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ABSTRACT This paper studies features with the characteristic of unknown probability distribution, and
its application on fault diagnosis based on non-stationary monitoring signals, which mainly consider
the uncertainty as the main factor in masking fault diagnosis of practical industrial system. Generally,
the probability distribution of the signal feature is unknown and prior information of the trend term is
lacking. For this reason, different feature extraction methods, such as time-domain, frequency-domain and
time-frequency-domain methods, have always been used to extract features, and they can be used to generate
a high-dimensional and nonlinear initial feature set. However, the features’ probability distribution is still
unknown and prior information of the trend term is still lacking. In order to solve this top problem, Restricted
Boltzmann Machine (RBM), with the advantage of feature learning and selection for initial feature set, has
been stacked layer by layer to realize a high-dimensional nonlinear mapping between non-stationary signal
features and fault modes. Two fault diagnosis experiments on self-confirmation sensor and rolling bearing
shown the robustness and effectiveness of this proposed method.

INDEX TERMS Feature extraction, restricted Boltzmann machine, deep belief network, non-stationary

signals, fault diagnosis.

I. INTRODUCTION

In practical complex industrial system, the system operation
state is usually not static. The changes in market demand,
external disturbances, equipment aging, sensor defects, and
so on, are often regarded as the main reason where moni-
toring signals in industrial systems exhibit extremely obvi-
ous non-stationary characteristics [1], [2]. Furthermore, fault
symptoms are often overwhelmed by the non-stationary
nature of monitoring signals, resulting in a large number of
false alarms and missed alarms when using the traditional
monitoring signal analysis and processing methods.
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In particular, modern industrial systems are increasingly
moving toward quite large scale due to the widespread usage
of Distributed Control System (DCS), precision instrumenta-
tion systems, and industrial Internet [1], [3]-[5]. In order to
avoid the occurrence of safety accidents, more and more mea-
surement nodes are installed for each equipment to monitor
the states of modern industrial systems. Furthermore, with the
advancement of sensor technology, the sampling frequency
is getting higher and higher. And from the beginning of its
service to the end of its life, data collection time has been
getting longer and longer, and this makes the volume of
monitoring data has become larger and larger [3]-[11].

Based on above reasons, it is very difficult for prac-
tical industrial processes to achieve fault diagnosis by
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FIGURE 1. Multiple layers monitoring data and non-stationary monitoring
signals of industrial system.

traditional methods. In addition, the monitoring process vari-
ables usually manifest some other characteristics, which
masks fault diagnosis become more difficult in practical
industrial system:

e Dynamic time-varying behaviors, including the changes
in operation conditions, variations in process feeds, empty-
ing and filling cycles, some disturbances, strong noise, and
operator interventions.

e Controller feedback produces inherently correlated pro-
cess variables [1], [3]-[11].

Therefore, how to deeply explore non-stationary moni-
toring signals with ““big data” characteristics, and how to
realize fault detection and diagnosis for key equipment, and
all of which can be employed to improve the state monitoring
capability have attracted the attention of many experts and
scholars around the world.

Il. RELATED WORK AND MOTIVATION

Modern industrial systems are developed toward the direction
of large-scale, dynamic, integrated, multiple levels and multi-
ple sources in static and dynamic equipment, which produces
industrial monitoring data with multiple levels and multiple
time and space. Some scholars summarized them into device
layer data, process layer data, indicator layer data [11], and
user layer data, as shown in figure 1. Equipment data is at the
bottom of industrial monitoring. To the best of our knowl-
edge, and it faces the first-line production equipment. This
layer of data directly reflects the operation state of device,
and they are often collected mostly from the sensors with
millisecond sampling frequency [11].

A. RELATED WORK

The so-called non-stationary monitoring signal refers to that
the statistical characteristics in time domain and frequency
domain of the signal are not fixed, but vary with time or
frequency. In time domain, strict stationary monitoring signal
means that for random variables x(¢), their probability distri-
bution F(x(¢)) is quivalent at any time and does not change
with time:

VT, F(x(1)) = F(x(t + T)). ey

The weak stationary monitoring signal refers to that
its mean, variance, and co-variance do not change
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over time:

E(x(1) = u,
V(x(1) = o2, 2)
Cov(H(t)) = Cov(H(t + h)).

where H(t) = (x(¢), x(t + k)), u, o are mean and variance,
respectively. Cov is the co-variance. t, k, h are arbitrary inte-
gers. Generally, almost all monitored stationary signals are
regarded as weak stationary. And non-stationary monitoring
signals are considered as that the signals do not meet the
statistical characteristics of equations (1) and (2) [3].

