, 0.5 and 0.8 are adopted as the values of ϕfree
and ϕjam respectively.

2) ACTION SPACE
The complexity of the action space is an important factor
which should be considered before defining the action space.
The complexity analysis process of the action space is similar
to that described in section III.C.1. In addition, it is necessary
to consider maximizing the coverage area of the action space
in order for the same number of actions to be expressed with
lower space complexity. Inspired by the concept of distributed
expression in Deep Learning (DL) and the method described
in [59], we construct the action of each agent using vectors.
FIGURE 3 illustrates the dual-ring phase structure, which is
the action structure employed by each agent to control the
associated signalized intersection in the urban network.

In FIGURE 3, the action of agent i is ai ←
[
a1i , a

2
i , a

3
i

]
.

Element a1i represents the direction of the road being con-
trolled (i.e. Road A or B), and the tuple

〈
a2i , a

3
i

〉
represents the

phase of the associated signalized intersection. The basic ele-
ments a2i and a

3
i represent two separate and non-conflicting

streams of traffic flow in different driving directions (i.e. the
fundamental phase in phase ring A and B).

3) REWARD FUNCTION
In QL, the Q value is the experience of QL and the updating
process of the Q-function can be regarded as the process
of accumulating experience. According to the definition in
equation (2), full consideration should be given when select-
ing the range of the reward function. If the reward function

VOLUME 8, 2020 19755



Z. Qu et al.: Distributed Control Method for Urban Networks Using MARL

FIGURE 3. Dual-ring phase structure of the action.

has a range that is too wide, the difference in distribution
of Q values between two iterations is too large and a long
learning time is required to achieve convergence. If the reward
function has a range that is two narrow, the difference in
distribution of Q values between two iterations is too small
and it will take a long time to accumulate experience as
well as a long learning time to achieve convergence. It can
be observed that the range selection of the reward function
is related to the efficiency of QL. Additionally, to avoid
excessive accumulation of the Q factor after a large number
of iterations, both the reward and penalty forms should be
considered when defining the reward function. Based on
these considerations, the reward function will be formally
defined.
Definition 8: The reward function of agent i, ri (xi, ai) is

a function of the difference in number of vehicles on all
approaches of an associated intersection.

ri (xi, ai) =

∑
j∈I−i

1yji∑
j∈I−i

∣∣1yji∣∣ (5)

In formula (5), the summation of
∣∣1yji∣∣ is designed to

ensure that the range of the reward function ri (xi, ai) con-
verges within [−1, 1].

4) ACTION SELECTION
The classical QL adopts ε greedy or softmax form as the
action selection strategy. Action selection is a trial-and-error
process to pick an appropriate strategy and accumulate expe-
rience. Therefore, we assume that relative correct actions can
be selected during action selection and therefore a trial-and-
error process of shorter duration that is more efficient than
classical QL can be achieved. Based on the above assumption,
we design a method for action selection using the MSNE
concepts.

Considering its future application in urban networks,
we anticipate that MAS can obtain a globally optimal state
once it reaches final stability. Therefore, the payoff func-
tion of the agents needs to be properly defined to construct
general-sum games.
Definition 9: In a general-sum game, agent i executes

action ai in face of state xi, when its competitive agents
execute actions a−i; the payoff function of agent i is as

follows:

ui (ai, a−i, xi) =
∑
j∈I−i

$ji

(
ypreji (ai, a−i, xi)− yji

)
(6)

In formula (6), the weight $ji is designed to indicate the
pressure to immediately improve the state in linkji and can be
derived from formula (7):

$ji =
yji∑

j∈I−i
yji

(7)

To obtain the MSNE, it is necessary to anticipate the
strategy selection of other agents. Considering the process
of the game to achieve the MSNE, we adopt the experience
gained from QL to anticipate the equilibrium strategies of
competitive agents.
Definition 10: Assuming that the state set which agent j

is confronted with is xj, when agent i is affected by state xi,
the distribution of Qj

(
xj, aj

)
can be employed to represent

components of the mixed strategy.

