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ABSTRACT The link prediction can be used to seek missing or future links in the network, so it has become
a hot research topic. The network generally contains two types of information: the topological structure
of network formed by the connection between nodes, and the attribute information of nodes. However,
the existing topology-based link prediction algorithms consider little attribute information. In this paper,
a novel algorithm called Network Embedding with Attribute Deep Fusion for Link Prediction (NEADF-
LP) is proposed. We get the embedded vectors with topological structure and attribute information by
structure encoder and attribute encoder respectively, and fuse two vectors deeply. Comparedwithmainstream
baselines on CiteSeer and Cora datasets, the results show that the deep fusion of topological structure and
attribute information improve the accuracy of link prediction effectively.

INDEX TERMS Complex network, deep fusion, link prediction, network embedding.

I. INTRODUCTION
Complex networks in the real world can usually be con-
structed with nodes and links, in which nodes represent
entities and links represent the connections between these
entities [1]. Link prediction is to predict the possibility that
two nodes in a network have a link by utilizing the informa-
tion of nodes and the topological structure of network, which
can be applied in various scientific fields, such as social net-
works, bio-networks, recommendation systems, stock mar-
ket forecasts, and so on [2]. Link prediction has become
a research focus due to its important value of science and
commerce.

To deal with link prediction, a large amount of work has
been done, especially in the realm of defining structural
similarity criteria on the basis of the topological structure and
modeling attribution knowledge.

The topological structure of the network is more versatile
than the attribute information of nodes. Using the same struc-
tural similarity metrics enables higher prediction accuracy on
different networks with similar structures. We can divide the
mainstream methods for link prediction which based on the
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topological structure similarity of the network into three cat-
egories [2]. The first class is proposed on the global structure
of the network, such as Katz Index [3], which calculates the
topological similarity of the nodes by the global structural
information. The second class is called local indices. Tra-
ditional local indices simulate the similarity by calculating
the number of common neighbors(CN) [4], or penalizing the
large-degree nodes by setting penalizing parameter, such as
Hub Promoted Index [5]. Adamic-Adar Index(AA) [6] and
Resource Allocation Index(RA) [7] punish the large-degree
common neighbors based on CN index. Significant Influ-
ence(SI) [2] models the significant influence by distinguish-
ing the strong influence from the weak. The third class
concentrates on quasi-local structures of the network to get
the compromise between complexity and performance. The
Local Path Index(LP) [8] considers short paths within two
or three hops but ignores the longer paths. In recent years,
some methods based on these traditional indices above are
proposed to improve prediction precision. Liu et al. [9]
filter out the redundant links in the network to improve
the accuracy of the k-shell method from the perspective of
spreading dynamics. Ahmed et al. [10] present an algorithm
based on random walks in temporal networks. Path-based
similarity metrics utilize more topological information of
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network for link prediction. However, traversing more nodes
of networks will lead to higher computational complexity.
Zhang and Chen [11] study a heuristic learning paradigm for
link prediction. They propose a method to learn heuristics
from local subgraphs using a graph neural network based on
the γ -decaying heuristic theory.

The similarity indices of unstructured information could be
defined by the attributes of nodes. Compared with the struc-
tural information of the network, the attributes information
of the nodes is difficult to express in a structured form. The
attribute-based method mainly uses attributes to calculate the
similarity between the pair of nodes and predicts whether
the two nodes will establish the link based on the value.
The more identical attributes two nodes contain, the more
similar the two nodes are [10]. For example, in the cita-
tion network, Trouillon et al. [12] predict mutual references
between authors by using the information of the authors,
such as schools, countries, and educational backgrounds.
Wang et al. [13] extract topological information firstly by
a latent-feature representation model, establish the connec-
tions between topological and non-topological information
by logistic model secondly, and calculate the possibility that
existing users and cold-start users are finally connected.
Xie et al. [14] propose a joint prediction feature model that
the characteristics of users and the network structure be taken
into account, and they transform the link prediction problem
into a classification problem. Sheikh et al. [15] introduce
the GAT2VEC framework that generates structural contexts
by structural information, and generates attribute contexts by
attributes, and employs a shallow neural network model to
learn a joint representation from them. Most attribute-based
methods are more efficient in terms of computation time [16].
As there are many different types of attribute information,
it is difficult to give a general solution. Therefore, the current
attribute-based prediction method is limited to a specific
attribute field, and the uniform representation of attributes
cannot be performed. The algorithm performance varies sig-
nificantly in different networks.

There are two main ways to improve the accuracy of link
prediction, representing the network structure more reason-
ably and making full use of the node attribute information.
With the rapid development in deep learning, word2vec [17]
is proposed that is an extraordinary word embedding
framework. The embedding vectors derived from the model
preserve the syntactic and semantic relations between words
under simple linear operations [18]. Word embedding pro-
vides a new concept in the study of social networks because it
performs well to the representation requirement in large-scale
social networks [19].

