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ABSTRACT In the practice of cloud manufacturing, there still exist some major challenges, including:
1) cloud based big data analytics and decision-making cannot meet the requirements of many latency-
sensitive applications on shop floors; 2) existing manufacturing systems lack enough reconfigurability,
openness and evolvability to deal with shop-floor disturbances and market changes; and 3) big data from
shop-floors and the Internet has not been effectively utilized to guide the optimization and upgrade of
manufacturing systems. This paper proposes an open evolutionary architecture of the intelligent cloud
manufacturing system with collaborative edge and cloud processing. Hierarchical gateways connecting and
managing shop-floor things at the ‘‘edge’’ side are introduced to support latency-sensitive applications for
real-time responses. Big data processed both at the gateways and in the cloudwill be used to guide continuous
improvement and evolution of edge-cloud systems for better performance. As software tools are becoming
dominant as the ‘‘brain’’ of manufacturing control and decision-making, this paper also proposes a new
mode - ‘‘AI-Mfg-Ops’’ (AI enabled Manufacturing Operations) with a supporting software defined frame-
work, which can promote fast operation and upgrading of cloud manufacturing systems with smart
monitoring-analysis-planning-execution in a closed loop. This research can contribute to the rapid response
and efficient operation of cloud manufacturing systems.

INDEX TERMS Cloud manufacturing, big data, edge-cloud collaboration, software-defined architecture,
Internet of Things.

I. INTRODUCTION
With the development of tiny sensors towards smaller-size,
lower-cost, lower power consumption and higher-precision,
efforts have been made in developing and applying a large
variety of smart sensors, devices and facilities in the manu-
facturing industry to build what is termed as smart factories.
Those smart objects or assets with embedded identification
(ID), sensing, and actuation capabilities are usually con-
nected using the Internet of Things (IoT) [1] and 5G technolo-
gies [2], and seamlessly integrated into smart manufacturing
platforms, like CloudManufacturing (CMfg) systems [3] and
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Industrial IoT [4]. While companies reported on substantial
tangible and intangible benefits, they have accumulated a
great deal of data collected on a real-time basis from shop-
floors or markets, social networks, etc. This calls for better
utilization of such big data for the manufacturing industry to
gain further benefits through business analytics and artificial
intelligence. On the other hand, CMfg as a new service
oriented manufacturing paradigm enables the efficient man-
agement of an extremely large shared pool of configurable
equipment, networking and computing resources (e.g., net-
works, servers, storage, and services) that can be rapidly
provisioned and released [3], and thus can provide highly
elastic and powerful capability to handle manufacturing big
data. Furthermore, after some knowledge or insights are
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mined from big data, appropriate approaches to rapidly take
corresponding actions should be explored to increase the
productivity or reduce losses.

However, there still exist some major challenges in the
practice of CMfg [3] or industrial IoT [1], [4]:

1) Acquiring real-time data about the factory is a must
for data analytics and taking actions. To make the shop-
floor transparent and visualized, tiny electronics (sensors in
particular) are being embedded into machines and materials
and networked, leading to a generation of huge and diverse
volumes of data. Uploading Zettabytes of future raw man-
ufacturing shop-floor data (without proper data cleaning and
combination at different levels) to the remote cloud can cause
serious network congestion and hamper the overall network
services quality,

2) Powerful cloud storage and computing capability can
support big data analytics and optimal decision-making for
manufacturing applications with multi-dimensional big data.
However, data communication (between devices and the
cloud), synchronization and computation would take a lot of
time, which could not meet the requirements of time-sensitive
applications on the shop floor,

3) Big data from the shop-floor devices and the Internet
has not been effectively utilized to guide the continuous
optimization and upgrade of the manufacturing system, or at
least the collaboration and evolution of components in edge-
cloud based manufacturing systems.

Specifically, product quality, energy conservation, highly
customized and personalized needs, and right time windows
for highly volatile global markets define the competitiveness
of manufacturers. As shown in Fig. 1, these require the big
data collected to be mined to reveal knowledge and insights
on: (1) Disturbances: How to intelligently respond to various
disturbances? (2) Energy intensive operations: How to extract
energy consumption patterns for energy saving processing?
(3) Unbalanced assembly lines: How tomake effective sched-
ules in highly dynamic environment? (4) Defective prod-
ucts: How to identify and control influencing parameters to
improve product quality?

4) As for taking actions according to big data analytics
enriched decision-making, the manufacturing system lacks
reconfigurability, openness and evolvability in terms of struc-
ture and parameters, thus restricting the plug-and-play of new
resources and the rapid system reconfiguration and optimiza-
tion, to effectively cope with internal disturbances and exter-
nal changes. IoT actuators will make the shop-floor more
controllable in real-time, but this is not enough for the cases
when the reconfiguration of the system is badly needed for
the optimal control. Therefore, the manufacturing system that
can be changed rapidly to realize fast responses is needed to
deal with shop floor disturbances and market changes.

To address these challenges, the core technologies for
smart factories that are robust, adaptive and proactive to
handle internal and external disturbances should be explored.

The rest of this paper is organized as follows: after review-
ing related work in Section II, Sections III and IV present

an open and evolutionary edge-cloud collaboration architec-
ture of intelligent CMfg system (iCMfg) and a new mode -
big data analytics-enriched smart operations and upgrading,
to improve the capability of CMfg for real-time responses and
efficient operation and upgrading. Section V presents a real
application use case of the proposed architecture. Section VI
discusses related challenges which indicate future research
directions. Section VII concludes the paper with remarks on
future potential of the proposed approach.

II. RELATED WORK
A. MANUFACTURING IOT
Huang et al. [5] reviewed the developments in smart man-
ufacturing from late 1990s since the pioneering work at
AutoID Labs at MIT and University of Cambridge. During
that time, key efforts were made in developing and applying
RFID-enabled manufacturing solutions to fill in the gap
of collecting real-time shop-floor data to feed computer-
integrated manufacturing systems. RFID and WSN (wireless
sensor network) are widely adopted in IoT for object detect-
ing and tracking. RFID enables automated identification and
tracking of tags attached to manufacturing objects (indirect
tracking of the physical movement of the objects). Smart
objects and gateways technologies have been developed
mainly with RFID devices to collect real-time data related
to manufacturing resources including human, machine and
materials [6]. WSNs are used to sense the manufacturing
environment and status of objects. Currently, the density of
sensing and actuation coverage is still at early stages of
development and much more IoT devices will be deployed.
Adaptive production planning and scheduling systems have
been developed with new decision models to take real-time
data into consideration [5]. Yang et al. [7] proposed a hyper-
connection model of product design and manufacturing for
customization and personalization in the IoT-enabled cloud
manufacturing environment. More recently, Yang et al. [8]
provided an overview of key issues in IoT-enabled manufac-
turing, and discussed some potential applications.