Pj
(
aj|xj

)
=

expQj(xj,aj)∑
aj∈Aj(xj)

expQj(xj,aj)
(8)

Therefore, agent j’s mixed strategy σj ← Pj can be
obtained. Furthermore, it is feasible to solve the MSNE
of agent i based on the known anticipated mixed strategy
adopted by competitive agents.

σ ∗i = argmax
σi

ui (σi, σ−i, xi) (9)

Through random sampling within the probability distribu-
tion P̂i← σ ∗i , agent i will execute the acquired action ai.

The above decision mechanism can accelerate the conver-
gence ofMARL and improve the effect of UNTC. In addition,
the introduction of a regional MSNE achieves disturbance
detection within the local scope.

5) OTHER PARAMETERS
In QL, the value of the discount factor γ reflects each agent’s
preference for a long-term reward. The discount factor values
may be different for different agent groups. To reduce the
complexity of the suggested method and coordinate agents’
attention to both long-term and short-term rewards, we adopt
0.5 as the value of the discount factor for each agent in this
paper with considering the application of MSNE-MARL in
UNTC.

The learning rate is related to the learning speed of the
agents. A high learning rate leads to amnesic damage of the
accumulated learning experience but a low learning rate leads
to learning efficiency loss of the agents.

The learning rate value employed by previous studies can
be generally divided into two forms: (a) a constant value;
(b) an attenuated value. Algorithms that use form (a) as the
learning rate prevailingly have a long learning time and low
efficiency due to the accumulation of incorrect experience
during the early stage of learning. Algorithmswith form (b) as
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the learning rate can not only overcome this problem, but also
improve the stability of the convergence in the later stage of
learning. However, regardless of the form of the learning rate,
the algorithm learning process is performed under known
situations which have fewer stochastic fluctuations. Since the
learning is offline in nature, it is difficult to quickly respond
to sudden and obvious disturbances when the algorithm is
running online.

Based on the above analysis, a flexible form of the learning
rate should be established.
Definition 11: The distribution of Qi (xi, ai) in action space

Ai is Pi. The optimum decision-making distribution of agent i
is P̂i. Agent i’s learning rate αi can be defined by the Jensen-
Shannon (JS) divergence of P̂i and Pi as follows:

αi = JS
(
P̂i||Pi

)
(10)

The JS divergence in formula (10) can be expressed by
formula (11):

JS
(
P̂i||Pi

)
=

1
2
KL

(
P̂i||

P̂i+Pi
2

)
+
1
2
KL

(
Pi||

P̂i+Pi
2

)
(11)

The first term on the right side of formula (11) is the
Kullback–Leibler (KL) divergence, which can be expressed
by formula (12):

KL

(
P̂i||

P̂i + Pi
2

)
=

∑
ai∈Ai

P̂i log

(
2P̂i

P̂i + Pi

)
(12)

The second term on the right side of formula (11) can also
be expressed in a similar form using formula (12).

JS divergence has two advantages: (a) symmetry:
JS
(
P̂i||Pi

)
= JS

(
Pi||P̂i

)
; (b) fixed range of values between

[0, 1].
This symmetry avoids any asymmetric influences due to

contrasting position or the order of two probability distribu-
tions, so that any difference between two probability distribu-
tions can be measured consistently. Since the value of the JS
divergence has a fixed range, it is feasible to adopt this value
as the learning rate of agents.

The sensitivity of MARL is enhanced by employing the
above method to improve the learning rate.

D. ALGORITHM OF MSNE-MARL
Based on the definitions in Section III.C, the MSNE-MARL
algorithm performed by each agent can be summarized in
ALGORITHM 2. The ALGORITHM 2 isO (n× |n−i| × T ),
where |n−i| denotes the maximum number of agents in I−i.