In recent years, many researchers have focused on net-
work topological structure and presented various structure
preserved graph embedding methods. These methods have
significant effects on the representation of network topolog-
ical structure. Graph embedding encodes the original graph
into a low dimensional embedding space [20], and embed-
ding vectors can be easily exploited by link prediction [21].

Applying random walk, DeepWalk [22] generates node
sequences on graph firstly, and learns the node vectors with
the help of the Skip-Gram [23] model. Both first-order and
second-order proximities of nodes preserved, LINE [24] cal-
culates node vectors with the two proximities respectively,
and concatenates them directly. Node2vec [25] obtains node
sequences via the biased random walk, which can perform
BFS-like or DFS-like randomwalking to explore structures in
different types of graphs. At present, there are many methods
based on deep learning. SDNE [26], a semi-supervised deep
model, exploits the first-order proximity and second-order
proximity to characterize the local and global network struc-
ture. Xie et al. [27] present a network embedding framework,
Sim2vec, the framework encodes more comprehensive node
similarities among different nodes of the network into unified
latent spaces.

Although we can obtain tolerable prediction accuracy via
current link prediction algorithms, considering the insuffi-
cient combination of topological structure and attribute infor-
mation, it is worth seeking a link prediction model that yields
better link prediction accuracy. Besides the basic topological
structure, the attribute information is abundant in network,
such as user profile information in social networks, and writer
information of article in the citation network. As analysis [28]
shows, the performance of an algorithm can be effectively
enhanced by taking external information into account, such
as the attributes of nodes. The more of the same attributes
two people have, such as age, gender, education, or job,
the more possibility that they share the same interests and
tastes. Therefore, attribute-based methods are preferable in
some aspects. Song et al. [29] present a combined approach
based on discriminative feature combinations that direct link
prediction by the attribute information of nodes and topo-
logical structure. However, it is difficult to predetermine the
weights of structure and attributes [30]. Bu et al. [31] propose
Graph K-means which formulates the downstream task as
a multi-objective optimization problem in a discrete-time
dynamical system, and it does not need to pre-determine the
weights of structure and attributes.

In this paper, we propose a novel link prediction method
which considers both the topological structure and the
attribute information of nodes, namely Network Embedding
with Attribute Deep Fusion for Link Prediction, or abbrevi-
ated as NEADF-LP. In order to verify the performance of
NEADF-LP, a series of experiments compared with state-of-
the-art methods have been completed on two typical citation
network datasets Cora and CiteSeer. The results show our
method performs better compared with state-of-the-art meth-
ods. Moreover, NEADF-LP is still effective while a few links
missed.

Our contributions are summarized as follows:
• We embed the attributes (discrete attributes and con-
tinuous attributes) of nodes in the network into
low-dimensional vectors for subsequent fusion.

• We build a tower-structure model, in which the num-
ber of neurons in the current layer is halved from the
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previous layer, so nonlinear fusion between structural
features and attribute features could be achieved.

• We propose NEADF-LP (Network Embedding with
Attribute Deep Fusion for Link Prediction), a novel
link prediction method which takes both the topological
structure and the attribute information of nodes in to
consideration.

The rest of this paper is organized as follows. Section II
defines the problem description and the metric for evaluating
the result. The novel approach NEADF-LP is presented in
Section III. Experimental results are given and discussed in
Section IV using standard datasets and metrics. The conclu-
sion is drawn in Section V.

II. PROBLEM DESCRIPTION AND EVALUATION METRIC
Consider an undirected network G = (V ,E) where V rep-
resents the nodes set, and E represents the links set. Let
U denote the universal set which contains all |V |(|V | − 1)/2
possible node pairs in network G, where |V | represents the
number of nodes in V . The purpose of link prediction is to
find out the missing links or future links in U − E , where
U − E denotes the non-observed or nonexistent links.

To evaluate the capability of a link prediction method,
the link setE is randomly partitioned into two parts: a training
set E train and a test set E test, such that E train

∪ E test
= E

and E train
∩ E test

= ∅ [28]. We use AUC, a standard
metric, to evaluate the prediction performance of our pro-
posed method. AUC is the probability that the score of a link
randomly chosen in E test is higher than that in U − E . That
is, we each time select a link from the test set E test randomly,
and then from the nonexistent link set,U−E , randomly select
another link. If the score of link in E test is higher than that in
U−E , then we get 1. If two scores are equal, then we get 0.5.
After independent comparisons for n times, if there are n′

times that the links in E test have higher scores and n′′ times
they are the same [2], the AUC can be presented as follow:

AUC =
n′ + 0.5n′′

n
(1)

III. PROPOSED METHODOLOGY
A. FRAMEWORK
The framework of NEADF-LP is shown in Fig.1. Our method
consists of three essential components, which we will intro-
duce in the following parts in detail:
• Structure Encoder: the structure encoder is designed to
represent each node as an embedded vector with topo-
logical structure by DeepWalk;

• Attribute Encoder: the function of the attribute encoder
is to encode the discrete and continuous attributes of
the node into a uniform and real-valued attribute feature
vector representation of the node;

• Deep Fusion: the deep fusion utilizes the tower-structure
model to deeply fuse the topological structure vector
and the attribute information vector of the network to
perform link prediction.