Similarly, in frequency domain, the frequency of
non-stationary monitoring signals often varies with time.
In practical industrial system, the monitoring signal often
exhibits non-stationary characteristics if the device has faults.
The global frequency domain of non-stationary monitoring
signal cannot reflect its changes. So it is necessary to study the
signal from their instantaneous frequency and time-frequency
characteristics [12]-[23].

B. MOTIVATION

When underlying device layer performs state monitor in prac-
tical industrial system, each modern installed measurement
node is often not single. In fact, numerous monitoring signals
with high sampling frequency and large amount data are
often used to ensure the reliability and safety of modern
processes [13]-[18].

In addition, non-stationary monitoring signals greatly
increase the information diversity and complexity due to
more complex environment they faced. Driven by the contin-
uous development of sensors, computers and industrial Inter-
net, industrial system operation state yielding by monitoring
data is not only stored and accumulated on time scale, but
also collected from acquisition devices, human being and
internally spreading on spatial scale. Massive data is finally
generated on both time and space dimension [5]-[10].

However, numerous traditional methods on feature extrac-
tion can be used to construct a high-dimensional feature set,
which effectively reflects different aspects information of
non-stationary monitoring signals. Therefore, how to unify
the information granulation of non-stationary monitoring sig-
nals becomes the first priority. And then, feature extraction
and identification can build on this basis, and they are con-
sidered as the important research significance for ensuring
the safety and reliability of modern industrial operation.

C. CONTRIBUTION

From the generation of non-stationary monitoring signals,
the sources may be different, and these may cause many
different characteristics, such as multiple sampling frequen-
cies, different types of sensors reflected the operation state of
the same device or subsystem [13]-[18]. Moreover, different
sampling frequencies directly lead to a large differences in
data volume between different monitoring variables.
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In addition, in order to effectively obtain the system opera-
tion state at different times, especially the continuous change
of the system, it is necessary to characterize the system oper-
ation state in various aspects to realize the intelligent identi-
fication of the abnormal state [5]-[9]. While many scholars
usually carry out the preliminary rough features extracted in
time domain, frequency domain and time-frequency domain.

As aforementioned before, the non-stationary monitoring
signals appear in almost all system operation state monitor-
ing. People usually have unclear information about them,
so they may adopt unsuitable methods to extract features.
In fact, a large amount of practical monitoring signals are
generated in normal operation state. The uncertainties occupy
the main components, which mainly refers to that the number
of samples is small, the probability distribution is unknown
and the prior information is lacking.

Statistical studies have shown that almost any probability
distribution can be transformed into an energy-based model,
while Restricted Boltzmann Machine (RBM) is a typical
energy-based model, so it can provide a learning model
for features with unknown probability distribution [24].
DBN was first proposed by Hinton ez al. [46] of the University
of Toronto in Canada in 2006. Its typical characteristic is to
stack several RBMs and layer-by-layer training. The manifest
advantage is the super-high-dimensional feature representa-
tion, which can be used to construct a complex nonlinear
mapping between non-stationary signal features and fault
modes.

All of these super advantages make it widely used
in speech recognition, natural language processing and
computer vision. Feature extraction and identification for
non-stationary monitoring signals are inseparable from the
development of artificial intelligence, i.e., the DBN can pro-
vide learning models for features with different unknown
probability distributions [13]-[18], [24], [25].

Therefore, a fault diagnosis methodology, based on
non-stationary monitoring signals by extracting features with
unknown probability distribution, has been proposed and the
main contribution of this paper can be summarized as follows.

e Different feature space transformation methods can be
leveraged to achieve non-stationary monitoring signal analy-
sis and feature rough extraction, which can be employed to
form a high-dimensional initial feature set.

e Another contribution is that DBN is used to re-extract
the unknown probability distribution information from initial
feature set, and this can be regarded as to construct a complex
nonlinear mapping.

e Finally, BP neural network can be used to realize fault
diagnosis for non-stationary monitoring signals. Two fault
diagnosis experiments verify the robustness and effectiveness
of this proposed method.

The remaining content is organized as follows. Section 3
introduces the architecture of feature extraction and the
methodology of fault diagnosis in detail. The experiment
results and some discussions have shown the effectiveness
of this proposed method, and it has been given in section 4.
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Finally, some conclusions and our directions for future
research work have been pushed out.

