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ABSTRACT Internet of Things (IoT) and smart computing technologies have revolutionized every sphere
of 21st century humans. IoT technologies and the data driven services they offer were beyond imagination
just a decade ago. Now, they surround us and influence a variety of domains such as automobile, smart home,
healthcare, etc. In particular, the Agriculture and Farming industries have also embraced this technological
intervention. Smart devices are widely used by a range of people from farmers to entrepreneurs. These
technologies are used in a variety of ways, from finding real-time status of crops and soil moisture content
to deploying drones to assist with tasks such as applying pesticide spray. However, the use of IoT and
smart communication technologies introduce a vast exposure to cybersecurity threats and vulnerabilities
in smart farming environments. Such cyber attacks have the potential to disrupt the economies of countries
that are widely dependent on agriculture. In this paper, we present a holistic study on security and privacy
in a smart farming ecosystem. The paper outlines a multi layered architecture relevant to the precision
agriculture domain and discusses the security and privacy issues in this dynamic and distributed cyber
physical environment. Further more, the paper elaborates on potential cyber attack scenarios and highlights
open research challenges and future directions.

INDEX TERMS Security, privacy, smart farming, precision agriculture, cloud computing, edge computing,
cyber physical systems, IoT, artificial intelligence (AI), machine learning, layered architecture.

I. INTRODUCTION AND MOTIVATION
According to the United Nations (UN), the world
population is expected to exceed 9 billion people by 2050,
growing by almost a third of the current population [1], [2].
Such an increase in the population demands a boost of
almost 70 percent in the food production rate, according
to the Food and Agriculture Organization of the United
Nations.1 This rapidly growing population also introduces
a variety of other problems such as increasing compe-
tition and exploitation of land, water and other natu-
ral resources. These issues present an urgent need to
reduce the dependence of food system on our environ-
ment. Consequently, the need for an evolutionary agricul-
tural paradigm to keep up with growing demand of food

The associate editor coordinating the review of this manuscript and

approving it for publication was Noor Zaman .
1Food and Agriculture Organization of the United Nations.

http://www.fao.org/home/en/

and crop production is necessary to guarantee a sustainable
development [3].

Smart farming technologies2 and precision agriculture3 [4]
are gainingmore attraction for their potential to fulfill such an
increasing demand and meet global food supply needs. Smart
farming technologies involve integration of technology and
data driven agriculture applications to increase crop yield and
quality of food products. There are numerous smart farming
use cases [5]–[7] present globally indicating the impact of
this new paradigm of practicing agriculture. As an example,
the use of remote sensors placed in the soil for measuring
blueberry irrigation in Chile has reduced the volume of water
used in farming by 70 percent [8]. In India, farm data has been
used to predict and prevent crop diseases, which reduced the

2https://www.microsoft.com/en-us/research/project/farmbeats-iot-
agriculture/

3In the paper, we use the term smart farming and precision agriculture
interchangeably.
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risk associated with the failure of crop production [9]. Similar
data driven approaches have helped fruit farmers in Slovenia
effectively fight against pests.4 Smart farming, however, goes
beyond primary production. In fact, it has impacted the com-
plete food supply chain, by employing big data analytics to
provide useful insights about the entire farming process [10]
by facilitating real-time operational decision making, and
revolutionizing existing agriculture business models. Smart
farming enhances conventional farming practices by intro-
ducing on-field smart sensors and devices. These sensors and
devices work in a synergistic manner to provide efficient
farming experiences, as well as, an improved crop yield.
Although beneficial to the productivity of the industry, the use
of heterogeneous, internet-connected devices has exposed
potential cyber attacks and vulnerabilities in the agriculture
sector. These attacks introduce the ability to remotely con-
trol and exploit on-field sensors and autonomous vehicles
(tractors, aerial vehicles, etc). Potential agricultural attacks
can create an unsafe and unproductive farming environment.
For example, exploits that have the ability to destroy an
entire field of standing grown crops, flood the farmlands,
over spray pesticides using smart drones, etc. can cause
unsafe consumption as well as economic deterioration. Such
attacks in a large coordinated manner, also referred to as
agro-terrorism [11], also have the potential of disrupting the
economy of an agriculture-dependent nation. A report [12]
released by theU.S. Department of Homeland Security exten-
sively elaborates various cyber threat scenarios in precision
agriculture, further emphasizing the need for research in this
critical domain.

The Agriculture industry adds 6.4 percent of the world’s
economic production with a total of $5,084,800 million.5

Agriculture, food, and related industries contributed
$1.053 trillion to U.S. gross domestic product (GDP)
in 2017.6 At the same time, United State’s farms contributed
$132.8 billion of this sum which is almost 1 percent of GDP.
Agriculture contributed 1.2 % to the European Union’s (EU)
GDP in 2017 whereas EU’s agricultural industry added
gross value of EUR 188.5 billion in 20177 at a record
high. Out of 226 countries, nine countries have agriculture
sector as the dominant sector in their economy. The U.S.
food and agriculture system has a total economic impact
of $7.06 trillion8 and one-fourth of the overall jobs in the
country are connected to it. Most countries globally export
agricultural products. As a result, cyber vulnerabilities can
have a significant impact on global food security. A sophis-
ticated agro-terrorism attack on a (large) exporting country
like the U.S. could harm the health of millions of consumers

4Lanner-America. https://www.lanner-america.com/blog/smart-farming-
iot-5g-agriculture/

5http://statisticstimes.com/economy/countries-by-gdp-sector-
composition.php

6https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-
the-essentials/ag-and-food-sectors-and-the-economy

7https://ec.europa.eu/eurostat/statistics-explained/index.php/Performance_
of_the_agricultural_sector

8 https://feedingtheeconomy.com/

FIGURE 1. A model of end-to-end interaction between various
stakeholders in smart farming.

world-wide. In addition, attacks could reduce confidence on
domestic consumption and destroy the United State’s status
as a trusted food exporter. A report released in 2018 by the
Council of Economic Advisors,9 ‘‘The Cost of Malicious
Cyber Activity to theU.S. Economy’’ suggests the agriculture
sector as one of the 16 critical infrastructure sectors that are
important to both the U.S. economy and national security
for which cyber protection is particularly important. It also
reported that the agriculture sector experienced 11 cyber
incidents in 2016.

According to the World Health Organization,10

420,000 people die every year from food-related illnesses
and 600 million people fall ill as a result of food contam-
inated with bacteria, viruses, toxins or chemicals. A cyber
attack on the food ecosystem targeted at farms, transportation
system, or food processing industrial control systems (ICSs)
may increase these numbers exponentially. Other important
industries like energy, financial or healthcare have understood
the need for resilient infrastructure and have hardened their
defenses. However, the food and agriculture industry is still
a low hanging fruit for threat actors. Food Protection and
Defense Institute (FPDI) at the University of Minnesota has
discovered that food industry ICSs may be distinctly vulner-
able to cyberattacks.11 Food industry operations technology
personnel, in particular, those responsible for operating and

9https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-
Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf

10https://news.un.org/en/story/2019/06/1039901
11S. Streng, ‘‘Food Industry Cybersecurity Summit: Meeting Report,’’

Food Protection and Defense Institute, Saint Paul, MN, May 2016.
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FIGURE 2. A roadmap of cybersecurity research and challenges in smart farming.

maintaining ICSs, are experts trained in food and production
safety production and not in cybersecurity. This presents a
huge gap between employing smart farm technology and
securing it correctly and persistently. If not continuously
monitored, cyber attacks on smart agriculture technologies
can have grave implications on several stakeholders in the
ecosystem. These groups include farmers, end consumers,
food processing industries, agriculture co-operatives, live-
stock, government agencies and nations critically dependent
on agriculture.

Figure 1, shows an end to end interaction among vari-
ous entities involved in smart farming ecosystem. Physical
sensors and livestock in the field generate data and receive
command operations via user applications. These on-farm
devices are connected to gateway supported edge nodes,
which help enable in-farm device communication, filter sen-
sor data and real time agronomy analytics. At the same
time, data lakes in the cloud hold a large amount of data
and information including but not limited to, environmental
information (e.g. soil moisture level and fertility status), mon-
itoring information (e.g. sensors and smart machinery status),
energy management data, and other sensitive information.
In terms of security and data privacy, it is needless to say
that manipulation and leakage of such data, as well as the

impairment of physical equipment and software systems, can
induce serious consequences.