FIGURE 1. The framework of NEADF-LP. The structural and attribute
information of original network is input to the structure encoder and the
attribute encoder respectively, and the results that embedded vectors
with topological structure and attribute feature vector are weighted input
to a tower-structural model. The link probability is the output of the
model.

FIGURE 2. The process of the structure encoding.

B. STRUCTURE ENCODER
Considering the operational efficiency on large-scale data
sets and the parallelism and scalability of the algorithms,
we utilize DeepWalk algorithm as structure encoder to rep-
resent each node as an embedded vector with topological
structure in this work.

DeepWalk learns the potential vector representation of a
node by truncated random walks [22]. Comparing the word
embedding model Word2Vec in the NLP domain, the basic
processing element of the word embedding model is a
word, but the processing element of network embedding is
a node correspondingly; the word embedding is to analyze
the sequence of words constituting the sentence, whereas
network embedding is to analyze the path of a node which
truncated random walks pass.

The algorithm mainly consists of three parts, as shown
in Fig.2
• Node sequence sampling
The random walker samples the node sequence in the
network, which selects a node vi fromG = (V ,E) as the
root node, randomly walks from the root node, and ran-
domly selects a neighbor node of the last visited node.
When the maximum path length t is reached, the path
through which the random walker passes is taken as a
sample sequence Wvi , and

∣∣Wvi

∣∣ = t . The sampling is
repeated λ times at node vi.

34400 VOLUME 8, 2020



M. Zhou et al.: Deep Fusion of Topological Structure and Attribute Information for Link Prediction

• Node mapping to a vector representation
The sampled node sequences are treated as sentences
which are input to the Skip-Gram model for training
with the window size ofw. In the network representation
learning task, a window of size w is set for the sampled
node sequence Wvi . For each vj mapping to the current
vector space 8

(
vj
)
, and for each representation of the

given node vj, maximize the probability of its appear-
ance in the window w of the node sequence Wvi :

Pr
(
{vi−w, . . . , vi+w} |8

(
vj
))
=

i+w∏
k=i−w

Pr
(
vk |8

(
vj
))
(2)

• Reduce calculation
Reduce computational complexity by hierarchical Soft-
max. Given a node vk ∈ V , calculating the conditional
probability Pr

(
vk |8

(
vj
))

requires a large amount of
computation, so this conditional probability is calculated
by the hierarchical Softmax. Put the node in the leaf node
of a binary tree. For each leaf node, there is always a
unique path from the root node to the leaf node. Based
on this unique path, the probability of occurrence of a
leaf node is estimated. Record the path to node vk as(
b0, b1, . . . , b[log |V |]

)
, where b0 = root and b[log |V |] =

vk . The conditional probability can be represented as:

Pr
(
vk |8

(
vj
))
=

[log |V |]∏
l=1

Pr
(
bl |8

(
vj
))

(3)

Amodel of the binary classifier can be built on the parent
node of node bl to estimate Pr

(
bl |8

(
vj
))
:

Pr
(
bl |8

(
vj
))
= 1/

(
1+ e−8(vj)·9(bl )

)
(4)

where 9 (bl) represents the parent of node bl . As a
result, the time complexity of Pr

(
vk |8

(
vj
))

can be
reduced from O(|V |) to O(log |V |). After iterative train-
ing, theweightmatrix of the hidden layer of the extended
Skip-Gram model is used as the potential vector repre-
sentation of the node.

C. ATTRIBUTE ENCODER
Many real social network data contain a wealth of attribute
information, which may be varied. In order to facilitate the
combination of attribute information and topological struc-
ture, we propose an attribute encoder, which encodes the dis-
crete attributes and continuous attributes of a node to obtain
a uniform and real-valued attribute feature vector.

1) DISCRETE ATTRIBUTE
Discrete attributes, more commonly categorical attributes,
such as gender, age, can be one-hot encoded to a continuous
vector representation. This method performs one-hot encod-
ing of all discrete attributes of the node. Finally, the coding
of each type of attribute is spliced to obtain the final discrete
attribute feature vector. For example, the gender attribute has

FIGURE 3. A diagram of attribute vector.

two values {male, female}, and a vector {0, 1} can describe
the user gender. The first element in the vector takes a value
of 0 for the gender male, and the second element takes 1 for
the gender female.