Ill. ARCHITECTURE AND METHODOLOGY

The non-stationary monitoring signals with multiple sources
mainly refer to that the sampling frequency of underlying
device layer monitoring signal is mixed in practical industrial
system. Due to the great differences in sampling frequency,
it needs to leverage different feature space transformation
methods to form a high-dimensional initial feature set, which
can be re-extracted by DBN to construct optimal feature set.

A. NON-STATIONARY AND STATIONARY HYBRID
PROCESSES

For non-stationary monitoring signals with multiple sources,
such as vibration response signals, different aspects of their
information can be reflected in time domain, frequency
domain, time-frequency domain and nonlinear domain space.
Different traditional methods can be used to characterize
different information of non-stationary monitoring signals to
produce initial high-dimensional feature sets.

Furthermore, due to above reasons, the initial high-
dimensional feature set with unknown probability
distribution needs to employ the high-dimensional nonlinear
fitting ability of sparse DBN to describe their variation law
in multi-domain space, and to achieve unsupervised feature
fusion and fault diagnosis. All of above aforementioned can
be simply described in figure 2.

Simply, the sampling frequencies of non-stationary mon-
itoring signals with multiple sources are often non-uniform,
and they often mix with different non-stationary monitoring
signals with different sampling frequencies. Each monitoring
signal may reflects different information of system operation,
and it needs various aspects of its feature information.

B. MULTI-DOMAIN SPATIAL TRANSFORMATION

The intent of multi-domain spatial transformation is how to
transform non-stationary monitoring signals with different
sources and different sampling frequencies to the same scale
without changing the time and frequency distribution rules,
and then how to use different feature extraction methods to
describe the monitoring states information for all aspects of
the object.

In practical industrial system, there may be more than
one source of non-stationary monitoring signals, which may
face the inconsistency of the sampling frequency, resulting
in different lengths of recorded data. The characteristics of
this type signals are extremely information density, and they
need to perform multi-scale transformation in time domain,
frequency domain, and time-frequency domain.

1) TIME DOMAIN SPATIAL TRANSFORMATION

Generally, the used sampling frequencies is not uniform
in practical industrial system. Due to the monitoring sig-
nal sources are different with different sensors and object
types [26]-[29], their used sampling frequencies are not
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uniform, which caused the lengths of obtained monitoring
signals are not equal, as shown in figure 3.

a: INTENSIVE DIFFERENCES IN DATA DISTRIBUTION
Generally, “time scale” of all monitoring signals is consis-
tent. Due to the differences in sampling frequencies, data
distribution density is obvious different, as shown in figure 3.
Different monitoring variables are unified in time dimension,
but in data density distribution, they have a very big gap,
i.e., the data length is not uniform in the same time period.
Therefore, the monitoring signals need to be multi-scale
transformed to provide time-series signals with equal length
for subsequent model training and calculations.

The key of multi-scale transformation is how to choose
the appropriate time interval {T, 7>, ..., T,}. According to
Shannon sampling theorem, it needs to collect its twice
frequency to reflect the information state in certain signal.
According to this theorem, the sampling period should be
set twice of the original frequency. Suppose monitoring vari-
ables {x1,x2,...,x,}, whose sampling periods are T
{T1, T, ..., T,}, respectively. Then, time interval T; for the
transformation of this monitoring variable on time scale can
be described as follows.

T; = 2max{Ty, Ty, ... 3)
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Equation (3) can only be regarded as a time scale, which
should be selected theoretically. If it is necessary to meet the
training and calculation needs, other time intervals can also
be selected, i.e., as long as it does not affect the information
content in non-stationary monitoring signals, it can be set to
any time scale.

b: TIME DOMAIN TRANSFORMATION METHODS

When feature transformation for monitoring signals in time
domain space, it is necessary to prevent the loss of the
original signal’s essential information as much as possi-
ble. The time-domain spatial transformation is mainly used
to describe the changes in physical components in time
dimension [27], [28]. In the theory of time domain analysis,
it mainly refers to the study of the dynamic process of the
system directly in time domain space. Throughout the analy-
sis and calculation of time domain statistical characteristics,
the essential information reflecting system operation state can
be obtained, and it can be employed to achieve the feature
transformation on time domain scale.

Furthermore, it also needs to be satisfied: the inherent
time domain characteristics in original monitoring signals are
retained as much as possible; the transformed feature infor-
mation should have a sufficiently clear physical meaning.
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TABLE 1. Time domain transformation methods for non-stationary
signals.

TABLE 2. Frequency domain transformation method for non-stationary
vibration response signals.