The adoption of IoT with pervasive sensing abilities in
manufacturing, transforming the physical entities and oper-
ators into ‘‘cyber-ones’’, will give rise to the generation of
industrial Big Data [9]. However, big data which contains
useful information and knowledge and can facilitate and
enrich various smart manufacturing decisions, has not been
well utilized before [8]. IoT and big data can be used to
facilitate optimal selection of dynamic services in the man-
ufacturing clouds [10]. Marjani et al. [11] reviewed big IoT
data analytics from architecture, opportunities and open chal-
lenges. The success or failure of manufacturing IoT depends
on Big Data, which is expected to reveal valuable insights for
industries.

B. CLOUD BASED MANUFACTURING PLATFORM
Cloud computing plays a fundamental role in handling
big data with powerful, on-demand elastic storage, net-
work and computing capability. The potential of cloud
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FIGURE 1. Motivating scenarios in Computers, Communication and Consumer electronic (3C) manufacturing.

computing in manufacturing was first explored under
the name of CMfg [3]. Wang et al. [12] focused
on symbiotic human-robot collaborative assembly and
sustainable manufacturing adaptive services with cloud
architectures for enterprises. Lee et al. [13] proposed cyber-
physical systems for future maintenance and service inno-
vation under big data environment. Mourtzis et al. [14] put
forward a cloud-based approach for condition-based preven-
tive maintenance of machine tools, providing a near real-time
reporting service onmachine remaining operating time, based
on shop floor sensor monitoring.

Under the umbrella of CMfg, numerous research results
have been published since its first appearance [3]. Early
projects in China were exploring the potential of cloud com-
puting in manufacturing [3], [15]. A generic architecture
of CMfg consists of five layers: physical resource layer,
virtual resource layer, core service layer, application inter-
face layer and application layer [3]. Considering the goals,
uncertainties and stakeholders’ preferences to incorporate
big data analytics in manufacturing systems, a goal-oriented
modelling and fuzzy logic-based approach, was proposed to
reason and select suitable big data solution architecture [35].
Even though the cloud has powerful computing and storage
capabilities for big data analytics, the cloud architecture is
not ready to support the reliable real-time or near real-time
response of shop-floor applications (such as the control of
machine tools and industrial robots) at the ‘‘edge’’ of theman-
ufacturing system, as the data communication between edge
things and the cloud as well as big data collection, cleaning,
combination, synchronization and processing would be time
consuming.

Fog/edge computing [16], [17] close to the end things
can extend, strengthen and complement the CMfg with the

capabilities of low latency, location awareness, mobility sup-
port and real time analytics. Thus efficient collaborative
edge cloud processing approaches in the CMfg should be
explored to best deliver various services. More powerful AI
chips are being developed in a rapid pace, which can greatly
accelerate such process near the ‘‘edge’’. Overall, edge-cloud
architecture that supports collaborative optimal utilization of
edge and cloud computing resources with the optimal effi-
ciency should be designed to provide various manufacturing
services.

C. SOFTWARE DEFINED NETWORK/MANUFACTURING
The primary goal of Software-defined networking (SDN) is
to increase the flexibility of networking. SDN allows network
administrators to manage network services through abstrac-
tion of higher-level functionality [18]. This is achieved by
decoupling the system that makes decisions about where
traffic is sent (the control plane) from the underlying systems
that forward traffic to the selected destination (the data plane).
Wan et al. [19] proposed a new concept for industrial envi-
ronments by introducing software defined Industrial IoT, in
order to make the network more flexible. Nayak et al. [20]
proposed a software defined system architecture for dynam-
ically configuring the underlying infrastructure for a man-
ufacturing system. These work would be a good basis
for future smart manufacturing. However, gateways (edge)
near shop-floor things and edge-cloud collaboration is not
considered which can support the evolution of the CMfg
system to be more efficient, responsive and robust. Big
data and AI should be introduced to a new reconfigurable
architecture for better decisions on control plane and data
plane.
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III. ARCHITECTURE OF SMART CLOUD FACTORY
We propose an open evolutionary architecture of intelligent
CMfg system with collaborative edge and cloud processing
(Fig. 2) to deal with the above key problems. The vertical
dimension shows five layers of SMART infrastructure. The
horizontal dimensions show the normal smart factory per-
spective [5]–[7] (left side) and the aspect of closed loop of
system optimization and evolution with collaborative edge
and cloud processing (right side).

We will discuss the architecture from the left side - smart
cloud factory perspective.

A. PLUG-AND-PLAY CYBER-PHYSICAL MANUFACTURING
SYSTEM
The proposed architecture (iCMfg) should support flexible
re-configuration of smart devices (objects and assets, such as
smart pallets, grippers, fixtures, feeders, and robotic mech-
anisms) involved in a typical workcell shown in Fig. 2.
Sect. IV will present how to achieve this from a software
defined perspective. The iCMfg standardizes, synchronizes,
and manages devices and events. The iCMfg should be
device-independent, scalable, reconfigurable, and with plug-
and-play interoperability to connect and accommodate vari-
ous smart objects/assets.

1) SMART MANUFACTURING ASSETS AND OBJECTS
Various heterogeneous manufacturing resources can be
encapsulated into smart objects/assets [5]–[7] to support
assembly automation. Two types of smart manufacturing
objects will be generated in this encapsulation procedure:
active and passive smart manufacturing objects which can
execute the manufacturing logic and events automatically.
Active smart manufacturing objects carrying RFID readers
are able to detect the passive smart manufacturing objects.
To improve resource effectiveness and cope with order vari-
ety, manufacturing resources should be easily reconfigured
within a workcell for new orders adapting to physical and
logical relationships.

2) ANALYTICS-ENRICHED SMART GATEWAYS
The aim of the gateways [6], [7] is to facilitate coordi-
nation and interoperation among different levels of assets
via establishing hybrid management network and protocol
convertors, and realize operation synchronization through
handling big data collected from assets with high fre-
quency. The gateway is designed to support freely create
upward and downward hierarchy to realizemulti-dimensional
cooperation (three types of smart Gateways for workcell,
workshop, and enterprise levels). With built-in data analytic
algorithms,models and communication rules, smart gateways
are capable of executing tasks (e.g., handling real-time data)
and assigning tasks collaboratively. These gateways can be
equipped with powerful GPUs or AI chips to conduct very
fast pipeline processing of data. This hierarchical or het-
erarchical gateways with built-in models and coordination

mechanisms can be configured dynamically by commands
from the cloud big data analytics for better performance. New
manufacturing things can be integrated into gateways in a
plug-and-play manner. The gateways (edge) can evolve col-
laboratively with the cloud processing to better provide edge
intelligence [21].

The gateways can be 5G base stations connected through
the 5G wireless communication technologies. 5G is the fifth-
generation wireless technology for digital cellular networks
that incorporate new technologies such as SDN/ VNF, mil-
limeter wave communication, massive MIMO, mobile edge
computing, etc. [2], [22]. It is predicted that the 5G system
should be able to deliver communication services with signif-
icantly improved capabilities (10-100 times) in throughput,
speed, latency, reliability and security, and to support three
main uses: enhanced mobile broadband, massive machine
type communications, and ultra-reliable low latency commu-
nications [23].