2) CONTINUOUS ATTRIBUTE
Continuous attributes are ubiquitous in social networks, such
as a blog with text, image, and vedio. These types of attributes
cannot be directly compared with each other. However,
by manual processing, information such as text and picture
can also be converted into continuous vector representations
using existingmethods. TF-IDF is a weightingmethod to rep-
resent text data as comparable values. Term Frequency (TF)
refers to the number of times a given word appears in the
file. Inverse Document Frequency (IDF) is a measure of
the universal importance of a word. TF-IDF is the product of
the two, which can filter out commonwords and retain impor-
tant words in the document. In the field of text information
processing, Bag-of-words is usually used to obtain a vector
representation of text, and TF-IDF is used to reduce noise to
obtain a real-valued text vector representation. We process
text attributes by TF-IDF in this work.

The main steps to calculate text features using TF-IDF are
summarized as follows:
• Calculate TF. In order to facilitate the comparison of
texts of different lengths, normalize TF;

• Calculate IDF;
• Calculate TF-IDF, using the product of TF and IDF;
• Splice the TF-IDF value of each word in the document
to form the feature vector of the text attribute.

After the continuous attribute is represented as a real value
vector, all attribute feature vectors of the nodes are stitched
together, and we obtain the final attribute feature vector
of node in the network. Next, the attribute information of
each node is processed into feature vectors with the same
dimensions. A node that lacks a certain type of attribute fills
in 0 with the corresponding attribute feature position. Fig.3
illustrates a diagram of attribute vector.

D. DEEP FUSION
As shown in Fig.4, we build a tower-structure model to
achieve nonlinear fusion between structural feature and
attribute feature. The link prediction is the object-oriented,
and a neural network is established to fuse the features.
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FIGURE 4. The detail of deep fusion.

We first define f as a function of the similarity between
vi and vj, and the probability that vi and vj are connected is
computed by:

p
(
vj|vi

)
=

exp
(
f
(
vi, vj

))∑|V |
j′=1 exp

(
f
(
vi, vj′

)) (5)

The degree of structural similarity between nodes needs
to be extracted from the neighbors. Based on the assumption
of conditional independence, the probability between node vi
and the set of its neighbor nodes Ni is computed by:

p (Ni|vi) =
∏
vj∈Ni

p
(
vj|vi

)
(6)

Then the likelihood function L of the model can be defined
as:

L =
|V |∏
i=1

p (Ni|vi) =
|V |∏
i=1

∏
vj∈Ni

p
(
vj|vi

)
(7)

Next, the structure of the model is introduced in detail:
Input layer
The structure vector representation of the node, denoted as

u, contains the structural information of the node; the attribute
vector representation of the node is denoted as u′, which
contains the attribute information of the node.

Hidden layers
The structural feature vector u and the attribute feature

vector u′ are weighted, and being input into a multi-layer
perceptron, and the representation of each hidden layer is
denoted as h0, h1, . . . , hn. The representation of the hidden
layers is defined as follows:

h0 =
〈
u
γ u′

〉
hk = δk

(
W khk−1 + bk

)
, k = 1, 2, . . . , n (8)

where γ represents the weight of the attribute feature, δk rep-
resents the activation function, and n represents the number
of the hidden layers.

Stacking multiple nonlinear hidden layers has been shown
to learn better data representation. We build a tower-structure
model shown in Fig.4 in the hidden layer: the number of
neurons in the current layer is halved from the previous layer.
This kind of tower structure can learn more abstract features,
which have achieved good results in the recommendation
tasks. u and u′ need to be adjusted by the weight coefficient γ
when being input to the hidden layer.

Output layers
The output of hidden layer h is converted into a probability

vector o, which contains the probability that input node vi is
connected to other nodes, as follow:

o =
[
p (v1|vi) , p (v2|vi) , . . . , p

(
v|V ||vi

)]
(9)

The corresponding row in the weight matrix of the hidden
layer is taken as an abstract representation of node vj, denoted
as uj. The similarity function of nodes vi and vj is defined as:

f
(
vi, vj

)
= uj ∗ hni (10)

Substituting (10) into (5), the connection probability in the
vector o is calculated by:

p
(
vj|vi

)
=

exp
(
uj ∗ hni

)∑|V |
j′=1 exp

(
uj′ ∗ hni

) (11)

Then the optimization objective function of the model is
recorded as 2:

2 = max
∏|V |

i=1

∏
vj∈Ni

p
(
vj|vi

)
log2 = max

∑
vi∈V

∑
vj∈Ni

log p
(
vj|vi

)
(12)

Substitute (11) into formula (12):

log2 = max
∑
vi∈V

∑
vj∈Ni

log
exp

(
uj ∗ hni

)∑|V |
j′=1 exp

(
uj′ ∗ hni

) (13)

The purpose of this optimization objective function is to
make the similarity between neighbor nodes larger, and the
similarity between non-neighbor nodes smaller.