No. Names Methods No. Names Methods
N-—1 _ N N
1 Mean 0 = % Z T; 1 Paramter1 | FC = f = (2—:1 fZS(fl))/(Z_:1 S(f3))
1:1[\)771 N717 2 ]\7;7
2 | Root Mean Square Value | Q2 =4/ + 3 a2 2 | Paramter2 | MSF = (l;l fi S(fi))/(izl S(fi))
=0 N N
N—1 _ _ 200+ )
3 Kurtosis Q5 = % 5 zf} 3 Paramter 3 VF = (IZ::I(fl FC) S(fl))/(;::1 S(fi))
) ) =0 N _
4 Kurtosis Indices Q= 931/\]9‘211 4 Paramter4 | o= \/( > (fi—= )/ (N-1)
- i=1
5 Twist Qs = % > ol lN <
=0 — 2 . .
6 Twist Indices Qs = Q5/03 3 Paramter5 | Fy = z; fi S(fl)/g:1 5(£3)
7 Peak Q7 = maz|z;| N N
8 Peak Indices Qg = QGJ/V921 6 Paramter 6 Fy = 21 ]"145'(]‘1)/21 leS(fZ)
— 1= 1=
9 Variance Qg = % > (@i — 0)? N N N
=0 7 Paramter 7 | F3 =Y f25(£:)/4/ > S(fi) > fAS(fi)
_ (1 3 i=1 i=1 i=1
10 Square root mean Qo = (§ ‘Zo Vizil?) 3 Paramter8 | Fi=o/f
i=
N—1 N, —
11 Absolute mean 01 = % e 9 Paramter9 | Fs5 = (izl(fi - N3S(f1))/(a3N)
=0 ~
12 Wave form indices Q12 = Q2/Q11 0l P ter 10 | Fr — N _ FAS(f 4N
13 Peak — Peak value Q13 = max(z;) — min(x;) aramer 6 (El(f’ 1S/ (@"N)
14 Pulse indices Q14 = Q7/Q11

In general, there are at least 14 time domain statistical charac-
teristic parameters for the non-stationary monitoring signals
called vibration response signals, as shown in table 1. For
other types of non-stationary monitoring signals, the spatial
transformation can be selected from these time domain meth-
ods on satisfying the two basis conditions of time-domain
spatial scale transformation.

As shown in table 1, the commonly used time domain char-
acteristic parameters are mainly divided into dimensioned
and dimensionless. For example, the peak value reflects
instantaneous characteristics, and the root mean square value
reflects the energy of the non-stationary monitoring signals.
In fact, many statistical characteristics of the non-stationary
monitoring signal will change with the change of the system
operation state during the practical operation of an industrial
system. Faults and abnormalities have different statistical
parameters in different types of the operation conditions.
Therefore, it can be used as a transformation method on time
domain scale to extract signal features.

2) FREQUENCY DOMAIN SPATIAL TRANSFORMATION
As aforementioned before, multi-domain spatial transforma-
tion not only needs to maintain the characteristics on time
domain, but also needs to maintain the essential information
on frequency domain [22], [23], [26]-[29]. This sub-section
mainly focuses on characteristic parameters on frequency
domain after determining the unity of signal time scale 7.
Similarly, frequency domain spatial transformation can
be considered as the time domain. It also needs to meet
two basic requirements: to maintain the original frequency
domain characteristics as much as possible, i.e., the ratio-
nality of the frequency domain characteristics; the frequency
domain characteristics should have a sufficiently clear
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physical meaning, i.e., the particularity of the frequency
domain characteristics.

For non-stationary vibration response monitoring signals,
there are generally at least 10 frequency domain statistical
feature parameters, as shown in table 2. Similarly, meth-
ods selection can be made from these frequency domain
spatial transformation methods as needed for other types
of non-stationary monitoring signals. As shown in table 2,
the main content of frequency domain feature statistics is to
obtain relevant frequency domain features or other features
derived from the system operation monitoring signals.

In the view of energy change, frequency domain features
are the statistical analysis of the main frequency band, and
the law of frequency distribution can be used to describe the
characteristics in frequency domain, such as the center of
gravity frequency, the mean square frequency. The previous
statistics of frequency domain characteristic parameters are
mainly used for feature extraction in frequency domain, such
as in rotating machinery and bearings.