Extensive research on secure IoT devices [13]–[15], smart
vehicles [16]–[19], drones [20], [21], edge cloud [22]–[24],
wireless communication [25]–[27] is already available and
might be extended to the smart farming ecosystem. However,
most of the time, research is conducted on these technologies
without consideration of the environment they are used. The
dynamic smart farming environment, has unique characteris-
tics such as farm equipment, labor sharing, and operational
decisions, influenced by environmental conditions. Domain
specific issues such as like location, user skill set, insider
threats, generated data, need smart-farming-specific security
mechanisms. The development of smart farm technologies
therefore, demands further research before wide adoption in
the community.

The current state of the art and our review (discussed
in Section V) on smart farming, demands further research in
security and privacy aspects of this evolving domain. As the
research, on cybersecurity for smart farming is in its infancy,
our objective in this review is to provide a holistic view of
cybersecurity developments in smart farming. In this paper,
we discuss current threats, analyze potential cybersecurity
attacks, review the existing scattered security research, and

34566 VOLUME 8, 2020



M. Gupta et al.: Security and Privacy in Smart Farming: Challenges and Opportunities

FIGURE 3. Multi layer smart farming architecture.

summarize open research challenges in the smart farming
field as illustrated in Figure 2.

This paper has the following key contributions:
• It provides an overview of smart farming focused
multi-layered architecture, highlighting multiple entry
points and communication across layers.

• It identifies potential cybersecurity issues in smart farm-
ing and illustrates, scenario specific cyber attacks, which
have been categorized into data, network, supply chain,
and other common attacks.

• It presents an extensive evaluation of the current cyber-
security research, countermeasures in smart farming,
and also enlists the focus, contributions and weaknesses
of current research works.

• It provides a clear view of the open security research
challenges in different areas including next generation
network security, trustworthy supply chain and compli-
ance, adversarial machine learning and AI, and access
control, trust and information sharing.

The remainder of this paper is as follows. Multi-layered
architecture for smart farming is discussed in Section II.
Section III elaborates security and privacy issues, whereas
Section IV discusses different attacks on the smart farming
ecosystem including the supply chain side. Existing research
and state of the art in smart farming security is discussed in
Section V. Section VI highlights open research challenges
and possible approaches to solutions. Finally, Section VII
draws conclusion to this research paper.

II. SMART FARMING LANDSCAPE & ARCHITECTURE
Figure 3, depicts a multi layer architecture for the smart farm-
ing ecosystem. The proposed architecture adapts and extends
widely discussed IoT and Cyber Physical System (CPS)
multi-layer architectures [28]–[31]. These architectures rec-
ognize the use of cloud and edge services, and the infinite
capabilities provided by them to fully harness the data gen-
erated from smart devices at the physical layer [32]–[37].
Our smart farming architecture, also reflects different user
applications which can be envisioned at various layers. It also
considers, vast amounts of data collected at edge or cloud
layers, and highlights the need for various multi-cloud or
edge-cloud scenarios. Overall the architecture consists of four
layers: Physical layer, Edge layer, Cloud layer, and Network
Communication layer. The latter spans across all three previ-
ous layers and connect them.

A. PHYSICAL LAYER
The bottom layer in the architecture comprises of real phys-
ical sensors and gateway devices which are spread across
agriculture farms or in greenhouse buildings. These devices
include drones flying in the air, autonomous tractors, sensors
embedded in livestock, or hub devices installed to provide
communication among smart objects or with a central cloud.
These devices are responsible for data sensing and based on
the information gathered, help in actuating other devices to
realise various smart farming use cases. They collect real time
information about weather conditions, soil moisture level,
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or cattle’s body temperature, which can be sent to the edge
or cloud supported intelligent decision making systems to
provide recommendations and enable automation. For exam-
ple, data gathered from soil moisture sensing device in the
field, after getting processed in the edge or cloud, can help in
determining the amount of water needed at the farm, optimize
irrigation schedule and offers a convenient experience to the
end farmers.

B. EDGE LAYER
This layer is near to the end-users and end-devices for local
real-time computations and decisions. It reduces the com-
putation load off the centralized cloud layer and also the
network load. Edge computing layer consists of multiple edge
nodes. Each node represents a gateway that include services
such as: data capturing, security monitoring and detection,
prediction and real-time decision support. Data capturing
services include, data aggregation, filtering, encrypting and
encoding of real-time data streams.

Prediction services usually rely on machine learning mod-
els trained on the central cloud and deployed on the edge
layer. They are used to predict and/or categorize certain
events related to plant or livestock such as, prediction of
crop yield, categorization of plants or livestock health, pre-
dictions about the amount of fertilizer and water needed for
a patch of land, so as to maximize yield, or estimating soil
erosion.

Security monitoring and detection mechanisms can be
deployed for real-time monitoring of anomalous events
and classifying these events as malicious or benign.
This includes services like, anomaly detection and device
failures prediction.

C. CLOUD LAYER
Precision Agriculture (PA) and cloud computing paradigms
offer advances to enhance PA connectivity. The cloud layer
is generally virtualized in data centers and communicates
with the other layers using the Internet. Generally, these
cloud layer platforms follow the Platform as a Service (PaaS)
architecture model where the users can focus on running
applications and importing their data.

The PaaS provider runs and maintains a data broker that
collects data being pushed in from the edge layer and saves
these records in a Distributed File System (DFS). This stored
data is used by analytic software to mine knowledge. This
data analytics component computes insights and these are
pushed to the end user through a client application running
on the users’ machine.

Popular farm equipment manufacturers like, John Deere,12

Farmers Business Network,13 etc. have created several cloud
based products that help users monitor various sensors and
vehicles used on a farm. These PaaS systems generally run

12John Deere Operations Center. https://www.deere.com/en/technology-
products/precision-ag-technology/data-management/operations-center/

13Farmer’s Business Network. https://www.fbn.com/

on popular cloud computing platforms like Amazon Web
Services,14 Google Cloud,15 etc. The way these farming
PaaS systems are built using these popular cloud computing
platforms also introduce various security challenges in smart
farming ecosystem.

D. NETWORK COMMUNICATION LAYER
The common theme for most, if not all, current technologies
is ‘‘connectivity’’. With a growing need for a boundary-less
Internet, the idea of a network of smart devices has become a
reality. This concept, known as the Internet of Things (IoT),
allows connected devices to be monitored, controlled, and
shared data among each other. This data can be analyzed and
used by multiple applications. In smart farming, as shown
in Figure 3, the network layer not only facilitates edge and
physical layer connectivity, but also provides an interface for
them to interact with the cloud layer. From exchanging soil
temperature through a peer-to-peer sensor communication
system, to sending farm monitoring data to the cloud data
stores through high speed mobile networks such as 5G [38],
or updating the farmer about corp quality via a wireless adhoc
topology [39], network layer offers a means of communica-
tion to bind all other layers.

Network layer has two main responsibilities in a smart
farming system. Firstly, there are diverse set of heteroge-
neous devices in every layers of a smart farming system. The
network layer provides a secure and efficient network stack
where, wire, wireless and mobile sub-networks can commu-
nicate in a compatible and cross-layer manner. The second
responsibility of the layer is to preserve connectivity and
therefore, increase availability. From bigdata processing sys-
tems used to analyze collected data to individual sensors that
collect information from the field, this layer is needed for
system-wide cyber communication.
RealWorld Smart FarmingUse Cases:The proposed smart

farming architecture is constructed based on multiple lit-
erature and real world smart farming use cases. It can be
viewed as a general smart farming architecture that satisfies
most of the use cases. However, it should be noted that not
all use cases will include all four layers as proposed in the
architecture.

Blackhills Farm in New Zealand, a 400-hectare property
with over 2000 cattle and 800 sheep, has adopted the use of
SCADAfarm16 system which allows the owners to remotely
monitor water and energy consumption, location of irrigators,
soil moisture measurements and real-time weather informa-
tion. The farm uses Schneider Electrics’s EcoStuxture IoT
architecture17 which corresponds to our physical layer and
sensors. It also utilizesMicrosoft Azure18 IoT suite with com-
munication provided by the Vodafone New Zealand cellular

14Amazon Web Services. https://aws.amazon.com/
15Google Cloud. https://cloud.google.com/
16SCADAfarm. https://www.scadafarm.com
17EcoStuxture IoT architecture. https://www.se.com/us/en/work/campaign/

innovation/overview.jsp
18https://azure.microsoft.com/en-us/overview/iot/
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network which corresponds to the cloud and network layer in
out framework.