The ubiquitous operation system (UOS) refers to the soft-
ware system that operates on heterogeneous hardware and
virtualizes their functions for unified resource/task manage-
ment and usage [24]. We use the UOS in iCMfg to denote
the software part of the cyber-physical manufacturing sys-
tem: (1) The UOS can virtualize, connect and manage var-
ious manufacturing things so as to achieve a scalable and
reconfigurable applications. Manufacturing resources can be
added or removed for different orders at hierarchical levels
of workcell, workshop and enterprise without affecting each
other; (2) Coordination mechanisms and protocols converters
can be designed and developed to coordinate, synchronize,
and control smart assets and objects; and (3) AData Analytics
Service with suitable models to make full use of the vast
sensor data should support real-time synchronization and
management. Those models and coordination mechanisms
can be reconfigured or upgraded for better performance in
iCMfg. For example, a manufacturing cell, an efficient group-
ing of the resources required to manufacture a product, must
be ‘‘smart’’ enough to produce a wide variety of orders of
fluctuating volumes, with the UOS support. The UOS will
receive the results from the cloud big data analytics and drive
the interconnected things and network in an efficient and
effective way to cooperate with the iCMfg cloud platform,
for example to reconfigure the sensors or machine equip-
ment or network for new product orders.

B. BIG DATA ANALYTICS KERNEL
The comprehensive big data (from multiple dimensions) can
be collected from the cyber-physical manufacturing system
below by IoT devices or from the internet, such as social
networks or e-commerce platforms, and stored in the cloud.
Big Data analytics kernel will mine the big data offline to
extract information or knowledge for different levels of deci-
sion making, for example supporting the efficient edge cloud
collaboration towards lean manufacturing. Basic approaches
for big data analytics include MapReduce, machine learning,
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FIGURE 2. Edge-cloud collaborative iCMfg Architecture.

reinforcement learning, graph analytics, stream processing,
and SQL online analytical processing [25].

Big data and this kernel service can be utilized to mine
knowledge or insights about trends (predictive maintenance),
bottlenecks, and how to set the parameters, processing algo-
rithms/rules or coordination mechanisms of gateways and the
cloud for data processing.

C. VR/AR-BASED FACILITIES FOR TVT
TVT represents Traceability, Visibility and Trackability. Ini-
tial implementations and explorations of smartmanufacturing
have demonstrated the great potential of data transparen-
cies and traceability withinmanufacturing environments [26].
Such real-time traceability and visibility can substantially
reduce the complexity and uncertainties of manufacturing
systems from NP-hard to a level that can be easily addressed
locally and globally.

Virtual Reality/Augmented Reality (VR/AR) Facilities for
TVT can be dashboards for shop-floor operators and super-
visors, and control towers for enterprise-wide and supply
chain TVT. Basic VR model can be embedded in visualiza-
tion and traceability facilities, to vividly present real-time
status, trends, statistical information, etc. This VR model
can be further enhanced into AR model. Then smart gate-
ways or wearables should be integrated with AR/VR facil-
ities to achieve the interactivity and real-time behaviors for
shop-floor workers. AR/VR models can also be fully inte-
grated into iCMfg platform for uses in smart manufacturing
services.

D. ANALYTICS-ENRICHED SMART MANUFACTURING
SERVICES
Just like e-banking and mobile banking services have
reshaped the banking services and businesses, smart
manufacturing services deployed in the cloud will gradually
change the way that shop-floor operations and decisions
are made, executed and monitored. Operators, supervisors
and managers of all levels are able to use their mobile and
desktop devices to carry out manufacturing decisions related
to plans and operations, energy consumption, product and
service quality, manufacturing asset maintenance and man-
agement. A suite of cloud manufacturing services enriched
with business analytics for typical manufacturing decisions
and operations should be provided, such as:

(1) Analytics-Enriched Adaptive Manufacturing Syn-
chronization - A radical shift is enabled by real-time vis-
ibility and traceability from solely focusing on punctual-
ity of planning and scheduling to simultaneity to maximize
the manufacturing performance. (2) Analytics-Enriched
Multi-Level Energy-Efficient Manufacturing - For energy
intensive operations and processes, sensors are deployed to
capture energy consumptions. A series of data analytics can
be conducted to identify energy consumption patterns for
scheduling of energy saving as well as diagnosis of work-
ing conditions. (3) Multidimensional Analytics for Quality
Control - In addition to backward tracing of quality problems
and forward tracking of preventive actions, multidimensional
real-time data analytics enables to build a model between
key quality metrics and process/operational parameters for
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proactive and precise quality control. When there are defec-
tive products found, multidimensional big data analytics can
be used to find the failure roots of defective products or to pre-
dict the quality in advance. (4) iCMfg SolutionMarketplace
- All hardware devices, desktop services and mobile apps are
deployed in the iCMfg market for companies to adopt/adapt
according to their specific needs. Themarketplace will aggre-
gate the developers and users to form a prosperous manu-
facturing service ecosystem. The relevant players including
cloud vendor, service/apps provider, marketplace operator
and end users can get benefits from the ecosystem.

E. COLLABORATIVE THING-EDGE-CLOUD PROCESSING
The cloud with an extremely large pool of configurable
storage, networking and computing resources can perform
relatively centralized computation intensive tasks, such as
long-term global data mining, however, the cloud comput-
ing paradigm often cannot meet the stringent requirements
of latency, security and privacy sensitive, or geo-distributed
industrial applications, due to frequently unpredictable net-
work bandwidth, latency or reliability, especially in a mobile
environment. On the other hand, the growing amount of data
generated by end devices and systems on the outer edge of
pervasive networks often can become impractical or resource
prohibitive to transport over networks to remote clouds.

Therefore, decentralized and autonomous decision making
on the end things or edge computing nodes is an alternative
without relying only on persistent and resilient connections
to the cloud. However, even in industrial applications, their
demands on latency, reliability, mobility, etc., are diverse,
therefore, proper allocation mechanisms and algorithms of
computing, storage, and caching tasks between the cloud and
the edge nodes should be explored. The edge caching can be
of great help to distribute large amounts of data from the cloud
center to the edge nodes, to reduce latency and to alleviate
traffic redundancy and in-network burden [27]. The offload-
ing of computation intensive and data intensive tasks from the
manufacturing things with constraint resources to the edge
nodes or from the edge nodes to the cloud is an efficient
approach to meeting the low latency demand of innovative
manufacturing applications [28]. The SDN that decouples the
control plane from the data plane can increase the flexibility
of networking [29]. The SDN allows network administrators
to manage network services through programming at the
control plane, to realize the monitoring-analysis-planning-
execution closed control loop for industrial communication
requiring different QoS [29]. The machine-edge-cloud col-
laborations requires five types of communications as shown
in Fig. 3 (cloud-edge, edge-machine, edge-edge, SDN-edge,
machine-machine) to promote the efficient collaboration on
computing, communication and storage tasks.