3) TIME-FREQUENCY DOMAIN SPATIAL TRANSFORMATION

In practical industrial operation processes, the character-
istics on frequency and time domain are often changing
with time. Therefore, time and frequency domain spatial
scale should be leveraged together to realize the descrip-
tion [30]-[38]. For non-stationary monitoring signals,
the more effective time-frequency domain analysis meth-
ods mainly include Short-Time Fourier Transform (STFT),
Wavelet Transform (WT), Wigner-Ville Distribution (WVD)
[29]-[34]. This paper mainly investigates the advantages
and disadvantages of these two different methods named
STFT and WVD based on previous studies, and constructs
a time-frequency joint method to realize the transformation
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of non-stationary monitoring signals on spatial scale of
time-frequency domain, as shown in figure 4.

a: SHORT-TIME FOURIER TRANSFORM(STFT)

STFT is proposed to solve the defect of global frequency
distribution characteristics by Fourier transform. It generally
needs to segment the signal on time domain to perform
Fourier transform on the signal segment in each time window
to obtain local frequency information. Its calculation can be
expressed as follows.

STFT,(t, w) = /x(t)y(t — e gz, )

where y(7) can be considered as the time window function.

Equation (4) can be used to tell that feature extraction of
non-stationary monitoring signal by STFT method can be
regarded as a two-dimensional spatial function on time and
frequency domain. Since the window function has a finite
length and width on both time and frequency domain scale.
Therefore, STFT has a time-frequency analysis function with
a certain description capability, and it is suitable for feature
extraction of non-stationary monitoring signals.

Generally, after the preformation of short-time Fourier
transform on non-stationary monitoring signals, the spectrum
can be obtained by squaring, and the calculation method can
be described as follows.

SPEC,(t, ) = |STFT.(t, w)|>. 5)

As shown in equation (5), the spectrum of monitoring sig-
nal can be regarded as a positive real value. Spectrograms are
generally widely used mainly because their simple concepts
and convenient calculations, which can be used to roughly
describe the time-frequency distribution characteristics.

b: WIGNER-VILLE DISTRIBUTION(WVD)

The Wigner-Ville distribution was proposed by Wigner
in 1932, and it was introduced by Ville into the field of signal
analysis. It is the most widely used quadratic time-frequency
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analysis method. When this method is used to perform inte-
gral transformation on any signal, it is used twice, so this
method is a quadratic time-frequency analysis method. Its
calculation method can be described as follows.

oo

1
2

X+ 2)x(t — Sy dr. (6)
—o 2 2

Above analysis of STFT and WVD methods can be
employed to tell that the time window of short-time Fourier
transform is basically fixed. While the WVD method has
cross-terms when analyzing non-stationary vibration sig-
nals, which brings great interference to the time-frequency
analysis. As shown in figure 4, the detailed steps of the
time-frequency domain joint spatial scale transformation can
be described as:

e using the unified time interval of original non-stationary
monitoring signals, it can be amplified to time period of
the time-frequency spatial scale transformation, so that the
monitoring signal can be divided into a series of segments;

e different time-frequency transform methods are used
for each segment of the signal, such as short-time Fourier
transform STFT, Wigner-Ville distribution, etc., to obtain a
segment spectrum maps;

¢ using the method of calculating the average value, calcu-
lating the mean value of each spectrum pattern;

e with time as the horizontal axis, and frequency as the
vertical axis, and the color as the amplitude, it can be used to
construct the spectrum of non-stationary monitoring signals.

C. FEATURES WITH UNKNOWN PROBABILITY
DISTRIBUTION

Deep Neural Network (DNN) is the basis of many mod-
ern artificial intelligence applications. Its advantage can be
regarded as to extract high-level abstract features, so as to
obtain effective representation of a large amount of input
data. RBM can be considered as a special case based on
energy generation model, which can be used to learn the
inherent intrinsic representation, and to provide a learning
method for non-stationary monitoring signals with unknown

VOLUME 8, 2020
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FIGURE 5. Schematic of Architecture for Restricted Boltzmann Machine.
The symbol can be described as: ny, nj, represent the number of neurons
contained in visible and hidden layers, respectively; v, h represent visible
and hidden nodes. v = (v;,v;,...,vn, )T € R™ are state vectors for
visible layer, v; represents the state of the i-th neuron in visible layer.
h=(hy,hy,..., h,,h)T € R"h is hidden layer state vector, and hj
represents the state of the j-th neuron in hidden layer.
a=(ay,a,...,an,)T € R" are the offset vector for visible layer, and g;
is the offset of the i-th neuron in visible layer.

b= (by,b,,...,bn )T € R"h present the offset vector for hidden layer,
and b; is the offset of the j-th neuron in hidden layer.

w = (wj;) € R"h*" is the weight matrix between visible layer and
hidden I’ayer, and wj; is the connection weight between the j-th neuron in
hidden layer and the i-th neuron in visible layer.

probability distribution [10], [18], [24], [25], [35]-[42].
Therefore, this section proposes a method based on SDBN
to extract features with unknown probability distribution for
non-stationary monitoring signals.