Similarly, a 7,000-acre farm at Beltsville Area Research
Center, was developed by the United States Department of
Agriculture (USDA) to act as a testbed for smart farming
technologies. The farm was equipped with a physical layer
including sensors, drones and IoT-enabled farm equipment
for a public-private program called Farmbeats [5]. The farm
adopts a two-layer hybrid network: a layer based on TV
White Spaces [40] technology for connectivity over long
range which connects the farmer’s home Internet connection
to IoT base stations on the farm, and a layer based on Wi-Fi
technology which connects smart sensors to the IoT base
stations. Such IoT base stations (gateways) are equivalent to
the edge cloud layer (Figure 3) in our proposed general archi-
tecture. Additionally, the data collected at the IoT stations are
pushed to the cloud layer which employs AI algorithms for
data analysis.

Another usecase is a revolutionary step towards smart crop
health monitoring. A group of researchers19 along with local
farmers are developing a distributed airborne monitoring sys-
tem to detect possible zones of crop damage or nutrient defi-
ciency at a 492-acre farm in in North Carolina, United States.
In order to accommodate rapidly-growing food demands and
increase the quality and quantity of agricultural production,
it is necessary to improve farming management practices and
technological developments in agricultural fields. Accord-
ingly, unlike traditional crop management methods that use
farmers or ground vehicles for assessing crop health status,
this collaborative smart farming project is using autonomous
technology to perform aerial monitoring of agricultural fields
to save time and money, while preventing damage to crops.
In this project, a group of drones which monitor the field
are working in the physical layer, as depicted in Figure 3.
Drones communicate with each other through network layer,
using which they also send collected data and images to land
processing bases (i.e. the edge layer in our proposed archi-
tecture) for initial data cleaning and pre-processing. Finally,
pre-processed data is sent to the cloud layer for storing and
knowledge extraction functionalities.

III. SECURITY & PRIVACY ISSUES
The adoption of sensor based technologies and cloud
supported smart applications in agriculture has unleashed
opportunities for adversaries to orchestrate cyber attacks.
Therefore, it is important to first understand major security
and privacy issues in smart farming domain before discussing
specific cyber attacks. In this section, we will elaborate these
issues in detail followed by attacks in the following section.

A. DATA SECURITY & PRIVACY
In a smart farm, an enormous amount of complex, dynamic
and spatial data gets generated from many heterogeneous

19https://ncatresearch.org/2018/10/30/n-c-at-uses-drones-to-bring-smart-
agriculture-to-the-aggie-farm/

sensors, devices and equipment. Leakage of such informa-
tion either through unauthorized access or by an insider can
cause potential threats. For example, leakage of agriculture
anti-jamming devices information can help an attacker bypass
these security measures, while leakage of soil, crop, and
agriculture purchase information can cause severe economic
losses to farmers, if such information is used by competi-
tors or hostile actors. On a larger scale, aggregating impor-
tant agricultural information on a particular country is also
a potential threat. As such data security and privacy is a
very important requirement and one of the primary objec-
tives to ensure the reliable operation in a smart farming
ecosystem.
Data on the Edge: Smart farms leverage Internet of Things

(IoT), state-of-the-art communications (e.g., 5G), and artifi-
cial intelligence. Such systems mostly require fast response
times, than those of a traditional model in which data is
transmitted to a centralized data center (e.g., cloud) for pro-
cessing and results are returned to a user. As such, the need of
edge cloud is on the rise. Although moving data processing
and analytics to the edge enhances agility and efficiency,
to say the least, it also imposes huge security risks due to
the increased attack surface primarily because of the highly
diverse use of IoT devices which are usually not built with
security in mind. This gives attackers an easy entry point to
the network since remote access to the edge layer, in most
cases, is essential. Additionally, finding the IP addresses
of edge endpoints become an easy task especially when
considering websites like Shodan,20 a search engine for all
IoT connected devices. Beside directly compromising IoT
devices or edge endpoints to gain access to the smart farm
network, an indirect attack to compromise third parties is
also a potential risk. As an example, smart farms often use
third party agronomy analytics to analyze the collected data
which can be used in many research areas such as plant
biology and genetics, agriculture economy, supply forecasts,
and disease predictions. Those parties might be given direct
access to smart farm data on the edge for real-time analytics.
An attacker might phish for such third parties, compromise
their systems and injectmalicious software to redirect the data
sent to external servers for data theft. Such attacks are very
hard to detect, since attackers are using legitimate stolen third
party credentials.

B. AUTHORIZATION & TRUST
In smart farming applications, connected entities including
autonomous tractors, flying drones, on field sensors etc. com-
municate and interact with each other, and issue command
and control operations to provide automated and efficient
experience. Such communication can be direct machine to
machine or via a cloud or edge assisted network which
can support Message Queue Telemetry Transport (MQTT21),

20Shodan. https://www.shodan.io
21MQTT. http://mqtt.org/
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Constrained Application Protocol (CoAP22) or other IoT
communication protocols. In either case, it is essential to
ensure that the messages are sent from a trusted authorized
entity, rather from a malicious adversary. This exchange of
information, like moisture level of soil, information about
crop yield, cost of fertilizer, or sensitive data about the live-
stock like health, current location, breeding decision informa-
tion and other farm related private data sent to the cloud or to
a third-party application must be authorized by the owner of
the field or a concerned party.

Livestock are important part of agriculture, and a big
component of a farmer’s income. Sensors can be embed-
ded in the cattle [41]–[43] which can monitor their health
and can be used to remotely inject medicines or enable
preventive actions from a doctor. Even in case of livestock
purchase, buyer can be given temporary access to the data
of an animal they are interested in, which can help them
analyse it before purchase. As these animals are kept in mon-
itored environments, remotely controlling the temperature or
making adverse conditions in barn can affect the yield of
animals, and can also result in epidemics and widespread
disease.

Over the air (OTA) updates for the equipment’s firmware
must be from a trusted party, a bad software patch received
for a critical agriculture equipment can curtail a farmer from
using it at the needed time of harvesting and planting. Cross
cloud and multi cloud trust models [44], [45] are needed
when entities associated at different cloud providers interact
and access data remotely. In case of a mechanic trying to
diagnose an engine of an autonomous tractor, or a doctor
trying to access data of a cattle located in a private cloud,
trust levels need to be established so as to enable such
access. Several access control models have been proposed for
IoT [46]–[58] like systems, however their feasability in
dynamic smart farming is still to be investigated.

Proper authorization is needed for a farmer to issue a
command, to a smart water sprinkler, or to fetch the latest
readings from a soil moisture sensor. Farm rivalry can exploit
such connectivity to the sensors, and may flood a farmer’s
field, or make it parched. Usually in farms, labor is hired
on a temporary basis mostly at the time of harvesting and
sowing, therefore, temporary access to smart equipment can
be delegated to on field workers for non-critical operations.
It may be the case that a critical operation, like running an
autonomous tractor on the field, or flying a drone over the
field to spray pesticides may need multi level authorization.

C. AUTHENTICATION & SECURE COMMUNICATION
One of the most important aspects of security and privacy in
smart farming is authentication of connected devices. Devices
need to be authenticated first in order to get connected
to various services on a smart farming system. They are
usually low power devices, with limited processing power,
memory, and storage, so legacy public-key infrastruc-

22COAP. https://coap.technology/

ture (PKI) authentication mechanisms cannot be considered
as feasible solutions.

Alternatively, secure lightweight multi-factor authentica-
tion protocols which are offered as a service [13], [59] are
more realistic solutions in a smart farming network environ-
ment. In fact, an intermediary Certifying Authority (CA) can
facilitate the authentication of a connecting device [60]. Such
authentication mechanisms do not consume devices’ limited
resources for authentication processing, but also unautho-
rized devices will be prevented from connecting and access-
ing the network in an efficient way [61]. Moreover, devices
may sometime join or leave different layers of a smart farm-
ing ecosystem. This entails dynamic authenticated mecha-
nisms that apply authentication on demand to ensure that
only legitimate devices are allowed to have access to different
services spanning over different layers.