Overall, the architecture can 1) realize autonomous real-
time shop floor data collection and coordination in a
plug-and-play manner, gaining intelligent decisions through
local data and big data analytics, and establishing a cloud
marketplace for picking customized solutions with great

FIGURE 3. Device-Edge-Cloud Collaborative Processing.

accessibility and flexibility; 2) create a new approach for
developing the dashboard with ability to find backward
reasons of problems, display real-time status, and predict
future risks through virtual reality technology; 3) monitor
and control quality issues, energy intensive operations and
manufacturing planning and scheduling via interactive big
data analytics; and 4) provide an edge-cloud collaborative
processing approach for different needs of processing speeds
and working scope.

IV. BIG DATA ANALYTICS-ENRICHED SMART
OPERATIONS AND UPGRADING - AI-CMFG-OPS
This section describes a new dimension of future
CMfg or smart manufacturing from a data driven software
defined perspective. Big data collected through the cyber-
physical manufacturing system can be mined and analyzed
to get knowledge or insights for system optimization, opera-
tions or evolution, such as to deal with unexpected machine
breakdowns, energy intensive operations, low scheduling
performance, product defectiveness, fast changing market,
etc. Real-time or near real-time online data processing is
conducted in the cyber-physical manufacturing system at
the ‘‘edge’’ side for fast local response, while the offline
big data analytics are performed in the cloud for global
and comprehensive view and vision to guide the smart fault
localization or predictive maintenance, system parameter
optimization, and system reconfiguration and upgrading.

A. SOFTWARE DEFINED CLOUD MANUFACTURING
FRAMEWORK
For the purpose of rapid and efficient actions, SDN [18]
has been incorporated to make the cyber-physical manufac-
turing system programmable and controllable via software,
in which big data analytics and AI can be integrated to intel-
ligently control the system (e.g., the edge-cloud collaborative
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FIGURE 4. A software defined perspective of smart cloud manufacturing.

processing). Therefore, we propose a software defined cloud
manufacturing framework, which can greatly improve the
reconfigurability and agility of iCMfg system (Fig. 4). The
framework consists of six layers: abstractions, gateways,
software defined virtual entities, software defined network,
manufacturing services and manufacturing applications. The
details are presented as follows.

A concrete basis for big data driven software defined cloud
manufacturing is the development of general-purpose recon-
figurable executive hardware (maybe open sourced), which
can be programmed to provide different functions. We call
those basic indispensable executive machines or sensors on
the ‘‘edge’’ side atomic hardware. Various virtualization tech-
nologies enable the encapsulation and abstraction of hetero-
geneous atomic hardware through abstraction and gateway,
as a software defined virtual entity (SDVE) (Fig. 5) in the
cyberspace to provide generic/unified software development
kits, like APIs, programming models, libraries, development
tools. The abstraction layer manages the atomic hardware
resource with basic programmable functions, while the gate-
way (embedded computing units or independent computers)
can support integrating atomic hardware into the cyberspace
and act as bridges for bi-directional interactions. The SDVE
should be able to manage tasks for the corresponding hard-
ware, as the hardware usually has limited hard resource.
The SDVE can be flexibly defined or programmed to pro-
vide required functions for different manufacturing tasks.
As shown in Fig. 6, the hardware modules (HM) 1 and 2 or
HM 2, 3 and 4 can be programmed and organized to provide
different functions (a) or (b) for user tasks, i.e. the SDVEs can
be defined according to application demands.

Through virtualization, different mapping relationships
between hardware resource and SDVEs in the cyberspace
(one-to-one, one-to-many and many-to-many, Fig. 5),
can be established to support multiple user tasks. For
example, a machine tool typically has the one-to-one
relationship with its virtual entity, because it usually could

FIGURE 5. Atomic hardware to software defined VE.

not process two or more workpieces at the same time. A
high-performance server can be virtualized into multiple
virtual machines in the cloud (one-to-many). Cloud com-
puting can efficiently manage the fine-grained hardware
like multi-cores on a computer with the latest virtualiza-
tion technology. A manufacturing capability comprising
machines and operators can be divided into different number
of virtual instances if measured in man-month or man-hour
(many-to-many). Here each virtual instance is established
for each user-task. After networking of these hard resources,
the Service Oriented Architecture is employed to deliver
services of virtual instances for user tasks.

The gateway concerns how to virtualize, wrap up and
network manufacturing resource as standard manufacturing
services, while the service layer focuses on how to establish
composite manufacturing services based on simple services
of SDVEs that are registered and published.

On a higher layer to network those SDVEs for complex
manufacturing tasks, the SDN is adopted to enable the flex-
ible re-configuration of network to meet the requirements of
manufacturing applications (Fig. 6). The SDN can increase
the flexibility of networking by clearly separating the basic
network functionality of forwarding (data plane) from the
network configuration (control plane). The network data
plane is implemented ‘‘in hardware’’ by network switches,
whereas the network control plane is outsourced to standard
hosts implementing the logic to configure the network, e.g.,
the forwarding tables of switches. Thus, we can flexibly
and dynamically control the behavior of the manufacturing
system network by implementing application-specific net-
work control logic in software modules (‘‘monitor-analysis-
plan-execute’’ control loop) according to the requirements of
the manufacturing applications, for instance, by configuring
suitable paths between a dynamic set of sensors and actuators.

As for networking, 5G technologies provide the net-
work characteristics essential for manufacturing, such as low
latency and high reliability to support critical applications,
high bandwidth and connection density to secure ubiquitous
connectivity, and cutting cables to make the manufactur-
ing system truly flexible [23]. Industrial control and factory
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automation, e.g., the motion, positioning, or torque control of
machining tools and robots, call for real-time ultra-reliable
data communication, processing and decision-making of 5G
systems [30]. A high volume of near real-time data about
manufacturing processes collected by 5G communication
systems enables the improvement of current analytics and the
development of innovative applications.

B. BIG DATA DRIVEN AI-MFG-OPS
A flexible and rapid mode for reconfiguring or updating
the manufacturing system can be realized in this frame-
work. We call this new mode as AI-CMfg-OPS (AI enabled
CMfg operations). The new AI-CMfg-OPS can shift from
the manufacturing system, defined by hardware and logis-
tics constraints to one that is largely defined by software.
In this mode, the procedure to get a desired manufacturing
service for complex tasks include objective setting, SDVEs
and networks selection, SDVE definition and SDN definition.
According to the objective (functions, QoS, etc.) and big data
about the manufacturing system, suitable networked SDVEs
should be optimally selected to collaboratively finish the
complex task. Then the selected SDVEs and the networks
between them should be configured either manually or auto-
matically by software modules to provide certain executive
functions and to better fulfill the task with required com-
munication performance. Through these steps, SDVEs and
SDN can be defined and orchestrated to deliver competitive
manufacturing services for various users. In other words,
the physical resources are virtualized and divided into several
logic units or slices [31], [32] for different users.