IV. NUMERICAL SIMULATION FRAMEWORK
The numerical simulation framework is illustrated in
FIGURE 4 and the parameters of the numerical simulation
framework are listed in TABLE 3. In FIGURE 4, Parts A
and B are the external inputs of the numerical simulation
framework: Part A is the time series set of the probability
distribution of the vehicular destination based on their origin,

Algorithm 2 Pseudo-Code of MSNE-MARL
Input: the discount rate γ ; the set of state X ; the space of
action A;

the set of agents Ii
Initialize: the simulation time t ← 0; the step of simula-
tion k ← 0

for i ∈ Ii do
if xki ∈ Xi, a

k
i ∈ Ai, Xi ∈ X , Ai ∈ A do

Qki
(
xki , a

k
i

)
← random

end if
end for

While t ≤ T do
for i ∈ Iin do
search the competitors set of agent i: I−i
initially define the mixed strategy set of agents I−i:

σ ∗
−i = {}

for j ∈ I−i
calculate Pj according Qkj

(
xkj , a

k
j

)
, akj ∈ Aj

add Pj
(
akj |x

k
j

)
, akj ∈ Aj to σ

∗
−i

end for
calculateMSNE to get: σ ∗i
random seed: seed ← random
select aki ∈ Ai according seed and σ ∗i
calculate: rki

(
xki , a

k
i

)
extract P̂i ∈ σ ∗i and calculate Pi according Qki

(
xki , a

k
i

)
,

aki ∈ Ai
update learning rate: αki = JS

(
P̂i||Pi

)
update the Q-value according:

Qk+1i

(
xk+1i , ak+1i

)
= (1− α)Qki

(
xki , a

k
i

)
+αki

[
rki
(
xki , a

k
i

)
+ γ max

a′i∈A(x
′
i)
Qki
(
x ′i , a

′
i
)]

end for
t = t + 1, k = k + 1

end while

Part B is the time series set including the input flow of each
origin. Parts C and D describe the dynamic traffic system
architecture in the urban network and are both at the core
of this numerical simulation framework. Part E is the control
module of the framework. The content of the control module
has been defined and described in detail in Section III. Part F
is the output of the framework containing two modules: the
record module and the evaluation module.

The mesoscopic traffic flow model in part D will be
introduced in Section IV.A. The method used in part C to
model the turning ratio at the intersection will be described
in Section IV.B. The components of part F are discussed
in Section IV.C. Finally, a summary of the entire numerical
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FIGURE 4. Overview of the numerical simulation framework.

simulation framework in the form of pseudo-code is given in
Section IV.D.

A. MESOSCOPIC TRAFFIC FLOW MODEL
The traffic flowmodel is the core of the numerical simulation
framework. A mesoscopic approach to model traffic flow not
only has a high efficiency compared with the microscopic
approach, but also has a high evaluation accuracy compared
with the macroscopic approach.

To construct the foundation of the numerical simulation
framework, we introduced a full-fledged mesoscopic traffic
flow model known as the Cell Transmission Model (CTM),
which has been proposed by Daganzo [60] and widely
employed in traffic simulation [61]–[63]. The CTM employs
a finite difference method and Godunov scheme [64] to sim-
plify the solution scheme of the Lighthill-Whitham-Richards
(LWR) model [65]. Therefore, CTM can also be regarded as
an LWR model in discrete form.

The general discretization form of the LWR equation can
be written as follows:

ρk+1m = ρkm −
1t
1d

(
qke,m+1 − q

k
e,m

)
(13)

In formula (13), qke,m can be defined by the CTMmodel by
introducing a cellular transmission mechanism:

qke,m = min
(
qks,m−1, q

k
r,m, qmax

)
(14)

To overcome the unclosed characteristic of the LWR,
the components in formula (14) can be further defined by
referring to the triangular fundamental diagram. The ratio-
nality of this operation has been discussed in [66].

TABLE 3. The parameters of numerical simulation framework.