Providing end to end secure communication in a smart
farming setting requires securing the communication between
devices in a particular layer and also securing the inter-layer
communication [62]. While cryptography-based solutions
prove their effectiveness in securing both intra-layer and
inter-layer communications, employing them on constrained
IoT devices is a big concern. There are, however, limited
attempts to apply lightweight cryptography solutions to a
smart farming ecosystem [14]. Additionally, quantum-based
cryptography for a secure end to end communication for
IoT devices is under active investigation [63] as a futuristic
solution. However, the feasibility of such solutions have not
been evaluated in real world scenarios.

D. COMPLIANCE AND REGULATIONS
Smart farming and precision agriculture raises various legal
issues, which remain partially unanswered. The following are
some of the major issues in this area.

1) CONTRACTS AND AGREEMENTS
A smart farm involves different parties like the farmers,
the cloud service providers, the networking infrastructure
providers, to name a few (See Section II). These differ-
ent parties need to negotiate and agree on various parts of
contracts [12], [64]. These contracts include data privacy,
security and intellectual property protection clauses. Data
protection is essential for the development of smart farms and
is a major part of these contracts. Such contracts between
interested parties are crucial to protect the value and con-
fidentiality of the data as an important asset. Farmers who
use smart farming tools also need to negotiate in advance
finer elements of these contracts. For example, which party
shall be responsible in case data processing and analysis lead
to wrong decisions affecting different downstream tasks in
the pipeline. Another important contractual element example
is the decision involving use of self-driving tractors, which
are subject to the set of obligations applicable to self-driving
cars. In this scenario, strong compensation and limitation of
liability clauses may help the farmers.
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2) DATA SECURITY AND PRIVACY
Farmers who deploy smart infrastructure fear that their data
might be stolen by competitors or be publicly released.
Hence, data security is crucial and agreements with tech-
nology providers should include specific clauses. Although
most smart farming techniques process non-personal data,
linking of such information to a particular personally iden-
tifiable information (PII) poses serious concerns [12], [64].
For example, data of livestock directly referring to their
owner; crops conditions linked to farmers’ personal details.
In this case, privacy clauses should be included to pro-
hibit personal data processing to a certain degree. Further
issues may arise when smart farming equipment, such as
drones or tractors, have the functionality to monitor their
users [12], [64].

3) INTELLECTUAL PROPERTY (IP)
An important question from a compliance perspective is who
owns the data collected on a smart farm. This is specially
important as data privacy laws cannot solve this issue. As per
the current regulatory setup, data itself cannot be protected,
however copyright provisions can be utilized to achieve
high level of safeguards. Most farmers include IP protection
clauses [64] in contracts that they create with smart farming
technology providers [12].

4) REGULATORY
Agriculture and livestock production is a highly regulated
industry. Various countries across the globe have many laws,
regulations, and supervisory authorities [65]–[67]. These
touch upon specific compliance requirements for producing
and selling of products. Such compliance can be achieved
easier by using smart farming technology that help farmers
and regulators track, audit, and inspect every step of the
production pipeline.

5) CYBER INSURANCE
Cyber Insurance allows victims to protect themselves from
various cyber risks. However, cyber insurance policies in
agriculture have lagged in the coverage of cyber incidents
and events. Most of the current available agriculture based
cyber insurances are very ambiguous and limited in their
coverage [64].

IV. SMART FARMING ECOSYSTEM CYBER Attacks
This section elaborates possible cyber attacks in smart farm-
ing ecosystem. We have categorized attacks into four dif-
ferent classes as shown in Figure 4. We have discussed
data specific and network specific attacks orchestrated on
smart farms including IoT based farming sensors. We have
also explored cyber attacks from the supply chain side
to highlight the vulnerabilities as more and more sys-
tems get connected to the internet and generating sensitive
data.

FIGURE 4. Smart farming ecosystem cyber attacks.

A. DATA ATTACKS
1) INSIDER DATA LEAKAGE
Farmers fear leakage of confidential data the most among
other threats as it can be used against them in the commodity
market. An insider (like a disgruntled employee) can leak
such data to intentionally cause harm or sell data for money.
For example, a former engineer at Allen and Hoshall was able
to access the company’s data over a period of two years.23

Data this employee accessed included engineering schematic,
project proposals, and marketing information which had an
estimated value of $500,000.

2) CLOUD DATA LEAKAGE
Smart farming data is very sensitive and can reveal a lot
of confidential agriculture and economic information about
the entire country. Cloud data centers are distributed across
the world and, in some instances, virtual machines might be
placed in data centers located in different countries. Data
might be less secure if it is stored in data centers in other
countries. These countries could place less strict security
requirements on companies. Additionally, their governments
might also intercept or collect that data stored on servers
within their own jurisdictions. For these reasons, countries
have started adding laws for sensitive data localization. For
instance, China has placed a new cybersecurity law24 into
effect in 2017 stating, among other things, that personal data
must be stored on domestic servers. As such, companies
like Microsoft, Google and Amazon started taking steps to
transfer control of Chinese data to Chinese firms.

3) FALSE DATA INJECTION ATTACK
In this attack, an attacker attempts to change/falsify data
that contributes to important real-time decisions, with the

23Department of Justice. https://www.justice.gov/opa/pr/tennessee-man-
sentenced-unauthorized-access-former-employers-networks

24China Internet Security Law. https://en.wikipedia.org/wiki/China_
Internet_Security_Law
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assumption that adversary has the knowledge of the system
and its configuration. For example, injecting false informa-
tion about the soil moisture level will result in over watering
and, in turn, damaging the crops.

4) MISINFORMATION ATTACK
In this attack, the aim is to endanger data integrity. An attacker
may release false data about a smart farm claiming the out-
break of a disease in crops or livestock. Such false data reports
mimic the form of an actual report released by the targeted
smart farm. As a result, it will take a lot of time, effort and
money to prove that the released report is false.

B. NETWORKING AND EQUIPMENT ATTACKS
1) RADIO FREQUENCY (FR) JAMMING ATTACK
In many cases, smart farming equipment rely on radio fre-
quency communication, like cellular or satellite networks.
A smart farming equipment often use global navigation satel-
lite systems (GNSS) to improve efficiency with products
and techniques such as path planning, auto steering, seeding
and spray rates. GNSS is achieved by combining GPS with
real time kinematics (RTK) technology to enhance the pre-
cision of real-time position data. Attackers may jam GNSS
for malicious purpose by deploying many distributed low
power jammers to disrupt GNSS over wide areas and, in turn,
prevent smart farming equipment from functioning properly.

2) MALWARE INJECTION ATTACK
One of the most prevalent threats to smart farming is malware
injection attack [68], where an attacker injects a malware
into a connected smart device. Malware is a very common
threat in large scale systems since, in most cases, it acts and
propagates through the system automatically, hence making
it a very attractive target to attackers. Precision agriculture is
being adoptedwidely, meaning that more farms are connected
to the internet. Typically, most of these farm deployments
use similar software components (e.g., usage of LoRa25 and
ZigBee26). As a result, a malware that infects a particular
smart farm will most likely infect other farms with similar
deployments. The damage caused bymalware comes in many
shapes and types. Malware can steal information about the
consumption of agricultural materials, purchase information
of fruits, vegetables and livestock, data about agricultural
machinery etc. It can also recruit smart devices as part of
a botnet which will be used for committing malicious acts
controlled by an attacker. Further, malware can hinder the
functions of physical smart equipment which, in turn, can
have a devastating effect on a particular crop harvest or farm
area.

3) DENIAL OF SERVICE ATTACK
IoT devices used in smart farming environments can always
be used to launch large scale denial of service (DoS)
attacks [69] similar to what happened in 2016 using Mirai
botnet [70]. In that occasion, an army of dummy CCTVs

25https://lora-alliance.org/about-lorawan
26https://zigbeealliance.org/

was exploited to launch one of the biggest DoS attacks
that happened recently. There are usually a large number of
inter-connected nodes and groups in a farm, and thus, similar
type of attacks are possible in context of smart farming. These
attacks not only can disrupt normal functions of different
modules in an individual farm but also can be leveraged to
interrupt legitimate cyber services in other domains.