As the above configuration process can be conveniently
realized in software as control logic (‘‘the brain’’) of the man-
ufacturing system, we can incorporate the DevOps for contin-
uous build, test, integration, delivery and deployment pipeline
(source control, build, staging and production), an agile soft-
ware development method, to quickly develop, deploy and
deliver those software-based controllers of the iCMfg sys-
tem. A controller can be designed as a collection of loosely
coupled small micro-services, which can be independently
built, tested and deployed in the DevOps pipeline in seconds/
minutes, enabling the rapid, frequent and reliable delivery of
large, complex applications.

In the context of SDN, the programmable SDVEs and SDN
create excellent opportunities for the software-based control
modules which oversee automation hardware and can pow-
erfully and autonomously monitor, interact, react and self-
optimize in an extremely fast efficient way without human
interventions. This continuous improvement and close loop
control of the manufacturing system for better system perfor-
mance, product quality, lead-time, etc., can greatly enhance
the capability and flexibility of the system to cope with the
market changes and shop-floor disturbances. In contrast to
the agile software development activities most in the digital
space, the test/simulation environment of software controllers
will involve more physical things than standard computers,
and thus should further adopt the digital twin models of

FIGURE 6. Software defined network of software defined manufacturing
Virtual Entities.

physical manufacturing entities in the computing environ-
ment (virtual machine, or docker container) to make the
test results more dependable and verify the control logic.
Other simulation models about conceptual objects or future
upcoming scenarios, or physical objects representing actual
objects can be built to verify the new plan or design.

With this powerful software defined cloud manufactur-
ing framework (versatile reconfigurable and programmable
resources/software defined networking/smart applications),
the evolution of manufacturing systems can be driven by big
data analytics enriched system optimization and upgrading.
The close loop (monitor-analysis-plan-execute) can enable
the fast convergence of the system towards the optimal. The
ultimate goal or most advanced stage of AI-CMfg-Ops is
that the manufacturing system can autonomously monitor,
react, self-optimize and evolve to become more efficient,
robust, intelligent, energy-saving and responsive. Smart pro-
duction will be a continuous process of constant updates,
enhancements, and improvements driven by both business
and technology. The human labor will gradually move to
highly creative work.

Overall, this framework enables the rapid and flexible
optimization and upgrading of the manufacturing system (in
terms of parameters and structure), such as the extremely fast
distribution and upgrade of software formachineries, devices,
computers and networks. The manufacturing capability can
be brought to a whole new level to cope with the fierce
competition and fast-changing market. This shapes a new
powerful manufacturing mode in the ICT-based smart digital
world.

V. REAL LANDSCAPE OF TESTBED
The iCMfg will bring immense growth opportunities to
enterprises, while simultaneously posing a challenge to each

VOLUME 8, 2020 45945



C. Yang et al.: Big Data Driven Edge-Cloud Collaboration Architecture for Cloud Manufacturing

FIGURE 7. Creation & configuration, execution & operation, and monitoring & control of smart factory.

company’s very survival. Key technologies built-in iCMfg
are sophisticated. Their effectiveness and advantages must
be verified for practical dissemination. We design typical
industrial settings to demonstrate its practicality and work-
ing procedure (See Fig. 7). Within the roadmap of iCMfg,
the tasks are conducted following the bottom-up approach
by building up the iCMfg infrastructure vertically upwards
in Fig. 7. Focused solutions are gradually unfolded from left
to right horizontally.

As shown in Fig. 7, the materials, shelves, pallets, trol-
leys, forklifts are equipped with RFID tags or blue tooth
devices or wireless sensors with unique IDs. Gateways
can be configured to relay the data or commands, upward
to the cloud or downward to the smart objects/assets.
Workcell Gateway1 will sense the cloud objects, cloud
shelf, assemble robot and cloud AGV, while Workcell
Gateway2 will connect cloud AGV, assemble robot, smart
inspect tools, and cloud pallets. Gateways can be mobile
ones (e.g., with AGV as bases) to suitable shop-floor sites,
so that those edge computing nodes can cover most shop-
floor areas where the smart objects locate, and perform fast
computing tasks to meet smart objects’ needs. Workcell
Gateway1 and Gateway2 are bi-directionally connected to
Workcenter Gateway, which interacts with and uploads the
shop-floor data to the iCMfg cloud platform. With those
real-time data, the material flows, manufacturing processes
and status of the smart objects/assets can be transparent to
shop-floor managers or relevant workers to make decisions.
Supervisors on the shop floor can see the shop-floor sta-
tus through site dashboard on top of Workcenter Gateway,
and interact with virtual/augmented-reality based wearable
devices. The manufacturing big data like object position,
process status, machining time, energy consumption, quality

data, worker ID, etc., can be collected and mined to get
more information for process optimization or reconfigura-
tion. Managers can see the visualized information and knowl-
edge (such failure rates, productivity, energy consumption,
asset effectiveness, etc.) to make decisions about the factory
operations. If the production workshop should be reconfig-
ured, then the orders can be issued to shop-floor gateways
to perform quick adaptations, so that the productivity can
be improved by undertaking different tasks in different time
intervals. The experimental results will be reported separately
due to page limit.

We will take the assembly of cell-phones as an exam-
ple to demonstrate the iCMfg. The software defined iCMfg
system will have extremely high reconfigurability to deal
with market changes and internal disturbances. As for the
market changes, we are currently experiencing the transition
from the seller’s market to the buyer’s market [8]. Cus-
tomized/personalized products are gaining more shares in
today’s product market, which can best meet individual cus-
tomers’ needs and is a future trend [7]. The cell-phone orders
from the market consist of personalized and customized cell-
phones requiring different manufacturing processes. This will
require fast changing and configuration of assembly lines,
which are traditionally static with predefined sequences. This
requirement in nature also applies to the promise (held by
Industry 4.0) of enabling ‘‘last-minute changes to produc-
tion’’ and delivering the ability to respond flexibly to disrup-
tions and failures [33].