B. MODELING TURNING RATIO FOR TRAFFIC FLOW AT
INTERSECTIONS IN AN URBAN NETWORK
Existing numerical simulation frameworks generally config-
ure the turning ratio as a constant. However, this is incon-
sistent with the actual traffic situation making it difficult
to reflect the dynamics of a real traffic system and instead
providing an excessively anamorphic and utopian traffic envi-
ronment for control methods built on this type of framework.
Additionally, the application of a constant turning ratio also
causes a ‘‘clock problem’’ in the numerical simulation, where
some vehicles travel in circles in the urban network without
leaving. The ‘‘clock problem’’ can cause the number of devi-
ations to accumulate as the simulation time increases. This
accumulation of deviations has the consequence that the traf-
fic control method is evaluated as being not objective enough.
Additionally, static traffic allocation is usually employed to
determine how vehicles pick applicable routes to their des-
tination within the urban network, but in an actual traffic
system, the arrival of vehicles is stochastic and dynamic.
It is difficult to reflect the stochastic characteristics of vehicle
arrival and the fluctuation of turning ratio at each approach of
intersections in an numerical simulation by adopting macro-
scopic and static traffic allocation.

Based on Bayesian Learning (BL) [67] concepts, we estab-
lish a driving direction selection mechanism with prior
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knowledge to dynamically update the turning ratio of each
approach at the intersections in the urban network.
Definition 12: Assume that drivers only select non-detour

route strategies in the urban network. Taking into account
that each vehicle may have a different destination, the turning
decision probability distribution can be defined in the form
of a prior-probability distribution (i.e. Plinkj,i

(
ξj,i,g|ξd

)
in

TABLE 3).
The turning ratio can then be obtained as follows:

P
ξj,i,g
linkj,i =

∑
ξd

Plinkj,i
(
ξj,i,g|ξd

)
Plinkj,i (ξd ) (15)

The probability of destination ξd in turning ξj,i,g can be
deduced as follows:

Plinkj,i
(
ξd |ξj,i,g

)
=
Plinkj,i

(
ξj,i,g|ξd

)
Plinkj,i (ξd )

P
ξj,i,g
linkj,i

(16)

Several conservation constraints should be observed as
follows:

s.t.
∑
ξd

Plinkj,i (ξd ) = 1 (17)

∑
ξj,i,g

Plinkj,i
(
ξj,i,g|ξd

)
= 1 (18)

∑
ξj,i,g

P
ξj,i,g
linkj,i = 1 (19)

This method can overcome fundamental difficulties due to
the ‘‘clock problem’’ fundamentally and its multiple decision
process can be regarded as dynamic route selection.

C. RECORD AND EVALUATION OF THE NUMERICAL
SIMULATION FRAMEWORK
The record module of the numerical simulation framework is
responsible for recording the data generated by the numerical
simulation process (e.g. the flow in each link, the control
command at each intersection �, etc.).

For the evaluation module, the Performance Index (PI)
used to evaluate the effect of UNTC should be further
explained. The main target of traffic control at a network
level should be considered in selection of the PI. Therefore,
we employed the average travel delay value as the PI to assess
the traffic control effect in an urban network. The average
travel delay value is defined as follows:

TATD = TAT − TAF (20)

TAT =

∑
i

∑
j
tlinki,j∑

i

∑
j
dlinki,j

(21)

TAF =

∑
i

∑
j
t flinki,j∑

i

∑
j
dlinki,j

(22)

Therefore, the relevant PI can be immediately extracted
by the numerical simulation framework using the LWR

(Godunov) model. It should be emphasized that queue delays
are not only caused by queuing at intersections, but also due to
congestion delays caused by excessive vehicles on the roads
within the urban network. The average travel delay value not
only integrates both of these scenarios, but also eliminates
the potential impact of possible inconsistencies in road length
by calculating the ratio of time to distance. Therefore, it is
appropriate to adopt the average travel delay value as the PI.

D. PSEUDO-CODE OF THE NUMERICAL
SIMULATION FRAMEWORK
Combining the above definitions, the numerical simulation
framework is summarized in FRAMEWORK 1. Therefore,
the entire numerical simulation framework has now been
fully constructed.