4) BOTNET
With IoT everything is capable of getting connected to the
internet. In smart farming ecosystem, there are many IoT
related devices at each architectural layer. These devices
are prone to attacks and can then be controlled by a cen-
tral malicious system. This forms a so called ‘Botnet of
Things’ [71]. A zombie army of infected farm IoT
devices [72] can easily be used to infect many other networks
through different mediums and hence a smart farm may turn
out to be an internet of vulnerabilities for cyber criminals.
Smart farm devices are not built with security as a concern
and even if they do, users usually neglect the basic steps of
setting adequate cybersecurity defense mechanisms.

5) SIDE CHANNEL ATTACK
Attacks which have their roots in gaining information from
how a system is implemented rather than what weakness
exists in the system implementation are called side channel
attacks. Smart farming is one of the IoT use case and hence
it inherits some common IoT vulnerabilities including side
channel attacks [73]. In such attacks, there are different chan-
nels which can be exploited by attackers. In timing channel
attacks, for example, computation time along with cache miss
and cache hit timing patterns are among those attacks vectors
which can be exploited by adversaries. Hardware glitching
in forms of voltage fluctuations and variances in system
clock period during execution tasks are other possible attack
channels. Other channels for launching a successful attack are
power consumption patterns, possible electromagnetic leaks
or even sound and acoustic channels.

C. SUPPLY CHAIN ATTACKS
The entire agriculture ecosystem and the notion of ‘farm
to plate’ involves several entities which work in tandem to
provide quality food to the end consumer in a just-in time
environment. This supply chain system [74] starts from the
farm, which produces raw material that, in turn, is stored and
processed by the food industry. The processed food is packed
and sent to distribution retailer from where the end customer
purchases processed goods. With IoT technology at each
stage of the supply chain, it introduces potential cybersecurity
threats since a security breach in just-in-time distribution
system could also have a serious cascading effects on the
entire supply chain. The massive scale of attacks like Wan-
naCry27 ransomware, and the recent spate of ransomwares

27WannaCry Ransomware. https://www.symantec.com/blogs/threat-
intelligence/wannacry-ransomware-attack
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in cities28 across the US, suggest that even a breach or data
freeze at a single inter-dependent entity will be enough to dis-
rupt the whole chain and possibly the economy of a country.

An attack on the agriculture equipment and fertilizer
provider companies could potentially disable critical con-
nected machinery needed at a prime time. It could manip-
ulate the amount of nutrients in the fertilizers [64] which
could seriously destroy the crops rather than nourishing them.
The smart devices can be infected by malware which are
controlled and commanded remotely. In such a scenario,
large scale attacks can be orchestrated on all the smart farms
utilizing those compromised machinery resulting in massive
disruption in the sector. Needless to say that the suppliers
of such machinery might loose trust and confidence of their
customers. Such smart machinery needs dynamic calibration
to determine the distance at which seeds need to be planted
or the amount of fertilizers to be sprayed based on historical
crop data. This calibration related information is uploaded
in the machine software over-the-air (OTA), which suggests
that deliberate uploading of false information to the machine
software can have larger scale impact.

US Foods29 has more than 250,000 customers which pur-
chase supplies, will be affected badly if US Foods IT infras-
tructure is hit by a ransomware or a cyber attack disrupting
its computer assisted facility and impacting critical processes.
Temperature and conditions under which the produce is trans-
ferred is an important factor to maintain the freshness of
the product. Smart monitors ensure that products are pro-
cessed and packed at appropriate temperatures. Adversaries
can manipulate these sensor readings or issue a command
to change the temperature that could result in inappropriate
temperature conditions for produce, which can impact the
end consumers as well as the entire supply chain. These
attacks are not limited to direct stakeholders, but for example,
contaminated water from a compromised water treatment
facility used in irrigation can destroy the whole crop field.
Even attacks on smart grid due to sudden surge in demand
and grid overloading can result in blackout which in-turn can
spoil the stored produce in large storage houses, inducing
huge losses to the supplier. Blockchain30 based solutions have
been proposed to ensure the provenance of the food products
in the chain, which offers transparency and assure quality of
the food. However, the entire cost to use this system will not
be clear unless widely adopted [75].

Smart farming goes beyond agriculture where livestock
sector is also considered an important part. An attack on this
sector can also have massive disruptions, where a malicious
actor can publish false data about a disease outbreaks or
unapproved geneticmodifications of crops. Similarly, sensors
and smart devices in the buildings where these livestock are
kept can be attacked or altered to change the temperature,

2822 Texas Towns Hit With Ransomware Attack In ’New Front’ Of
Cyberassault. https://www.npr.org/2019/08/20/752695554/23-texas-towns-
hit-with-ransomware-attack-in-new-front-of-cyberassault

29U.S. Foods. https://www.usfoods.com/
30https://www.blockchain.com/

which can put to harm the entire livestock on the farm. Also,
for livestock feed products, if an IT system monitoring the
ingredients of the feed is compromised, it can potentially lead
to wide-spread contamination in livestock which can easily
reach humans as well.

D. OTHER RELEVANT ATTACKS
1) COMPLIANCE AND REGULATION
Food production and farming are a highly regulated industry
with different countries having multiple national agencies
monitoring food production. In the United States, Environ-
ment Protection Agency [65] and the Department of Agricul-
ture [66] enforce various regulations and industry standards.
In the European Union, Department of Agriculture and Rural
Development [67] undertakes this responsibility with similar
authorities in other countries. These federal authorities issue
compliance directives to ensure quality food production.With
the advent of smart farming technology these agencies are
relying more and more on data produced by farm based
sensors.

An adversary attacking a smart farm can specifically inject
false data that will then impact various compliance certifica-
tion processes. This certification process if invalidated, can
impact a nation’s food supply, affect crop price, etc. The
complex smart farming ecosystem, creates a broad attack
surface that needs to be protected to ensure data integrity.

2) CYBER TERRORISM
The increased use of digital interconnected system in agri-

culture sector brings new opportunities for terrorists to attack
places that previously were too remote or difficult to strike.
Cyber terrorism is a relatively low-cost venture with high
payoff potential, making the risks of agro-terrorism too large
to ignore. Therefore, it is important to find solutions that guar-
antee trust and transparency within smart farming concept,
as well as protect critical resources.
3) CLOUD COMPUTING ATTACKS
Cloud is a very diverse, decentralized, heterogeneous and
powerful ecosystem. The enormous amount of distributed
resources make the cloud a hard target. However, with the
introduction of new cloud concepts (e.g., on-demand ser-
vices, auto-scaling, and self provisioning), attackers have
used such resources in their favor and, in turn, cloud has
become one of the most desirable targets to attacker. For
example, with the introduction of auto-scaling in cloud,
a large part of the virtual machines hosted on cloud are simi-
larly configured. If one of the virtual machines is vulnerable,
it is highly likely that all auto-scaled virtual machines are vul-
nerable as well. As such, a malware that infected one virtual
machine can propagate to other virtual machines quickly.

The infected machines can be employed as a part of
global botnets which, consequently, can be used to launch a
large scale distribute DoS (DDoS) attacks enough to hinder
the functionality of cloud. For example, in 2018, a large
scale DDoS attack was launched on github resulting in
a record-breaking sudden traffic increase to 1.35 terabits
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per second. Inevitably, DDoS attacks are becoming more
frequent, more powerful and more sophisticated. A large
scale DDoS attack with an overwhelming number of requests,
packets or messages can deny services to smart farms,
thereby paralyzing the brain of smart farms. Further, DDoS
attacks might not be specifically targeting smart farms’ vir-
tual machines. Even though, an attack might be directed at a
different target, if virtual machines used by smart farms are
on the save physical server, it will naturally block off other’s
traffic as well.

V. EXISTING RESEARCH
Table 1 summarizes state-of-the-art research, challenges and
contributions with respect to security and privacy issues in
smart farming. We have categorized the literature into differ-
ent subsections based on the focus areas they address.