Customer, professionals, product designer, manufacturer
(software engineer) and quality inspector will collectively
deliver personalized cell-phones. The basic functions of
assemble robots and AGVs (such as replacing fixtures of
robots, moving to a position) are virtualized, servicized and
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can be programmed to realize complex tasks. For example,
in Fig. 7, software engineers can code manufacturing pro-
cesses to enable the collaborative assembly of personalized
cellphone between Cloud Robot1 and Cloud Robot2, which is
different from mass production of standard cellphones. First,
Cloud Robot2 is programmed to move to a new position
near Cloud Robot1. During such process, positions about
Robot2 are reported in real-time manner. Software will con-
trol this procedure until Robot2 finally move to the prede-
termined position. Originally, the two robots (Robot1 and 2)
perform the standard cell-phone assembly task sequentially,
with AGV to ship parts between them. The network is also
programmed to reinforce the communication between Cloud
Robot1 and Cloud Robot2, by connecting Cloud Robot2 to
Workcell Gateway1 and allocating more bandwidth and
switching to establish direct connections between the two
with low information delay. In such software defined cloud
manufacturing system, Cloud Robot1 and Cloud Robot2 can
closely and efficiently cooperate to finish the assemble task of
personalized cell-phones. Before deployment to iCMfg sys-
tem, the codes should be tested in the simulated environment
with digital twin models about the shop-floor things to ensure
the safety and feasibility. Security mechanisms should also be
designed and added in this software defined process, which
will be reported separately.

Big Data analytics performed in the iCMfg can greatly
enrich decision-making on planning and operations of the
shop floor. In an advanced mode, the AI and Big Data driven
software will autonomously and intelligently define and
evolve the iCMfg system to be more effective and efficient.

We gained primary insights from building such sys-
tem. Building all-encompassing systems (blindly invest in
everything) for smart factories is often very complicated
and generally involves long lead-times. We need to avoid
technology-dominant initiatives that lack strategic guid-
ance or business value drivers. At the beginning, the most
pressing task is to handle business issues as guided by the
strategic vision, in accordance with business values, and
through the use of innovative technologies. As the unique
details of each implementation become clear, it is essential
to incorporate the core values of the enterprise and then iter-
atively progress from general principles to complex details to
assure that the strategic vision is included in the completed
facility.

VI. CHALLENGES
To achieve this vision of intelligent CMfg, collective efforts
should be made by the ICT, robotics, automatic control and
manufacturing communities. This data driven edge-cloud col-
laboration architecture and software defined network mode
will become a norm in the future smart connected world,
as software is becoming dominant in many intelligent things
and systems. On the way to this future vision, there are several
challenges ahead.

1) Standards and Interoperability: Standards are another
crucial element to enable inter-machine,

inter-factory or inter-company networking and integra-
tion through value networks in future IoT-based cloud
manufacturing [8]. Software defined cloudmanufactur-
ing will require a common standard as a foundation to
network and integrate manufacturing assets or objects
into the cyberspace and to facilitate interoperability at
all levels. The digitalization, virtualization and con-
figurability of manufacturing resources is the basis.
The future development trend should also be consid-
ered in the standards. The traditional manufacturing
equipment assumes more or less human participation,
but they are seldom designed to be working with no
human intervention. This is important for constructing
unmanned autonomous intelligent systems. How to
integrate and virtualize various heterogeneous/legacy
resources is always a challenge in the coming Internet
of all manufacturing things. As for interoperability,
manufacturing resources must be able to cooperate
each other at both physical and information levels on
a real-time online basis or an offline basis.

2) Simulation, Verification, Validation and Accreditation
(VV&A): As it is easy to develop and deploy soft-
ware modules to define the manufacturing system,
how to guarantee that software can behave as con-
ceived is another challenge. Simulation based on digital
twin models and other digital models is an effective
approach. Then the VV&A should be addressed to
establish its credibility of simulation. During the digital
twin simulation, physical objects and digital twin mod-
els interact in a mutually beneficial manner, to form a
closed control loop [8]. One big challenge is to generate
simulation results no later than the required time for the
physical objects. Other challenges include the online
evolution of models without bringing interruptions
to the physical systems according to dynamic envi-
ronments, and the pervasive involvement of users in
decision-making activities, for example, interactively
using real-time data driven VR/AR facilities for trace-
ability, visibility and trackability.

3) Collaborative Data Processing and Big Data Analytics.
Real-time data are generated at different levels and
stages of manufacturing environments for different
purposes, such as quality control, energy consump-
tion, machine conditions, job progresses, etc. How to
aggregate data vertically and horizontally across the
manufacturing systems remains a challenge. Data is
also collected along the timeline in multi-dimensions
for backward evaluation and forward prediction. Data
cleaning and aggregation near the end devices can
reduce the amount of data transmission in the network,
but the challenge is to avoid or at least evaluate infor-
mation loss in this process. Proper strategies are needed
to balance the on-device/at-gateway/in-network data
processing and the cloud-based big data processing [8].
The balance between the response speed and the quality
of data analytics is another challenge to strike to meet
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diverse application demands. This may be a continu-
ous optimization process. A flexible and evolutionary
method of collaborative data processing between local
nodes and the cloud is needed.

4) Security and Privacy. Privacy and security issues are
crucial in a future open and highly connected world.
The software defined iCMfg system has high flexibility
and openness, while this may also lead to security risks.
Cyber-attacks can cause serious problems to the whole
manufacturing systems, through hacking virtual enti-
ties and networks or inserting malicious codes in the
cyberspace. The smart manufacturing entities may also
be maliciously organized to launch large Distributed
Denial of Service (DDoS) [36] attacks using AI and
machine learning. This is a long term and challeng-
ing issue. From the data perspective, the blockchain
technology emerges as a novel promising solution
that can be explored to increase the data security and
privacy [34]. A blockchain uses a distributed ledger
to store data in interlinked blocks through an entirely
decentralized model with consensus mechanisms to
validate the transactions and data.

VII. CONCLUSION
This paper proposes to build up a big-data driven evolutionary
smart manufacturing architecture with collaborative edge-
cloud processing capability. Manufacturing resources includ-
ing assets and materials are converted into smart cloud assets
and objects (with corresponding virtual entities in the cloud)
following a Human-Cyber-Physical System approach. Inter-
actions among cloud assets and objects are captured by smart
gateways (hierarchical or heterarchical) that are equipped
with real-time workflows for business logics, coordina-
tion mechanisms for tasks and distributed analytics. Guided
by AI-enabled manufacturing big data analytics, the smart
gateways and the managed smart cloud assets and objects
(‘‘edges’’) can evolve together with the iCMfg platform
(‘‘cloud’’) to be more efficient and robust. Cloud technology
adopted in the platform can support various applications with
super elastic computing and storage resources. The edge-
cloud iCMfg architecture is also strengthened by the software
defined framework. Software defined features are introduced
to further strengthen the flexibility of iCMfg systems. The
smart co-evolution in terms of structures and parameters will
form an intelligent monitoring-analysis- planning-execution
closed loop and bring a new vision for industry 4.0. This
framework equips the iCMfg system with extremely high
flexibility and reconfigurability, which is fairly important for
the modern manufacturing industry.