Consider the gradient calculation in (12), which mainly
consists of two parts:

∇ log p
(
vj|vi

)
= ∇f

(
vi, vj

)
−

∑
j′∈|V |

p
(
vj′ |vi

)
∇f

(
vi, vj′

)
(14)

Since the second half of (14) is computationally intensive,
we approximate the calculation by sampling a part of the
nodes by means of negative sampling.

We summarize our algorithm in Algorithm 1.
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Algorithm 1 NEADF-LP
Input: network G = (V ,E), attribute set A, embed-

ding dimension d , learning rate η, negative samples L,
attribute weight γ .

Output: the link probability with other nodes for each node.

1: Initialize all the model parameters ϕ.
2: Generate structural embedding vector u for each node v ∈
V using DeepWalk.

3: Generate attribute vector u′ by attribute information in A
for each node.

4: while not converged do
5: for each (u,u′) do
6: calculate the probability vector o using (8)
7: Sample L negative samples and calculate objective

function 2 using (12)
8: Update model parameters ϕ by ∂2

∂ϕ
9: end for
10: end while

TABLE 1. Information of network datasets.

IV. EXPERIMENT AND RESULT
A. DATASET AND EXPERIMENTAL ENVIRONMENT
This work utilizes two network datasets with attribute infor-
mation, CiteSeer1 and Cora2, to study the performance of our
approach. CiteSeer is a multi-disciplinary dataset consisting
of papers from 10 research fields. Cora is a dataset based on
citations between scientific papers. The detailed information
about these datasets is described in Table 1, in which V and E
are the numbers of nodes and links respectively; A represents
the dimension of the preprocessed attribute vector; ADmeans
the average degree and ACC represents the average clustering
coefficient.

The experiment is conducted on the two datasets using
a single Windows server with Intel(R) Core(TM) i5-4200U
CPU @2.3GHz, 512G RAM and NVIDIA GeForce 840M.
The codes of our proposed models are implemented with
TensorFlow 1.12 in Python 3.6.

B. PROCEDURE
The processes of our experiment are as follows:

Dataset dividing: remove the existing edges in the net-
work by 5%, 15%, 25%, 35%, and 45% as the positive sam-
ples of the test set, and select the same number of non-existing
edges as the negative samples of the test set. Train the model
with the remaining existing edges as the train set.

1http://citeseerx.ist.psu.edu/
2https://linqs.soe.ucsc.edu/data

Representation of structural feature vectors: obtain the
representation of a node with topological features using the
algorithm described in Section III-B.

Representation of attribute feature vectors: the discrete
attribute and the continuous attribute of the node are respec-
tively encoded using the algorithm described in Section III-C,
and they are stitched together as the attribute feature vector of
the node.

Training of the deep fusion model: the structural feature
vectors and the attribute feature vectors are input into the
deep neural network for training, and the hidden layer of the
tower structure are used to fuse the structural features and
the attribute features nonlinearly. The connection probability
value of between one node and the other nodes are shown in
the output layer.

Link prediction: calculate the AUC value using the prob-
abilistic method according to the connection result in the
previous step.

C. HYPER-PARAMETERS
According to test experiments, we set the context window
size k , the walk length l and the number of walks per node t
are set to 10, 80 and 16 respectively, and the dimensions of
vector d is 128. After data preprocessing, the initial attribute
dimensions of Citeseer and Cora are 3707 and 1433, respec-
tively. In order to facilitate the input of attribute feature
vectors into the deep learning model, the vector of attribute is
also processed into 128-dimensional feature vectors. Besides,
the weight of attribute feature vector γ is set as 0.2 and 0.4 on
CiteSeer and Cora respectively.

D. BASELINE METHODS
Five link prediction algorithms available in the recent liter-
atures, including Common Neighbor (CN) [4], Local Path
criterion(LP) [8], DeepWalk [22], Node2vec [25] and Graph-
GAN [32] algorithms are used to prove the effectiveness and
robustness of our proposedmethod. Besides, all the compared
baseline methods and the proposed NEADF-LP method are
evaluated on the same criteria.

Common Neighbor (CN) [4] formulates the similarity
between any two nodes by counting the number of thier
common friends.

Local Path criterion (LP) [8] considers the effects of
second-order neighbors and third-order neighbors of nodes to
develop the concept of resource allocation, where parameter
α in LP is set as 0.01.

DeepWalk [22] is an approach to represent a node of the
network as a d-dimension vector with the help of the trun-
cated random walks over the graph. After that, it processes
the sequences by the Skip-Gram model with hierarchical
softmax. In the experiment, we set the embedding dimension
as 128 and set window size w as 10, random walk length as
80 and walks per node as 10.