A. CYBER ATTACKS, THREATS AND PROPOSED
SOLUTIONS
Researchers and federal agencies have started gauging the
impact cyber-attacks as more and more farmers and com-
munities are adopting technologies in the farms. The U.S.
Department for Homeland Security released a report [12]
which emphasizes the importance of precision
agriculture (PA) and associated cybersecurity threat and
potential vulnerabilities. The report highlights the confi-
dentiality, integrity, and availability model of information
security in farming. It defines different technologies involved
in PA including in-farm devices, location and remote sensing
technologies, machine learning, etc. It briefly discusses the
impacted groups by the misuse of technologies in farming
including farmers, livestock producers, and also industries
that support or rely on agriculture. This report also discusses
hypothetical threat scenarios on real life examples. Another
promising work [76] highlights the vulnerabilities and risks
due to introduction of technologies in the field of precision
agriculture. This thesis work illustrates data collection and
related empirical study, however falls short of security solu-
tions in the domain.

The work from Jahn [64] discuss implications of using
smart devices in the agriculture sector. The authors make
strong argument about how the lack of a cyber insurance
framework is going to have a big impact on various agribusi-
nesses. They also highlight the fact that a regulatory response
is needed to protect the interests of farmers who adopt the
use of smart devices. Barreto and Amaral [77] use empir-
ical methodology based on the analysis of information and
experiences collected in the Internet Security Alliance,31 the
European Cyber Security Organization32 and the National
Institute of Standards and Technology33 to highlight security
challenges in smart farming. Some major threats discussed
include security and privacy issues, social engineering, denial
of service, cyber-espionage agroterrorism, ransomware etc.

31ISA. https://isalliance.org/
32ECSO. https://ecs-org.eu/
33NIST. https://www.nist.gov/

The research also highlights a security framework to enable
farmers to better understand security implications. However,
the paper is unable to discuss open research issues, and chal-
lenges to secure the environment without evidence of how the
discussed attacks are orchestrated in the domain.

Peer to Peer (P2P) is a network paradigm which has use
cases in smart farming communication. The device authenti-
cation methods in this type of communication, however, rely
heavily on public key infrastructure. Although the system is
trustworthy, it puts unnecessary computation load on resource
constrained smart farm IoT devices participating in a secure
P2P communication. Accordingly, authors in [78] proposed
a lightweight device authentication solution in which session
keys and public keys are combined to expedite the encryp-
tion/decryption tasks. It results in a fast and light-weight
authentication solution which is a good fit for smart farming
communication purposes. Additionally, West [79] introduced
a framework to understand vulnerabilities in emerging tech-
nologies and the use of such technologies in a smart-farming-
specific environment. The framework goal is to quantify the
degree to which the use of smart farming new technologies
are vulnerable to cyber-attacks. It uses the common vul-
nerability scoring system (CVSS) for the threat prediction
model assessment. The work shows the trade-offs between
technologymaturity and adaptation in the smart farming envi-
ronment which can lead to system compromise. The approach
in the paper uses three parameters: basic parameters, temporal
parameters and environmental parameters for constructing
a CVSS score. Basic parameters indicate the intrinsic and
severity of a vulnerability, whereas temporal parameters indi-
cate how a vulnerability might change and affect the system
over time due to technical changes. Environmental parame-
ters reflect the specifications of a vulnerability present in a
smart-farming-specific environment. Although CVSS score
has become a standard in the industry for understanding the
severity of vulnerabilities and prioritizing their patches, it has
some shortcomings. Smart farming is a diverse environment
with many connected devices and systems. CVSS score deals
with individual vulnerabilities and fails to accurately capture
impact of connections within the entire system.

B. BLOCKCHAIN RELATED RESEARCH
Recently, the usefulness of blockchain in domains other
than cryptocurrency and financial transactions has been
acknowledged [93]–[95]. Agriculture and food supply chain
is one of the domains in which blockchain technology has
shown its capabilities. Accordingly, the authors in [81] study
overall implications, challenges and potential of existing
blockchain-based projects in the field. Besides, it critically
reviews maturity of such projects and elaborates on possible
barriers and challenges, which hinder acceptability of such
projects among farmers and existing cyber farming systems.
Lin et al. [80] also focused on the use of blockchain technol-
ogy for food safety. Authors created a system that tracks and
monitors food production cycle, including the processes of
raw materials, cultivation/breeding, processing, transporting,
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TABLE 1. Projects and research addressing cybersecurity in smart farming.
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TABLE 1. (Continued.) Projects and research addressing cybersecurity in smart farming.
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warehousing, and selling. The system also uses various IoT
based sensors to replace manual recording and verification
with sensor based verification.

Other works [82], [84], [96] focused on providing case
studies of using blockchain and smart contracts in smart
farming. Awan et al. [82] proposed a framework based on IoT
and blockchain technology for agriculture product tracking
life cycle. They used smart contracts to eliminate the involve-
ment of middlemen or third-party intermediaries and as such
increase credibility and trust. The authors implemented a
use case based on their proposed framework which included
120 IoT nodes and 20 blockchain producers. Further, they
validated their system based on it’s throughput considering
different block sizes. However, this work has several draw-
backs. Very few related works are included and compari-
son to other works in the literature is lacking. Additionally,
the authors didn’t include much details about the nature of
workload used in their experiments and they failed to add
a baseline benchmark for the validation results for a fair
comparison. Patil et al. [84] proposed a light-weight security
framework for smart greenhouse farms based on blockchain.
Every IoT node can elect cluster head leader which helps
preventing a single point of failure in case an attacker targets
the leader node. Additionally, the authors provided discussion
of the security threats on their proposed framework following
the traditional confidentiality, integrity and availability (CIA)
triad model as well as their corresponding attacks. Although,
this work is interesting, the framework is conceptual with
no implementation or experiments. Further, the paper didn’t
include related work nor a comparison to other proposed
frameworks.

Besides proposing blockchain-based frameworks and
implementations [97], real world use cases of blockchain
in smart farming are discussed in the blockchain research
institute article [83]. In this work, authors explore applica-
tions of blockchain beyond the typical financial use cases
in agriculture. Accordingly, they focused on three classes of
applications: food safety, sustainable agriculture and the local
economy and agriculture finance. The authors accompanied
each class of applications with real world use cases. However,
these use cases are discussed on a very high level aspect with
no implementation details or results.

C. AI AND MACHINE LEARNING ASSISTED WORK
The advent of new age technologies such as artificial intel-
ligence (AI) and machine learning (ML) not only facilitate
the adaptation of advanced analytics in smart farming, but
also create an ecosystem for improving the cybersecurity
of services. Fusion of these technologies enable farmers to
achieve higher average yield and better price control over
their products in highly competitive markets. Design and
implementation of a low cost IoT based security monitoring
system have been proposed by Shabadi and Biradar [85]. The
system focuses on physical layer of smart farming where it
collects data from sensors. This data is sent to a controller
where data is analyzed to make decisions like activating the

actuators for water sprinkler in the farms. The proposed work
is focused more on implementing the basic functionalities of
smart farming than addressing security and privacy issues.
It is very limited to simple threshold based decisions, like,
if the soil temperature is above a certain threshold, then
activate water sprinkler.

Real time security monitoring for a remote farm is another
current application of ML in smart farming. In scenarios
where real time monitoring and notifications are paramount
to farm and cybersecurity, the image(s) detected through a
surveillance system can be processed by open-source com-
puter vision programming supported by AI. For example,
Abuan et al. [86] proposed a neural based face recognition
systemwhich is able to be invariant to changes in illumination
for background and illumination conditions through a neural
network training.

The agricultural and farming industries have been widely
influenced by the disruption of the IoT. However, the impact
of the IoT is limited in countries with less penetration of
mobile internet. The boom of low-power wide-area net-
works (LPWAN) in the last decade, with technologies such as
LoRa or NB-IoT, has mitigated this by providing a relatively
cheap infrastructure that enables low-power and long-range
transmissions. Nonetheless, the benefits that LPWAN tech-
nologies have the disadvantage of low-bandwidth transmis-
sions. Therefore, the integration of edge and fog computing,
moving data analytics and compression near end devices,
is key in order to extend functionality. By integrating AI at the
local network layer, referred as edge AI, authors in [87] pro-
posed a system architecture and implementation that expands
the possibilities of smart agriculture and farming applications
with edge and fog computing using LPWAN technology for
large area coverage. In another research work [88], Support
Vector Machines (SVM) along with Artificial Neural Net-
works (ANN) are used to create an integration platform for
big data analysis for smart farming. Such a platform not only
expedites processing huge amounts of data collected from
farms and livestocks, but also gives smart farming stakehold-
ers the ability to detect and respond against possible cyber
attacks more efficiently.