Overall, the use of iCMfg will bring a paradigm shift from
traditional manufacturing to a new big data analytics enriched
smart manufacturing for Industry 4.0, and its key impacts
lie in the following four aspects: 1) In terms of technolo-
gies, the traditional manufacturing information infrastructure
will be shifted to the cloud, which enables a benign and
flexible environment for real-time data collection, services

integration, and operation synchronization. 2) In terms of
decision making, through using hand-held devices like smart-
phones, it changes the way for operators to collect real-time
manufacturing data, interact with each other, and make on-
site control during manufacturing processes. 3) For manufac-
turing companies, big data analytics enables them to better
understand the inter-relationships between manufacturing
processes and their key performance indicators, including
energy consumption and product quality, making it possible
to take real-time control for the whole processes and sys-
tems. 4) For customers, the visibility of the manufacturing
processes and the increased quality of products provide them
with improved confidence on the value of products. 5) In
terms of ecosystem, big data driven transparent and software
defined smart cloud manufacturing system will work in a
very efficient and fast-responsive way to all stakeholders like
designers, factory workers, owners, and customers, which
will cultivate new business models.

REFERENCES
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[2] Y. Shi, Q. Han, W. Shen, and H. Zhang, ‘‘Potential applications of
5G communication technologies in collaborative intelligent manufac-
turing,’’ IET Collaborative Intell. Manuf., vol. 1, no. 4, pp. 109–116,
Dec. 2019.

[3] B. Li, L. Zhang, S. L. Wang, F. Tao, J. W. Cao, X. D. Jiang, X. Song,
and X. D. Chai, ‘‘Cloud manufacturing: A new service-oriented networked
manufacturing model,’’ Comput. Integr. Manuf. Syst., vol. 16, no. 1,
pp. 1–7, 2010.

[4] A. Gilchrist, Industry 4.0: The Industrial Internet of Things. New York,
NY, USA: Apress, 2016.

[5] G. Q. Huang, P. K. Wright, and S. T. Newman, ‘‘Wireless manufacturing:
A literature review, recent developments, and case studies,’’ Int. J. Comput.
Integr. Manuf., vol. 22, no. 7, pp. 579–594, Jul. 2009.

[6] Y. Zhang, G. Q. Huang, T. Qu, O. Ho, and S. Sun, ‘‘Agent-based smart
objects management system for real-time ubiquitous manufacturing,’’
Robot. Comput.-Integr. Manuf., vol. 27, no. 3, pp. 538–549, Jun. 2011.

[7] C. Yang, S. Lan, W. Shen, G. Q. Huang, X. Wang, and T. Lin, ‘‘Towards
product customization and personalization in IoT-enabled cloud manufac-
turing,’’ Cluster Comput., vol. 20, no. 2, pp. 1717–1730, Feb. 2017.

[8] C. Yang,W. Shen, andX. Wang, ‘‘The Internet of Things inmanufacturing:
Key issues and potential applications,’’ IEEE Syst., Man, Cybern. Mag.,
vol. 4, no. 1, pp. 6–15, Jan. 2018.

[9] D. Mourtzis, E. Vlachou, and N. Milas, ‘‘Industrial big data as a result of
IoT adoption in manufacturing,’’ Procedia CIRP, vol. 55, pp. 290–295,
2016.

[10] C. Yang, W. Shen, T. Lin, and X. Wang, ‘‘IoT-enabled dynamic service
selection across multiple manufacturing clouds,’’ Manuf. Lett., vol. 7,
pp. 22–25, Jan. 2016.

[11] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. Abaker Targio Hashem,
A. Siddiqa, and I. Yaqoob, ‘‘Big IoT data analytics: Architecture, opportu-
nities, and open research challenges,’’ IEEE Access, vol. 5, pp. 5247–5261,
2017.

[12] L. Wang, B. Schmidt, and A. Y. C. Nee, ‘‘Vision-guided active collision
avoidance for human-robot collaborations,’’ Manuf. Lett., vol. 1, no. 1,
pp. 5–8, Oct. 2013.

[13] J. Lee, B. Bagheri, and H.-A. Kao, ‘‘A cyber-physical systems architec-
ture for industry 4.0-based manufacturing systems,’’ Manuf. Lett., vol. 3,
pp. 18–23, Jan. 2015.

[14] D. Mourtzis, E. Vlachou, N. Milas, and N. Xanthopoulos, ‘‘A cloud-
based approach for maintenance of machine tools and equipment
based on shop-floor monitoring,’’ Procedia CIRP, vol. 41, pp. 655–660,
Jan. 2016.

45948 VOLUME 8, 2020



C. Yang et al.: Big Data Driven Edge-Cloud Collaboration Architecture for Cloud Manufacturing

[15] L. Zhang, Y. Luo, F. Tao, B. H. Li, L. Ren, X. Zhang, H. Guo,
Y. Cheng, A. Hu, and Y. Liu, ‘‘Cloud manufacturing: A new manu-
facturing paradigm,’’ Enterprise Inf. Syst., vol. 8, no. 2, pp. 167–187,
2014.

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. 1st MCC Workshop Mobile Cloud
Comput. (MCC), vol. 12, Aug. 2012, pp. 13–16.

[17] P. O’Donovan, C. Gallagher, K. Bruton, and D. T. J. O’Sullivan, ‘‘A fog
computing industrial cyber-physical system for embedded low-latency
machine learning industry 4.0 applications,’’ Manuf. Lett., vol. 15,
pp. 139–142, Jan. 2018.

[18] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, ‘‘Are we ready for SDN? Implemen-
tation challenges for software-defined networks,’’ IEEE Commun. Mag.,
vol. 51, no. 7, pp. 36–43, Jul. 2013.

[19] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. Vasilakos,
‘‘Software-defined industrial Internet of Things in the context of industry
4.0,’’ IEEE Sensors J., to be published.

[20] N. G. Nayak, F. Durr, and K. Rothermel, ‘‘Software-defined environment
for reconfigurable manufacturing systems,’’ in Proc. 5th Int. Conf. Internet
Things (IOT), Oct. 2015, pp. 122–129.

[21] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge
intelligence: Paving the last mile of artificial intelligence with
edge computing,’’ Proc. IEEE, vol. 107, no. 8, pp. 1738–1762,
Aug. 2019.

[22] L. B. Le, V. Lau, E. Jorswieck, N. D. Dao, A. Haghighat, D. I. Kim, and
T. Le-Ngoc, ‘‘Enabling 5G mobile wireless technologies,’’ EURASIP J.
Wireless Commun. Netw., Sep. 2015, Art. no. 218. [Online]. Available:
https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-
015-0452-9

[23] S. Li, L. Da Xu, and S. Zhao, ‘‘5G Internet of Things: A survey,’’ J. Ind.
Inf. Integr., vol. 10, pp. 1–9, Jun. 2018.

[24] H. Mei and Y. Guo, ‘‘Toward ubiquitous operating systems: A
software-defined perspective,’’ Computer, vol. 51, no. 1, pp. 50–56,
Jan. 2018.

[25] P. Russom, ‘‘Big data analytics,’’ TDWI Best Practices Rep., 4th Quart.,
vol. 19, no. 4, pp. 1–34, 2011.