V. NUMERICAL SIMULATION EXPERIMENT
This section presents the results of the numerical simula-
tion to evaluate the performance of the proposed distributed

Framework 1 Pseudo-Code of the Numerical Simulation
Framework
Input: the set of links L; the set of state X ; the space of
action A;

the set of intersections (agents) Ii
Initialize: the simulation time t ← 0; the step of simula-
tion k ← 0

initialize the Q-value for all agent according
MSNE-MARL

initialize the condition of urban network
While t ≤ T do
if mod (t, tinterval) == 1 do
for i ∈ Ii do
search optimal traffic control actions aki according

MSNE-MARL
end for
update the record of control command � according A

end if
for i ∈ Ii do
calculate the throughput of intersection(agent) i

end for
for linki,j ∈ L do
update the condition X according LWR (Godunov)

end for
if mod (t, tinterval) == 0 do
for i ∈ Ii do
calculate rki

(
xki , a

k
i

)
according the change of links’

state around
the intersection(agent) i
end for
update the Q-value in MSNE-MARL according

MSNE-MARL
end if
t = t + 1, k = k + 1

end while
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FIGURE 5. Sketch of the 3×3 grid network.

FIGURE 6. Sketch of the 7×7 grid network.

control method based on MSNE-MARL. The network topol-
ogy, the contrast methods and the experimental scenarios
are described in section V.A. Then, the optimal learning
rate of the control method named II-MARL is obtained
in section V.B. Ablation study of MSNE-MARL is imple-
mented in section V.C. The method proposed in this paper
is compared with two control methods for four different
scenarios (i.e. scenarios 1-4) in 3×3 grid network, and the
corresponding results are presented in section V.D. Fur-
therly, the suggested method is also compared with two con-
trol methods in 7×7 grid network with one scenario (i.e.
scenario 5), and the corresponding results are presented in
section V.E. The analysis and evaluation are implemented
using an applicable and scientific evaluation platform built
with MATLAB according to the numerical simulation frame-
work described in section IV.

A. CONFIGURATION OF NUMERICAL
SIMULATION EXPERIMENT
The numerical simulation experiment is described in terms
of three aspects: network topology, contrasting methods and
scenarios.

1) NETWORK TOPOLOGY
Two grid networks of the intersections are employed to
assess the performance of MSNE-MARL as shown in
FIGURE 5 and 6. The 3×3 grid network consists of 9 nodes,
12 endpoints and their 48 connecting lines. The 7×7 grid
network consists of 49 nodes, 28 endpoints and their 224 con-
necting lines. In FIGURE 5 and 6, the numbered gray hollow
circles and the blue solid circles represent the intersections
and access points of the urban network respectively. The
solid black lines indicate the two-way roads. Therefore, each
intersection contains four approaches and each link is 1000 m
in length.

2) CONTRASTING METHODS
The performance ofMSNE-MARL is assessedwith reference
to two control methods: (a) a Fixed-Time Control (FTC)
method; (b) an Independent Individual Multi-Agent Rein-
forcement Learning (II-MARL) control method.

a: FTC
For each signal controller of FTC, the same sequence of
phases is repeated for a fixed duration, which is always
arranged in the same order and represents a fixed cycle. In this
paper, the cycle time employed in [36] and [68] is considered
and a phase duration for the signal controller with a total cycle
time of 120 s (25 s for each phase with a 5 s interval) is
adopted in this paper.

b: II-MARL
There are various applications in the literature using the
MARL control method. However, the control effect may be
affected by different definitions in the literature on some
aspects, including state division, action selection, reward
function and learning rate. In order to avoid deviations due
to these conditions, we set the definitions and parameter for
II-AMRL as defined below:

(1) The decision-making process adopted for II-MARL is
Boltzmann exploration (softmax);

(2) The learning rate of II-MARL is a constant equal to
0.001 (see Section V.B);

(3) The discount factor of II-MARL is a constant equal to
0.5.

The other definitions of II-MARL are the same as the
corresponding definitions in MSNE-MARL.

3) SCENARIOS
Four different scenarios in 3×3 grid network were designed
from a scientific and objective perspective to analyze the
influences of disequilibrium distribution and stochastic fluc-
tuation in traffic demand on the control effects of the three
control methods. Then, a scenario in 7×7 grid network was
designed to analyze the influence of network size on the
control effects of the three control methods.