D. OTHER RELEVANT LITERATURE
Chi et al. [89] present a framework for cybersecurity
approaches in precision agriculture and discussed challenges
of using Wireless Sensor Networks (WSN) in digital virtual
farms. They also present a framework for secure data cap-
ture. Security challenges in agrifood sector has been exten-
sively discussed in [90]. The report provides an overview of
emerging technologies in smart farming. Most smart farms
are data-driven with respect to automating agriculture pro-
cesses, decision making, and predictions. It also raises impor-
tant questions of how important is data security? How risk
assessment is done considering the entire supply chain? Who
should take responsibility and who should be involved? The
report serves to raise awareness addressing the importance of
cybersecurity in agrifood sector.
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FIGURE 5. Open research challenges and future directions for cybersecurity in smart farming.

Authors in [98] provide an overview of cross-section of
cybersecurity in food and agriculture sectors.
They also discuss cyber-terrorism, policies, and plans.
Spaulding and Wolf [99] detail the needs for educating
farmers about various cybersecurity threats. Authors in [100]
show the impact of cyber attacks on smart farming infras-
tructure via simulations using NETA with OMNET++
framework. Huning et al. [101] created a system to enable
privacy preserving crowd sourcing techniques to estimate
different smart farming parameters. Cybersecurity perception
is also changing among farmers and agribusiness owners.
Geil et al. [91] conducted an assessment of cybersecurity
practices in the United States agriculture industry. Insights
from their work reflect that over half of the respondents have
been victims of a computer security incident, demonstrating
that even individuals working in agriculture can be impacted
by cybersecurity incidents. Cyberbiosecurity [92] is a multi-
disciplinary domain consists of cybersecurity, bio-security,
and cyber-physical security. It discusses how current and
emerging information technologies affect the cybersecurity
of large portion of U.S. economy which is based on food
and agriculture (i.e. Bio-economy). As Peccoud et al. [102]
discuss, food and agricultural sectors are immensely diverse
and require advanced technologies and efficiencies that rely
on computer technologies, big data, cloud-based data storage,
and internet accessibility, at the same time are vulnerable to
cybersecurity incidents.

Based on our literature review, it can be emphasised that,
there is a dearth of security related research done in smart
farming domain. There are numerous unanswered important
security questions and open research challenges as discussed
in the following section.

VI. OPEN CHALLENGES AND RESEARCH AREAS
This section discusses open research challenges for improv-
ing security and privacy in smart farming ecosystem, as well

illustrated in Figure 5. These open problems have been
divided into four subsections as follows.

A. ACCESS CONTROL, TRUST & PRIVACY PERSPECTIVE
The multi-layered architecture discussed in section II recog-
nizes possibilities of cyber threat challenges, which needs
to be addressed by extending and adapting current access
control foundational research, as well as developing sophis-
ticated access control solutions to assist dynamic and agile
environments in cyber-physical systems like smart farms.

In-farm and cross farm operations need authorized inter-
action among sensors and labor/farmers working at multiple
farms operating different sets of smart devices. What kind of
operations they can do must be checked, which may require
single level or multiple level access control depending on the
risk factor associated with the operation? For example, con-
sider sowing the field with autonomous tractor as compared
to turning ON an irrigation system during the rainy season.
Delegation and revocation of access rights to operate on a
farm must be automatically performed based on the contract
agreement, for example, in case temporary labor hired during
harvesting season. Such access control requirements need
further investigation to be adopted in such dynamic environ-
ment. The notion of trust can also be developed where labor
who has worked earlier or an equipment borrowed from a
‘known’ old friend may have higher trust level as compared
to machine and manpower hired from co-operative market.
Self-configurable AI assisted smart access control policies
need to be developed in a sharing-dominated CPS domain like
smart farming.

Cyber physical systems introduce the notion of virtual
objects (which can be created in cloud or edge environment)
corresponding to real physical sensors. An important chal-
lenge here is the location of cyber entities created as a part
of connection with cloud or edge environments, for example,

34578 VOLUME 8, 2020



M. Gupta et al.: Security and Privacy in Smart Farming: Challenges and Opportunities

AWS device shadows34 or Microsoft Azure device twins.35

Research needs to determine: a) how cyber entity will move
from one cloud (or edge) to another if the corresponding
device is borrowed from one farmer to another? b) how the
control of virtual entities will be delegated to the lending
farmer, whether both the farmers need to use same applica-
tion? c) how the applications will allow to delegate access for
machine operation? d) Can the virtual objects or equipment
across farms communicate with each other, whether at the
physical level or using the virtual entities? If it is the virtual
entity across different accounts in the same cloud provider,
how such interaction will take place? In case it is across dif-
ferent cloud providers, how cross cloud and federated cloud
environments will ensure such trust levels? Suppose in case a
farmer has borrowed an equipment from a friend farmer, will
the original owner be able to have access to it, or the access
will be completely revoked? Is it possible to control a device
through different remote clouds? All are relevant questions
in smart farming domain. Further, how to establish trust
mechanisms among different cloud service providers which
the farmer is using for services and alerts? Manufacturer of
the device may hold digital twin [103] and the cloud used
by farmers will get data from on-field sensor and the cloud
provider via pre-defined and signed negotiations. Such nego-
tiations can also define what kind of data will be shared with
required permissions of the owner farmer. Another important
question is, how to establish trust between physical sensor
objects? One approach is sensors at the same farm trust each
other more for the shared information as compared to sensors
across different farms. IoT and CPS specific cross cloud
access controls and related security models are still in infancy
stage and need more attention.

Livestock and animals also have sensors embedded, which
require appropriate authorized access. However, current liter-
ature does not provide strong access control mechanisms that
can restrict such operations and secure critical data sharing
from cattle and livestock at the farm. These wearable and
healthmonitoring devices are attached to livestock and collect
sensitive data, which can be used by adversaries to control
the animal or even effect the sale/purchase of a cattle, for
example, having the information about which cow is having
low milk production. Efficient access controls [104]–[106]
are needed to safeguard such sensitive data in cloud, which
needs more research considering the spate of breaches heard
every now and then. Usually in case of wearable IoT devices,
a human which has the device controls what kind of data
he/she wants to be shared. However, it is not in case of live-
stock which has a master (like the owner of the farm or care-
taker) to decide control. Also, as a cattle is sold/purchased and
moves from one owner to another, relevant data sharing secu-
rity policies need to be specified and will require automat-
ically configured information sharing. Studies [107], [108]

34https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-
shadows.html

35https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-
device-twins

have shown vulnerabilities in human used fitness devices,
however, such studies and research are still an open challenge
in case of livestock devices.

Since data is collected from smart devices spread across
farms, different applications require to access to this data.
Consequentially, it is important to limit the sharing of data
across applications and across nearby friend farmers, who
may also get some value or receive alerts for their farms.
How and when to share such information requires adaptive
security policies to control and supervise data transferred
by sensors to the cloud platform. Further, if data is sharing
across multi cloud systems, cross cloud trust also needs to
be addressed. Appropriate attribute based fine grained access
controls [109], [110] and privacy preserving schemes need to
be deployed to ensure confidentiality of the data. Evidently,
farmers must decide the level and type of data sharing needed
to ensure the privacy of critical information.

B. DATA PERSPECTIVE
The most noticeable feature of smart farming is its com-
munication ability between the smart devices, resulting in
an unprecedented amount of generated data [7], [111]. This
provides many challenges as discussed in section III and open
doors for several research opportunities. Machine learning is
an attractive solution for processing big data, and implement-
ing effective security solutions.

Insider data leakage detection has always been a daunting
task as users already have legitimate access to the system,
making it hard to detect and predict such attacks. Several
research works have been conducted on insider data
leakage [22], [112], [113]; however, none has been targeting
smart farming settings. Further investigation is needed to
understand the possibility of adopting insider data leakage
defense mechanisms into smart farming and whether unique
characteristics of smart farming can help to improve these
mechanisms.

Smart farms are highly connected systems, which allow
malware to easily propagate through the network infecting
all interconnected devices. An interesting question is how
to detect malware in smart farming IoT environment, espe-
cially considering all heterogeneous devices in place. For
instance, a malware detection technique that works against
a malware that infects smart farming equipment might not
work against malware that infects edge or cloud systems
since the malware’s end goal is different. Many AI assisted
malware detection techniques [114]–[120] are proposed and
used in practice; however, there are no smart-farming-specific
malware detection techniques that consider the context and
environment in which smart farms reside.