1) RESTRICTED BOLTZMANN MACHINE (RBM)

Artificial neural network can be regarded as a mathematical
description of the first-order of human brain system, and it
means that the computer system can be used to simulate the
human brain structure to some extent. Many neural nodes
can be used to construct a topological space with certain
intelligent behaviors, which can be used to realize the process
of learning, thinking, remembering, and recognition, and to
behave like human brain function. As far as the connection
form of neural network, RBM can be considered as a stochas-
tic neural network based on a probability graph model.

a: NETWORK TOPOLOGY

The RBM can be considered as a bipartite graph containing
a visible layer and a hidden layer, and the neuron nodes of
either visible layer or hidden layer are unconnected, while
the neuron nodes between the upper and lower layers are
fully connected, as shown in figure 5. Generally, the visible
layer unit is used to observe certain aspects of the data, while
the hidden layer is used to obtain the dependencies between
the corresponding variables of the visible layer unit, often
referred to feature extraction layer.

b: ENERGY FUNCTION AND PROBABILITY DISTRIBUTION

RBM can be considered as a model based on the law of energy
distribution, which can be defined as an energy function
and can be used to construct a series of related probability
distribution function sets. These function sets can be used for
reconstructing almost any input to achieve feature extraction
and fusion. For a given set of unit states, the energy function
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can be described as follows.

ny, np

ny ny
Eo(v, h) = — Z av; — Z bjh; — Z Z hwjvi,  (7)
i=1 j=1

i=1 j=1

where, 6 = (w, a, b) are the parameter vector of RBM. The
joint probability distribution of the unit states (v, i) can be
obtained by the energy function (7).

1
Po(v. ) = Z-e P, ®)

where, Zy is the partition function, and it can be calculated by
the following equation.

Zy =3 e ED, ©)
v,h

In fact, when solving practical problems, a likelihood func-
tion can be used to characterize the probability distribution
Py (v) corresponding to the input data v of the visible layer,
which can be expressed as follows.

Paw = S Py = 5 S BN (10)
h h

Similarly, the likelihood function can also be used to char-
acterize the probability distribution Py(h) corresponding to
the hidden layer data 4, and which can be expressed as

Py(h) =Y Py(v.h) = Zlgze*’fﬁ@»h). (11)

Considering the state of all neurons on a given visible layer
(hidden layer), the probability that a neuron on the hidden
layer (visible layer) is activated (i.e., takes a value of 1) can
be expressed as

Po(hy = 1|v) = f (b + Zwk,ivi),
i (12)

np
Po(vi = 1) =f(ax + Y _ wjhy).
j=1

where, f () is the Sigmoid function.
From equation (12), the following function can be
obtained.

h
Py(hlv) = [] Po(hylv),
U (13)
Pa(vIh) = [T PoGulh)
i=
As shown in equation (13), it is easy to know that when the
state of the visible layer neurons is given, the activation con-
ditions of the neurons of each hidden layer are independent
from each other; conversely, when the state of the neurons
in the hidden layer is given, the activation conditions of the
visible layer neurons are also independent.
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2) NETWORK TRAINING AND LIKELIHOOD FUNCTION

Training RBM can be regarded as to adjust the model param-
eters to fit a given input training sample. In other words,
the optimal parameters should be found to achieve that the
probability distribution of RBM is as close as possible to
the training sample data. Generally, training RBM can be
considered as to maximize the following likelihood function.

ns ng
InLys=Mm[[Pe(v) =) InPe), (14)

i=1 i=1

where, S = (vl, V2, , V'S) are given training samples. V=
4, v, ..., vi)T is the state of visible layer unit. ng is the
number of training samples.

Gradient ascent method can be considered as the
most commonly used numerical method for maximizing
equation (14), i.e., it can be approximated by an iterative
approach. The iterative formula can be described as follows.

dlnly g
6:=6 _—, 15
tin—0 (15)

where, 7 > 0 is the learning rate. The key of maximization
likelihood function relies on the gradient d In Ly 5/96.