Stochastic fluctuation in traffic demand can be divided into
two categories: (a) a rush in traffic demand at the origin of
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TABLE 4. Configuration for scenario 1.

the urban network; (b) changes in origin-destination distri-
bution in the urban network. For disequilibrium distribution
in traffic demand, there are two different arrival rates that
can have an influence on the control effect. The arrival rate
can have a uniform distribution or a Poisson distribution. The
configurations of the four different scenarios are provided in
TABLES 4-7.

In TABLES 4-7, scenario 1 describes stochastic fluctuation
in traffic demand due to a rush in traffic demand at the origin
of the network; scenario 2 describes stochastic fluctuation
in traffic demand due to changes in origin-destination dis-
tribution; scenario 3 represents a Poisson arrival rate and
scenario 4 represents a uniform distribution of arrival rates
with disequilibrium traffic flow.

To analyze the effect of different network scales, a scenario
which represents a Poisson arrival rate with disequilibrium
traffic flow is provided in TABLE 8.

B. OPTIMAL LEARNING RATE OF II-MARL
To search the optimal learning rate of II-MARL, the impact
of learning rate is discussed in this section. The learning rate
of II-MARL ranges from 10−1 to 10−5. The influence of
different learning rates on II-MARL control effect is analyzed
based on the 3×3 grid network and scenario 3. The control
effect curve is drawn in FIGURE 7.

As can be seen in FIGURE 7, the optimal learning rate
of II-MARL is 0.001 (10−3). Unless otherwise specified,
the learning rate used by II-MARL in the following exper-
iments is 0.001.

C. ABLATION STUDY OF MSNE-MARL
To analyze the control effect improvement of MSNE-MARL
under the improved decision-making process, ablation study
of MSNE-MARL is necessary.

FIGURE 7. Average travel delay curve controlled by II-MARL with different
learning rates.

According to the description in section V.A, the II-MARL
can be regarded as an MSNE-MARL with default learning
rate, default decision-making process. In addition, since the
learning rate improvement of MSNE-MARL is based on
the improved decision-making process, it is impossible to
set a MSNE-MARL with adaptive learning rate and default
decision-making process. Therefore, II-MARL with default
learning rates (0.1 and 0.001), ablative MSNE-MARL with
default learning rates (0.1 and 0.001) and MSNE-MARL
are tested under scenarios 3 and 4 in 3×3 grid network for
7200 seconds. The average travel delays of grid network
over the duration time controlled by different methods under
different scenarios are listed in TABLE 9.

It can be found from TABLE 9 that MSNE-MARL per-
forms best in scenario 3 and 4. Compared with II-MARL
with default learning rate 0.001, MSNE-MARL improves the
control effect by 21.26% while ablative MSNE-MARL with
default learning rate 0.001 improves the control effect by only
18.42% in scenario 3. In scenario 4, MSNE-MARL and abla-
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TABLE 5. Configuration for scenario 2.

TABLE 6. Configuration for scenario 3.

tive MSNE-MARL with default learning rate 0.001 improve
the control effect by 29.53% and 26.76% respectively based
on the benchmark which is II-MARL with default learn-
ing rate 0.001. From the above statement, it can be con-
cluded that the improved decision-making process has a
major impact on the performance improvement of MSNE-
MARL. In addition, although the improved adaptive learning
rate has a weak influence on the performance of MSNE-
MARL, it still explores the potential performance of MSNE-
MARL. In scenarios 3 and 4, comparing and analyzing the
effects of different default learning rates on II-MARL and
MSNE-MARL, it shows that the variation of the learning rate
has a weaker effect on MSNE-MARL than II-MARL. It also

TABLE 7. Configuration for scenario 4.

TABLE 8. Configuration for scenario 5.

indirectly verifies that adaptive learning rate performs minor
on the performance improvement of MSNE-MARL.

D. EVALUATION RESULTS UNDER THE 3×3
GRID NETWORK
The average travel delay is used as the performance
index to assess the control effects of the three control
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TABLE 9. Evaluation results of ablation study.

FIGURE 8. Average travel delay curves for scenario 1.

methods under the four different scenarios (i.e. scenarios 1-4)
in 3×3 grid network.