Smart farms generate diverse and vast amount of unstruc-
tured data. It is almost impossible for one party to analyze
and make use of the entire datasets. For this reason, threat
information sharing is a viable approach for data security.
For instance, each smart farm can employ a malware detec-
tion technique; however, it is guaranteed that none of these
employed techniques is comprehensive enough to catch all
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types of malware. Information sharing between smart farms
can prove very useful. It can be used as an asset to share
threat information about attack patterns or malware that was
detected by collaborating smart farms. In a similar case, if a
deployed detection technique in a farm detected supplied
water with high toxin content, it is relevant to share that
information with nearby farms who may also be impacted by
similar issue. This can save analysis cost and money for every
participating smart farm as it prevents doing work that some-
one else already did before. What kind of data, meta-data or
analysis can be shared remains an open question and what
kind of threat information sharing process can be used remain
an open question for resource constrained farmers.

Smart farming is an emerging field, so it is highly likely
to encounter zero-day attacks which have not been detected
before. Anomaly detection [121]–[125] is a very appeal-
ing solution against such attacks. Anomaly detection tech-
niques look for any abnormal behavior that deviates from the
pre-established database of normal behavior. These normal
behaviour profiles are constructed based on collection of
historical observations and patterns. Building smart farms
behavior profiles is a challenging task since their behaviors
are so dynamic in nature. External factors are a major reason
for this dynamism. For example, less irrigation is needed
during a rainy weather than dry weather which will cause a
different behavior for irrigation systems. Can weather fore-
cast information be used as an indication of such change
of behavior? What kind of data contribute to building smart
farms behavior profiles?Do some data fieldsweighmore than
others? These are all open research questions that need to be
investigated.

Detection mechanisms are used to detect faulty and com-
promised sensors by monitoring the data sent for any tam-
pered or abnormal values. Employing a simple threshold
based mechanism can easily be bypassed by an attacker,
so in most cases, more sophisticated machine learning based
mechanisms need to be deployed. However, smart attackers
can still bypass these models by (1) exploiting the sensors and
a little tweaking of data sent by these sensors just to lead the
machine learning model in place to misclassify/mispredict
the outcome (such attack is called adversarial machine learn-
ing attack), and (2) poisoning the model during training phase
by injecting bad data into the model’s training database, and
in turn get it to learn something it shouldn’t. Some research
addressed mitigation against adversarial attacks; however,
it is not clear whether these technologies can be adopted to
smart farming domain which is very dominant on changing
environment conditions.

Another open research challenge is to create various
artificial intelligence systems that collect and parse Cyber
Threat Intelligence (CTI36) about smart devices, software,
cloud systems etc. used in the smart farming ecosystem.
These systems have been developed to collect CTI in other

36https://www.cisecurity.org/blog/what-is-cyber-threat-intelligence/

areas [126]–[129] and need to be extended to ensure coverage
of various smart farming devices, equipment and software.

C. NETWORK PERSPECTIVE
Cybersecurity threats to smart farming and its devices include
a diverse range of security risks due to certain characteristics
of the underlying networking and communication technolo-
gies which are used in the domain.

First, both virtual and physical communication environ-
ments get connected. Many IoT devices in a smart farm
system are capable of functioning on the data they receive
from their respective environments which shortens the dis-
tance between virtual and physical systems.While convenient
for the users, it allows cyber threats to convert to physical
consequences more quickly, thereby having a bigger impact.
Second, devices and layers involved in a smart farm sys-
tem create a complex communication environment. Hyper
connected farming environments exist due to the growing
availability and diversity of IoT devices. ‘Complex’ in this
context means that large number of devices are working in a
single smart farm environment such that dynamic interactions
between them are possible. This complexity expands the
capabilities of an environment, but at the cost of awider attack
surface.

Smart farming like other emerging technologies is embrac-
ing new networking paradigms to tackle today’s sophisticated
attacks. Software defined network (SDN) [130]–[132] is one
such promising networking revolution. Through decoupling
control plane from data plane and giving credit to network
programmable, it offers interesting technical capabilities to
network providers. This causes an intense adaption of SDN in
almost every fields of networking, from data center networks
to WANs, wireless, 5G and recently IoT. Using SDN in smart
farm networking is attracting to both academia and industry
for certain reasons. SDN supports both physical and virtual
networking scenarios very well. It also offers a reliable way
of practicing networking in highly diverse and naturally het-
erogeneous smart farms networking environment. Moreover,
using SDN, smart farms are able to form a holistic view
of all the connected devices along with how they interact
in a near real time manner. Such a holistic view not only
improves agility, scalability, and manageability of smart farm
networking but also empowers a large smart farm network
to enforce robust security counter measure against possible
sophisticated cyber attacks.

It is important to research further the adaptability of SDN
and other 5G related next generation communication tech-
nologies in smart farming and precision agriculture domain.
SDN can enable smart farms to get the most benefit out of
complex machine learning and AI algorithms to automate
network management of large number of sensors, wireless
andwired networks used in a smart farming ecosystem. It also
facilitates implementing advanced, cross-layer network secu-
rity solutions which are very time and resource consuming,
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if not impossible, otherwise. Finally, SDN expedites edge net-
working and hence cloud-based security-as-a-service deliv-
ery model becomes a more approachable solution in large
smart farming deployments.

D. COMPLIANCE AND SUPPLY CHAIN PERSPECTIVE
With the ubiquitous use of sensors, automated drones,
blockchain, artificial intelligence integration, different agri-
cultural businesses are falling back on compliance, regulation
and cyber insurance to protect themselves [64]. With the
development of targeted malware and other cyber threats,
the entire food supply chain is at risk [12], [64]. A hostile
actor specifically interested in disrupting the supply chain can
target various organizations and companies that supply raw
material to farms or process food for the end user. A potential
solution to this problem is to develop industry standards
that enable trust between various raw material suppliers and
downstream food processors [64].

The development of these standards enforced by national
governments through regulation, has been slow. One example
of such a shortcoming, is the existence of a few cybersecu-
rity standards for the many smart devices used in the food
supply chain. Various legislation are being introduced to
set ‘minimal cybersecurity operational standards for internet
connected devices’. In specific cases where various govern-
ments do not wish to regulate these interactions, it is up
to various agriculture businesses to protect themselves by
asking their supply chain to ‘self-regulate’ cybersecurity best
practices [64]. Such developments can be pushed through
market demands, competitive pressure, etc.

The food supply chain also lacks robust cyber insurance
policies. With the constant development of smart applica-
tions, AI, smart farming equipment, etc. cyber insurance
providers are unable to predict and quantify various cyber
risks involved in these systems. Specific research needs to
be done so as to develop standard legal jargon and metrics
to quantify cyber risk in smart farming. These will help cre-
ate robust cyber insurance markets for precision agriculture.
Various systems [133]–[136] also need to be built to make it
easier for the end users to understand and parse these com-
plex legal documents, cyber insurance policies, agreements,
contracts, etc. Research on these open challenges will help
wide adoption of precision agriculture technologies.

VII. CONCLUSION
The proliferation of smart devices with communication and
sensing capabilities have unleashed plethora of user services,
and at the same time made tasks more convenient and effi-
cient for humans. However, wide adoption of such internet
connected devices and data driven applications across various
domains have raised security and privacy issues, making
these systems vulnerable to cyber-attacks. This paper dis-
cusses such cybersecurity challenges in smart farming and
elaborates open research questions. The paper first outlines
a multi-layer smart farming architecture illustrating different
entities pertinent to real time use-cases supported by edge

and cloud environments. Based on the architecture, the paper
outlines security and privacy issues and highlights different
attacks scenarios in smart farms as well as scenarios affecting
the entire food supply chain. Thereafter, this article sur-
veys the state-of-the-art research and acknowledges impor-
tant works related to cybersecurity in the domain. Finally,
the paper illustrates several open challenges and research
problems pertinent to security and privacy aspects in preci-
sion agriculture.We envision this paper will simulate research
to solve platitude of security and data privacy issues in fast
growing and economically important smart farming sector.
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