Node2vec [25] is a generalized version of DeepWalk,
which uses the biased random walks based on BFS and
DFS sampling. Introducing two hyper-parameters p and q,
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FIGURE 5. AUC scores of six methods for link prediction.

it exploits structural equivalence. The parameter setting is
same as DeepWalk.

GraphGAN [32] combines both generative thinking and
discriminative thinking into network embedding. As a result,
we can get the low-dimensional representation vectors of
nodes. We set all parameters in the experiment to be optimal.

E. RESULT AND DISCUSS
As shown in Fig.5, our proposed method is compared with
five baseline methods on CiteSeer and Cora real-world net-
work. The x-axis represents the five proportions of the
remaining training set, and the AUC value is shown on the
y-axis. From the Fig.5, Table 2 and Table 3, we can see that
NEADF-LP significantly outperforms all baselines, which
indicates that this model combining topological structure and
attribute information has much better predicting power on
unobserved links. In addition, when the proportion of the
training set is 0.55, theAUCvalue ofNEADF-LP is about 0.8.
It mainly because the attribute information of node is helpful
for link prediction while the topological structure information
missed.

The effect of CN is not good because it only focuses on the
first order proximities. The method of CN performs better on

TABLE 2. AUC of six methods for link prediction on citeseer.

TABLE 3. AUC of six methods for link prediction on cora.

the dataset of Cora, owing to the relatively higher average
degree and clustering coefficient, which indicates that rela-
tionship between nodes are relatively close. As the proportion
of the training set increases to a certain extent (0.75 on
CiteSeer, 0.65 on Cora), the effect of LP method increases
dramatically. The effects of DeepWalk and Node2vec are not
as good as we expected, especially in the CiteSeer dataset,
because the network representations, through a multitude of
randomwalks and the shallow Skip-Grammodel, is unable to
capture highly nonlinear features in the underlying network.
Besides, compared with DeepWalk, Node2vec performs bet-
ter. That is because DeepWalk samples nodes randomly,
which may result in different learned feature representations.
While Node2vec designs a flexible objective that is not tied to
a particular sampling strategy and provides parameters to tune
the explored search space, the trouble of inflexible sampling
of nodes can be solved. Although Node2vec can capture
more general information from the graph, it cannot capture
the structural similarities of links. Among the baselines,
the performance of GraphGAN is the best in most instances
(all proportions of the training set on Cora and proportions
above 0.75 on CiteSeer). This might because the accessibility
similarity is not encoded by GraphGAN explicitly, although
it optimizes the connectivity distribution on the edges by
generator and discriminator explicitly.

The link prediction methods based on topological structure
have limited space for improvement. We fuse the attribute
information of the node deeply on the basis of making full use
of the topological structure. Experimental results show that it
could improve the link prediction accuracy significantly.

F. PARAMETER SENSITIVITY
In this section, we study how the weight of attribute feature
vector affect the performance of NEADF-LP. The effect of
different parameter γ is shown in Fig.6 (80% edges remained
as training set).

34404 VOLUME 8, 2020



M. Zhou et al.: Deep Fusion of Topological Structure and Attribute Information for Link Prediction

FIGURE 6. Parameter sensitivity analysis for parameter γ .

As shown in Fig.6, the best weight of attribute feature
vector on CiteSeer is 0.2 while on Cora is 0.4. When the
parameter is set as 0, that is, without attribute information,
the AUC value on both CiteSeer and Cora is lowest, which
indicates that the attribute information helps a lot for link
prediction. Besides, due to the large differences of attributes
in different networks, the parameter of the weight of attribute
information in different datasets should be determined by
more specific experiments.

V. CONCLUSION AND FUTURE WORK
Link prediction has attracted more attention in various area.
The existing link prediction algorithms mainly consider the
structure information but ignore the attributes of the node.
To improve the accuracy of link prediction, we proposed a
novel method which utilizes the combination of the topolog-
ical structure and the attribute information by deeply fusing
them. First, we use DeepWalk algorithm as structure encoder
to represent each node as an embedded vector with topo-
logical structure. Secondly, we encode the discrete attributes
and continuous attributes of the node to obtain a uniform
and real-valued attribute feature vector. At last, we propose
the tower-structure model to deeply fuse the vector with
topological structure and the vector with attribute information
of the network to perform link prediction. The results of
experiment demonstrate that the method proposed in this
paper has better prediction power than the common bench-
mark algorithm, and attribute information is helpful for link
prediction.

There are still some challenges ahead. Our algorithm con-
siders a unweighted network. However, the type of nodes in
the real world are more variable, and the relationship between
nodes is more changeable. It makes sense to extend this
work to heterogeneous networks. Besides, the random walk
method is used to sample the node sequence when learning
the topology of network. Sampling the node sequence in some
specific way and in parallel might greatly improve the effect
and efficiency of the algorithm.