1) SCENARIO 1
As can be seen in FIGURE 8, the initial average travel delay
values using all three control methods are 0. Although some
travel time delay of FTC appears at the start, it does not
exceed 1s/Km until after 519s into the simulation. The red
dashed curve for FTC climbs moderately from 517s to 2930s
and approaches a peak of 32.43s/Km. After a few seconds
at the peak, the average travel delay value of FTC begin to
decline slowly. This suggests that the decrease in average
travel delay value has a distinct hysteretic nature. The early
stage trend of the green dash-dot curve for II-MARL is similar
to the red dotted curve for FTC. Although the average travel
delay values of II-MARL in early stage exceed that of FTC
within 0.5-0.8s/km, its trend has been held until 1013s. The
phenomenon indicates that II-MARL can suppress traffic
congestion to some extent. However, due to a lack of global
information, the average travel delay value of II-MARL
increases rapidly from 1013s to 3623s and approaches a
peak of 41.425s/Km at 3755s. The short-term drop in the
middle of the green dash-dot curve indicates that II-MARL
has experiential learning ability. The green dash-dot curve
also shows a slow downward trend after the peak which is
similar but higher than the red dotted curve in late term. For
MSNE-MARL, it can be seen from the blue solid curve that
compared with the other methods, the travel delay of MSNE-
MARL appears later at 740s and disappears earlier at 3866s,
and reaches a lower peak value of 16.821s/Km. It can also
be seen that the value of the average travel delay increases

FIGURE 9. Average travel delay curves for scenario 2.

FIGURE 10. Average travel delay curves for scenario 3.

slowly but subsequently decreases rapidly. In terms of the
cumulative improvement effect over 7200s of the simulation,
MSNE-MARL has an improvement compared with FTC and
II-MARL of 81.86% and 85.51% respectively.

2) SCENARIO 2
In FIGURE 9 for scenario 2, as the distribution adjustment of
the OD ratio is not recovered during the simulation, the aver-
age travel delay values of FTC and II-MARL keep increasing
for 6500s. it can be observed by the red dotted curve for
FTC that the average travel delay of FTC gradually converges
in the range of 90.05-96.355s/Km after 6500s. at this time,
the green dash-dot curve shows that the average travel delay
value of II-MARL declines rapidly. this phenomenon can be
regarded as being due to its powerful experiential learning
ability. however, for MSNE-MARL, the maximum delay is
not more than 5s/km from the beginning to the end of the
simulation indicating that MSNE-MARL has the best control
effect for scenario 2.

3) SCENARIO 3
In FIGURE 10, the green dash-dot curve for II-MARL
shows a ladder-like characteristics, which indicates that
II-MARL has faced two remarkably different traffic states
in the simulation. the red dotted curve for FTC slows down
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FIGURE 11. Average travel delay curves for scenario 4.

after 2000s, suggesting that the average travel delay value
of FTC raises steadily until it stabilizes near its conver-
gence value. the blue solid curve for MSNE-MARL has a
slower trend than the red dotted curve until it reaches 4180s
when it starts to raise rapidly between 4180s and 4835s
and intersects with the red dotted curve at 4638s. although
there is some fluctuations after 4835s, the convergence of the
blue solid curve is similar to the red dotted curve. MSNE-
MARL has a cumulative improvement effect over 7200s
that is 21.33% and 28.34% higher than FTC and II-MARL
respectively.

4) SCENARIO 4
The trends and forms of the curves in FIGURE 11 are similar
to those in FIGURE 10. By comparing the blue solid curves
for MSNE-MARL in FIGURE 10 and FIGURE 11, it can
be seen that the near convergence fluctuation of curve for
MSNE-MARL in scenario 4 is smaller than in scenario 3.
MSNE-MARL has a cumulative improvement over the 7200s
of the simulation of 1.65% higher in scenario 4 than in sce-
nario 3. Similarly, the effect of II-MARL increases by 8.99%
compared with scenario 3. This result can be explained by the
fact that II-MARL only has a regional learning ability. Its lack
of global learning ability leads to an accumulation of delays
due to global variations. This is evidence of MSNE-MARL’s
global adaptability. However, FTC has the same cumulative
control effects in both scenarios indicating that FTC is not
sensitive to distribution variations in arrival rate.