For training samples S = (v!,v2, ..., ™), the gradient
can be calculated by the following function.
dlnLy g _ 0 1n Py(v™)
0 90
_ 1 Z —Eg(v h) 3E0 (V h)
Z 3 e~ Eo0 ) 00
1 Z —Ep(V™,h) aEQ(V l’l)
Z eiEG(Vm m v b 89

vt h

0E, h
_ ZP(M m) 9(\/ )

+ ZP(V’", h)—aE";ve 208

Vi h

(16)

Equation (16) means that gradient d1lnLy /06 can be
regarded as the calculation of two expectations: one is
%:P(hh/’”)%g’h) corresponding to the expectation calcu-

lation of energy gradient function dEy(v™, h)/06 under the
condition distribution P(h|v™). Another one presented by

> POM, h)%‘gn’h) corresponding to the expectation calcu-
yin, h
lation of energy gradient dEg(V", h)/d6 function under the

joint probability distribution P(v", h). After further deriva-
tion, the following function become available.

BIHLH’S m
T _E [P(h; = 1|v )v E PW)P(h; = 1|v)v;],
3lnLg’s
% E E P)vi],
dlnLg s m
8—_§ [P(h; = 1]V") — E P)P(h; = 1[v)].

17)
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Generally, levering conventional methods to find the solu-
tion of equation(15) is still an extremely slow process. The
main reason can be considered as that a series of complex
state transitions must be adopted to achieve the RBM fit-
ting the training sample distribution. In order to solve this
problem, Professor Hinton, in 2002, proposed the Contrastive
Divergence (CD) idea to train RBM. CD algorithm with
k-step is simple, and it has become the standard approach for
training RBM. Levering Gibbs sample with k-step to func-
tion v%) approximately estimates the corresponding expecta-
tion ), which can be described as follows in detail.

L
w= 22205 o iy = 1VOWO Py = 100
ow;j J J
alnL
. 0.5 O _ 0
a0t -
n
ab= abg’s ~ P(h; = 1V) — P(h; = 1y®).
i

(18)

At this time, gradient calculation related to maximum like-
lihood function Ly s become specific and calculativiable.

3) ENERGY FUNCTION MODEL FOR FEATURES WITH
UNKNOWN PROBABILITY DISTRIBUTION

Energy function model can be regarded as a universal
method framework, which is built on stochastic neural net-
work. Generally, The concentrated the probability distribu-
tion, the smaller the energy of the system. Correspondingly,
the minimum value of system energy function corresponds to
the most stable of the entire system.

The energy based model captures the dependencies
between variables by applying a range of energy to each
configuration of the variables. The core task of the model is
to infer and learn:

o the inference task is mainly to find the configuration of
the implicit value of the energy in given observation variable;

e the learning task can be considered as to find an appro-
priate energy function, so that the energy of observed variable
is more lower than implicit variable.

It can be seen that the energy model constructs a probability
graph model via correlation between variables, i.e., the degree
of correlation between variables can be represented by energy
level, and the correlation of variables can be represented by
graphs, and the probability measure model can be introduced
to form a probability graph model. Suppose the energy func-
tion between hidden layer and visible layer of RBM can be
known, then the energy function can be calculated by related
nodes in hidden and visible layer. The energy function can be
regarded as the joint probability density of visible and hidden
layers.

e—E(v,h)
p(v, h) - W. (19)
v,h

Equation (19) can be employed to see that the RBM
defines the probability of its occurrence by the energy
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FIGURE 6. Schematic of architecture for deep belief neural network.

function, i.e., the probability of occurrence of the unknown
distributed data. For unknown probability distribution func-
tions, the value of RBM nodes is probabilistic and random.
Conditional probability density and edge probability density
can be calculated by joint probability. Thus, the edge density
function can be obtained from the joint probability
density function.

Z e~ EW.h) Z e—EW.h)
h

pv) = W,P(h) = W' (20)
v,h v,h

Similarly, the joint probability density function can be used
to obtain the conditional probability density function, which
can be described as follows.

—E(v,h) —E(v.h)
p(vlh) = W,p(hlv) = W- 2D

v h

Suppose sample space 2 consists of many different train-
ing samples X, g is the distribution of input samples, and
q(X) is the probability of training samples, and p is the edge
distribution of the visible layer v in the joint probability
distribution of RBM. Therefore, the training samples X for
each different case correspond to their probabilities, and the
Kullback-Leibler divergence between the truth probability
distribution of the input sample set and the edge probability
distribution of RBM can be expressed as follows.

q(x)
KL = In—=
@lp) ékm“m>
= > q@Ingx) — Y qx)Inp(x). (22)
XeQ XeQ

Equation (22) means that the probability distribution of
input samples is consistent with the joint probability distribu-
tion of RBM. Then the divergence KL(q||p) approaches zero,
otherwise it is a value greater than zero. In addition, the first
term of equation (22) represents the entropy of the input sam-
ple, while the input sample is fixed, the entropy value is also
fixed, which can be regarded as a constant. And in the sec-
ond term, when the input sample is fixed, it is also fixed.
Only when the maximum is reached, the divergence can be
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minimized. For practical calculation application, maximum
likelihood estimation can be used to solve these problems.