[26] L. P. Steenkamp, D. Hagedorn-Hansen, and G. A. Oosthuizen, ‘‘Visual
management system to manage manufacturing resources,’’ Procedia
Manuf., vol. 8, pp. 455–462, Jan. 2017.

[27] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, ‘‘Software-defined
networks with mobile edge computing and caching for smart cities: A big
data deep reinforcement learning approach,’’ IEEECommun.Mag., vol. 55,
no. 12, pp. 31–37, Dec. 2017.

[28] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[29] C. Yang, S. Lan, W. Shen, G. Q. Huang, and L. Wang, ‘‘Software-defined
cloud manufacturing in the context of industry 4.0,’’ in Proc. WRC Symp.
Adv. Robot. Autom. (WRC SARA), Aug. 2019, pp. 184–190.

[30] Study on Communication for Automation in Vertical Domains, 3GPP,
document TR 22.804, 2018.

[31] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, ‘‘Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,’’ IEEE Commun. Mag., vol. 55,
no. 5, pp. 80–87, May 2017.

[32] Z. Xiao, W. Song, and Q. Chen, ‘‘Dynamic resource allocation using vir-
tual machines for cloud computing environment,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[33] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster, Recommenda-
tions for Implementing the Strategic Initiative INDUSTRIE 4.0: Secur-
ing the Future of German Manufacturing Industry; Final Report of
the Industrie 4.0 Working Group. Berlin, Germany: Forschungsunion,
2013.

[34] G. Zyskind, O. Nathan, and A. S. Pentland, ‘‘Decentralizing privacy:
Using blockchain to protect personal data,’’ in Proc. IEEE Secur. Privacy
Workshops, May 2015, pp. 180–184.

[35] M. Fahmideh and G. Beydoun, ‘‘Big data analytics architecture design—
An application in manufacturing systems,’’ Comput. Ind. Eng., vol. 128,
pp. 948–963, Feb. 2019.

[36] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, ‘‘DDoS in the
IoT: Mirai and other Botnets,’’ Computer, vol. 50, no. 7, pp. 80–84,
2017.

CHEN YANG received and the B.Eng. degree
in automatic and information technology and the
Ph.D. degree in control science and engineer-
ing from the School of Automation Science and
Electrical Engineering, and the Honors College
(an elite program), Beihang University (BUAA),
Beijing, China, in 2008 and 2014, respectively. He
has worked with the HKU-ZIRI Laboratory for
Physical Internet, The University of Hong Kong as
a Postdoctoral Fellow and an Associate Research

Officer, and in Huawei Technologies, as a Senior Engineer on Research and
Development tools.

He is currently an Associate Professor with the School of Computer
Science and Technology, Beijing Institute of Technology, Beijing, China. His
research interests include the Internet of Things, industry 4.0, cloudmanufac-
turing, modeling and simulation of complex systems, artificial intelligence,
and big data analytics.

SHULIN LAN (Member, IEEE) received the M.S.
degree in E-commerce and in industrial and man-
ufacturing systems engineering (IMSE) from The
Hong Kong Polytechnic University, in 2011, and
the Ph.D. degree from the IMSE Department, The
University of Hong Kong, in 2016.

From November 2016 to 2017, she was a
Postdoctoral Fellow with the IMSE Department,
The University of Hong Kong. From 2016 to
March 2018, she has been the Research Director

with the Physical Internet (π-Lab), Hong Kong University-Zhejiang Institute
of Research and Innovation. She is currently an Assistant Professor with the
School of Economics and Management, University of Chinese Academy of
Sciences. Her research interests include supply chain management, macro-
economic development, coordinated development of economy and logistics,
and the Internet of Things. She is the Guest Editor-in-Chief of several
journals such as Industrial Management & Data Systems and Advanced
Engineering Informatics.

Dr. Lan received the Best Conference Paper of the 2014 IEEE International
Conference on Networking, Sensing and Control (ICNSC 2014). She was a
recipient of the Best Project Staff of Kunlun EnergyCompanyLimited (Stock
code: 000135), in 2018.

LIHUI WANG is currently a Professor and a Chair
of sustainable manufacturing with the KTH Royal
Institute of Technology, Sweden. He is actively
engaged in various professional activities. He has
published nine books and authored in excess
of 500 scientific publications. His research inter-
ests are focused on cyber-physical systems, cloud
manufacturing, real-time monitoring and control,
predictive maintenance, human–robot collabora-
tions, adaptive, and sustainablemanufacturing sys-

tems. He is a Fellow of the Canadian Academy of Engineering, CIRP, SME,
and ASME. He is also a Professional Engineer in Canada, the President-
Elect of North American Manufacturing Research Institution of SME, and
the Chairman of Swedish Production Academy. He is the Editor-in-Chief
of the International Journal of Manufacturing Research, of Robotics and
Computer-Integrated Manufacturing, and of the Journal of Manufacturing
Systems.

VOLUME 8, 2020 45949



C. Yang et al.: Big Data Driven Edge-Cloud Collaboration Architecture for Cloud Manufacturing

WEIMING SHEN (Fellow, IEEE) received the
Ph.D. degree in system control from the University
of Technology of Compiegne, France, in 1996.
He is currently a Professor with the State Key
Lab of Digital Manufacturing Equipment and
Technology, Huazhong University of Science and
Technology, Wuhan, China. He has published
several books and more than 400 articles in scien-
tific journals and international conferences in the
related areas. His work has been cited more than

8 000 times with an h-index of 45. His recent research interests include agent-
based collaboration technology and applications, the Internet of Things, and
big data analytics.

He is a Fellow of the Engineering Institute of Canada. He is a member of
the Steering Committee of the IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

and an Associate Editor or Editorial Board Member of ten international
journals (including the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND

ENGINEERING, the IEEE TRANSACTIONS ON SMC: SYSTEMS; Advanced Engi-
neering Informatics; and Service Oriented Computing and Applications).
He served as a Guest Editor for several other international journals. He is a
Distinguished Lecturer of the IEEE Systems, Man, and Cybernetics Society.

GEORGE G. Q. HUANG received the B.Eng.
degree in mechanical engineering from South-
east University, China, and the Ph.D. degree in
mechanical engineering from Cardiff University,
U.K. He is currently a Chair Professor and the
Head of the Department of Industrial and Manu-
facturing Systems Engineering, The University of
Hong Kong.

He has conducted research projects in the field
of physical internet (Internet of Things) for manu-

facturing and logistics with substantial government and industrial grants. He
has published extensively including more than 200 refereed journal articles
in addition to more than 200 conference papers and 10 monographs, edited
reference books and conference proceedings. His research works have been
widely cited in the relevant field. He is a Fellow of ASME, HKIE, IET and
CILT, and member of IIE. He serves as an Associate Editors and an Editorial
Members for several international journals. He is a Chartered Engineer
(C.Eng.)

45950 VOLUME 8, 2020