REFERENCES
[1] W. Wang, L. Wu, Y. Huang, H. Wang, and R. Zhu, ‘‘Link prediction based

on deep convolutional neural network,’’ Information, vol. 10, no. 5, p. 172,
May 2019.

[2] Y. Yang, J. Zhang, X. Zhu, and L. Tian, ‘‘Link prediction via significant
influence,’’ Phys. A, Stat. Mech. Appl., vol. 492, pp. 1523–1530, Feb. 2018.

[3] L. Katz, ‘‘A new status index derived from sociometric analysis,’’ Psy-
chometrika, vol. 18, no. 1, pp. 39–43, Mar. 1953. [Online]. Available:
http://leonidzhukov.net/hse/2015/socialnetworks/papers/katz-1953.pdf

[4] M. E. J. Newman, ‘‘Clustering and preferential attachment in growing
networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 64, no. 2, Jul. 2002, Art. no. 025102. [Online]. Available:
http://core.ac.uk/download/pdf/22875494.pdf

[5] E. Ravasz, ‘‘Hierarchical organization of modularity in metabolic net-
works,’’ Science, vol. 297, no. 5586, pp. 1551–1555, Aug. 2002.

[6] L. A. Adamic and E. Adar, ‘‘Friends and neighbors on the Web,’’
Social Netw., vol. 25, no. 3, pp. 211–230, Jul. 2003. [Online]. Available:
http://cond.org/fnn.pdf

[7] T. Zhou, L. Lu, and Y.-C. Zhang, ‘‘Predicting missing links via
local information,’’ 2009, arXiv:0901.0553. [Online]. Available:
http://arxiv.org/abs/0901.0553

[8] L. Lue, C.-H. Jin, and T. Zhou, ‘‘Similarity index based on local paths for
link prediction of complex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 80, no. 4, Nov. 2009. [Online]. Avail-
able: http://doc.rero.ch/record/13217/files/zhou_sib.pdf

[9] Y. Liu, M. Tang, T. Zhou, and Y. Do, ‘‘Improving the accuracy of
the k-shell method by removing redundant links-from a perspective
of spreading dynamics,’’ 2015, arXiv:1505.07354. [Online]. Available:
http://arxiv.org/abs/1505.07354

[10] N. M. Ahmed, L. Chen, Y. Wang, B. Li, Y. Li, and W. Liu, ‘‘Sampling-
based algorithm for link prediction in temporal networks,’’ Inf. Sci.,
vol. 374, pp. 1–14, Dec. 2016.

[11] M. Zhang and Y. Chen, ‘‘Link prediction based on graph neural
networks,’’ Feb. 2018, arXiv:1802.09691. [Online]. Available:
https://arxiv.org/abs/1802.09691

[12] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard, ‘‘Complex
embeddings for simple link prediction,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 1–10.

[13] Z. Wang, J. Liang, R. Li, and Y. Qian, ‘‘An approach to cold-start link
prediction: Establishing connections between non-topological and topo-
logical information,’’ IEEE Trans. Knowl. Data Eng., vol. 28, no. 11,
pp. 2857–2870, Nov. 2016.

[14] X. Xie, Y. Li, Z. Zhang, H. Shuai, and H. Pan, ‘‘A joint link prediction
method for social network,’’ Ifip Adv. Inf. Commun. Technol., vol. 503,
pp. 56–64, Jan. 2015.

[15] N. Sheikh, Z. Kefato, and A. Montresor, ‘‘Gat2vec: Representation learn-
ing for attributed graphs,’’ Computing, vol. 101, no. 3, pp. 187–209,
Mar. 2019.

[16] Z. Hao, ‘‘Link prediction in online social networks based on the
unsupervised marginalized denoising model,’’ IEEE Access, vol. 7,
pp. 54133–54143, 2019.

[17] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 3111–3119.

[18] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, ‘‘L-EncDB:
A lightweight framework for privacy-preserving data queries in cloud
computing,’’ Knowl.-Based Syst., vol. 79, pp. 18–26, May 2015.

[19] B. Hu, H. Wang, X. Yu, W. Yuan, and T. He, ‘‘Sparse network embedding
for community detection and sign prediction in signed social networks,’’
J. Ambient Intell. Humanized Comput., vol. 10, no. 1, pp. 175–186,
Jan. 2019.

[20] P. Cui, X. Wang, J. Pei, and W. Zhu, ‘‘A survey on network embedding,’’
IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, May 2019.

[21] J. Lin, L. Zhang, M. He, H. Zhang, G. Liu, X. Chen, and Z. Chen, ‘‘Multi-
path relationship preserved social network embedding,’’ IEEE Access,
vol. 7, pp. 26507–26518, 2019.

[22] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2014, pp. 701–710.