E. EVALUATION RESULTS UNDER THE 7×7
GRID NETWORK
The average travel delay is used as the performance index to
assess the control effects of the three control methods under
the scenario 5 in 7×7 grid network.

1) SCENARIO 5
In FIGURE 12, the red dotted curve for FTC can be divided
into three stages: (1) slow increase stage; (2) rapid ascent
stage and (3) slow descent stage. The first-stage of the red
dotted curve shows that the traffic congestion pressure is
small in the early stage with increasing the size of network.

FIGURE 12. Average travel delay curves for scenario 5.

As traffic flows gather towards the network center, the traffic
congestion pressure increases rapidly causing the occurrence
of the phenomenon which is presented by the second-stage
red dotted curve. The third-stage red dotted curve confirms
that reducing formed traffic congestion is a slow process.

The green dash-dot curve for II-MARL is similar to the
FTC curve in the early stage. However, the peak of II-MARL
curve is 221.91s smaller than that of FTC curve. It fully shows
that II-MARL has a better control effect on traffic congestion
than FTC when the network size increases. The green dash-
dot curve presents an undulating state in the middle and later
stage. The short-lived decline of II-MARL curve indicates
that II-MARL has excellent learning ability to reduce the
traffic congestion rapidly. In addition, the defect of II-MARL
in the perception of local surroundings is verified again. This
defect is the reason causing the again increase of green dash-
dot curve. It can be regarded as the result of the shift of
congestion centers which has happened in the large scale
network.

For MSNE-MARL, it can be seen from the blue solid
curve that the trend of MSNE-MARL curve appears flat.
All travel delays of MSNE-MARL over 3600s are smaller
than those of II-MARL and FTC. Moreover, the peak travel
delay of MSNE-MARL is 123.26s/km. These performances
fully indicate that MSNE-MARL has an excellent perfor-
mance in restraining traffic congestion. MSNE-MARL has a
cumulative improvement effect over 3600s that is 79.54% and
75.19% higher than FTC and II-MARL respectively. Com-
pared with the cumulative improvement of MSNE-MARL
from 1s to 3600s in scenario 3, cumulative improvement of
MSNE-MARL in scenario 5 indicates that the improvement
of MSNE-MARL is more obvious with increasing the size of
network.

VI. CONCLUSION
In this article, a distributed control method has been presented
for UNTC based on the principle ofMARL and GT to prevent
disturbance-based traffic congestion in an urban network.
A flat hierarchical architecture of agents is employed, where
each agent is associated with a signalized intersection and
competes with adjacent agents. To accelerate the convergence
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of MARL, a novel decision mechanism is designed for each
agent by integrating the concept of regional MSNE. We have
particularly focused on improving the learning rate, as this
can affect the global search ability of MSNE-MARL and
the effectiveness of MARL in facing stochastic fluctuations.
With this improvement, UNTC system can respond to distur-
bances rapidly and effectively to prevent disturbance-based
traffic congestion from emerging in an urban network and
thus UNTC can achieve its desired objectives, which are to
minimize the average travel delay in an urban network.

To assess the proposed method, a detailed compara-
tive analysis of performance is provided by benchmarking
the suggested MSNE-MARL method against two control
strategies (i.e. FTC and II-MARL). MSNE-MARL and its
contrasting methods were tested for five different traffic situ-
ation simulations. The results of the comparative assessment
show that MSNE-MARL outperforms the other methods in
terms of average travel delay in the grid network for the
first two scenarios and scenario 5. For scenarios 3 and 4,
although MSNE-MARL has a similar final effect to FTC
and II-MARL, MSNE-MARL shows excellent performance
for the early and medium term. Moreover, MSNE-MARL
demonstrates superior control performance in large size net-
work in scenario 5.

Many definitions for MSNE-MARL have been proposed
to establish a distributed control method for preventing
disturbance-based urban network traffic congestion. The
overall structure of MSNE-MARL framework has univer-
sality and portability. The framework of MSNE-MARL
can be applied to other similar scenarios with a MAS
architecture.
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