[23] W. Shi, L. Huang, C.-D. Wang, J.-H. Li, Y. Tang, and C. Fu, ‘‘Network
embedding via community based variational autoencoder,’’ IEEE Access,
vol. 7, pp. 25323–25333, 2019.

VOLUME 8, 2020 34405



M. Zhou et al.: Deep Fusion of Topological Structure and Attribute Information for Link Prediction

[24] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, ‘‘LINE:
Large-scale Information Network Embedding,’’ 2015, arXiv:1503.03578.
[Online]. Available: http://arxiv.org/abs/1503.03578

[25] A. Grover and J. Leskovec, ‘‘Node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2016, pp. 855–864.

[26] J. Wang, B. Gong, H. Liu, and S. Li, ‘‘Model and algorithm for hetero-
geneous scheduling integrated with energy-efficiency awareness,’’ Trans.
Inst. Meas. Control, vol. 38, no. 4, pp. 452–462, Apr. 2016.

[27] Y. Xie, M. Gong, S. Wang, W. Liu, and B. Yu, ‘‘Sim2vec: Node similarity
preserving network embedding,’’ Inf. Sci., vol. 495, pp. 37–51, Aug. 2019.

[28] L. Lu and T. Zhou, ‘‘Link prediction in complex networks: A survey,’’
Phys. A, Stat. Mech. Appl., vol. 390, no. 6, pp. 1150–1170, Mar. 2011.

[29] A. Song, Y. Liu, Z. Wu, M. Zhai, and J. Luo, ‘‘A local random walk model
for complex networks based on discriminative feature combinations,’’
Expert Syst. Appl., vol. 118, pp. 329–339, Mar. 2019.

[30] J. Cao, Z. Bu, Y. Wang, H. Yang, J. Jiang, and H.-J. Li, ‘‘Detecting
prosumer-community groups in smart grids from the multiagent perspec-
tive,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8, pp. 1652–1664,
Aug. 2019.

[31] Z. Bu, H.-J. Li, C. Zhang, J. Cao, A. Li, and Y. Shi, ‘‘Graph K-means
based on leader identification, dynamic game and opinion dynamics,’’
IEEE Trans. Knowl. Data Eng., to be published.

[32] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, ‘‘GraphGAN: Graph representation learning with gen-
erative adversarial nets,’’ 2017, arXiv:1711.08267. [Online]. Available:
http://arxiv.org/abs/1711.08267

MINGQIANG ZHOU was born in Lanxi,
Zhejiang, China, in 1977. He received the Ph.D.
degree from Computer Application Technology,
Chongqing University, China, in 2010. He is
currently an ACM Member and an Associate
Professor with the Chongqing Key Laboratory
of Software Theory and Technology, College
of Computer Science, Chongqing University,
Chongqing, China. He has authored or coauthored
more than 60 refereed publications and holds

seven patents. His research interests include the different aspects of service
computing, artificial intelligence, and complex networks.

YIHAN KONG was born in Chongqing, China,
in 1995. He received the bachelor’s degree from
the College of Computer Science, Chongqing Uni-
versity, China, in 2018, where he is currently a
Graduate Student with the College of Computer
Science. His current research interests include
machine learning, service-oriented architecture,
and complex networks.

SHENSHEN ZHANG was born in Jiangsu, China,
in 1994. He received the bachelor’s degree from
the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, China,
in 2015, and the master’s degree with the Col-
lege of Computer Science, Chongqing University,
China, in 2018. His main research interests include
the big data, deep learning, and complex networks.

DAN LIU was born in Neijiang, Sichuan, China,
in 1995. She received the bachelor’s degree from
the School of Computer Science and Technology,
Donghua University, China, in 2018. She is cur-
rently a Graduate Student with the College of
Computer Science, Chongqing University, China.
Her main current research interests include natural
language processing, deep learning, and complex
networks.

HAIJIANG JIN was born in Zhangjiakou, Hebei,
China, in 1995. He received the bachelor’s degree
from the College of Computer Science, Chongqing
University, China, in 2018, where he is currently
a Graduate Student with the College of Computer
Science. His current research interests include
service computing, deep learning, and complex
networks.

34406 VOLUME 8, 2020


	INTRODUCTION
	PROBLEM DESCRIPTION AND EVALUATION METRIC
	PROPOSED METHODOLOGY
	FRAMEWORK
	STRUCTURE ENCODER
	ATTRIBUTE ENCODER
	DISCRETE ATTRIBUTE
	CONTINUOUS ATTRIBUTE

	DEEP FUSION

	EXPERIMENT AND RESULT
	DATASET AND EXPERIMENTAL ENVIRONMENT
	PROCEDURE
	HYPER-PARAMETERS
	BASELINE METHODS
	RESULT AND DISCUSS
	PARAMETER SENSITIVITY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MINGQIANG ZHOU
	YIHAN KONG
	SHENSHEN ZHANG
	DAN LIU
	HAIJIANG JIN