The energy model of RBM tells that RBM can be regarded
as unsupervised learning method, and its purpose is to maxi-
mize the fit of the input and output data; for a certain data-set,
it is very difficult to search the solution by the conventional
method when the probability distribution is unknown. How-
ever, any probability distribution feature can be transformed
into a energy-based model, which can be employed to provide
object function and target solution for unsupervised learning
method, so that the learning of unknown probability distribu-
tion feature become easily realize.

4) SPARSE DEEP BELIEF NETWORK (SDBN)

Professor Hinton et al. [46] of Toronto University proposed
layer-by-layer unsupervised pretraining of RBM to learn dif-
ferent levels of feature representation. Each layer of feature
representation can be obtained via the previous representa-
tion change. Therefore, Deep Belief Network(DBN) can be
formed by stacking all layers of RBM, as shown in figure 6.

a: DEEP BELIEF NETWORK(DBN)

As shown in figure 6, DBN generally consists of one visible
layer, one output layer and several hidden layers. The first
layer of RBM is constructed by one hidden layer and one
visible layer, and the others are constructed by two hidden
layers, and the output layer is a Back Propagation neural
network. When stacking DBN, the output layer (hidden layer)
of previous RBM can be used as the input layer (visible layer)
of next RBM unit. By loop iterations, it can form the basic
structure of DBN, and an output layer can be finally added to
form final DBN [43]-[49].

Generally, when combining the visible layer, several hid-
den layers and the output layer, DBN can be regarded as an
Error Back Propagation(BP) neural network in some extent.
In fact, the final layer of DBN, along with the output layer,
can be considered as a standard BP neural network. Through
unsupervised layer-by-layer greedy training, the entire DBN
can be trained to form the forward direction, and then the
BP neural network can be used to supervise fine-tuning the
entire network to improve the feature extraction ability and
recognition efficiency of DBN.
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b: SPARSE DEEP BELIEF NEURAL NETWORK (SDBN)

RBM generally provided better performance when the num-
ber of neurons in hidden layer is small. In fact, in order to
improve the learning performance of neural network, it is
necessary to increase the number of hidden layer units in
network, which in turn increases the difficulty of data analysis
and calculation, and submerges the essential data features.
Sparse code technology can effectively remove redundant
information and obtain the most essential knowledge of
inputs.

Lee et al. [48] and Yin et al. [49] proposed an idea
in 2008 that leveraging the sparse representation and RBM,
which can be regarded as an important method to improve
computational efficiency. This method is to sparsely optimize
the activation process of the hidden layer unit in RBM, so as
to give the feature learning with sparsity and better abstract
the essential characteristics of the data. The core idea of this
method can be regarded as to add a sparse penalty term based
on the log-likelihood function, so as to control the activation
level of RBM hidden layer unit. The optimization problem
can be briefly described as follows.

) ny np 1 ny h 5

min Lg==3 InPo(r)+3 ) lp—-- 3 EQI 23
=1 j=1 =1

where, E (%) is the conditional probability of given samples.

A is regularization parameter. p is the parameters controlling

the average activation level of the neurons in hidden layer,

and it can be calculated by formula (24).

From equation (23), it can be known that the parameters
of sparse RBM can still be calculated by gradient descent
method. In fact, the CD algorithm can be employed to update
the parameters first, and then the gradient of sparse penalty
term can be used to update the parameters. Suppose a set
of training samples x = (x1,x2,..., x,,)T € R" without a
category label, and h;(x) indicates the activation level of the
J-th neuron in hidden layer of the input x, then the following
formula can be obtained.

m

1
pi=— iG] (24)

i=1

where, p; presents the average activation level of j-th neuron
in hidden layer on the training set x = {x;}7" ;.

DBN can be regarded as a probability generation model,
which is a stack of several RBMs. The input data is received
by the bottom layer of the network and input itself to the
hidden layer via RBM. And furthermore, RBM can be con-
sidered as an energy-based model, and statistical studied
have shown that any probability distribution can be trans-
formed into an energy-based model, so that RBM can provide
learning methods for feature data that does not know its
distribution.

In practical industrial system, a large number of monitoring
signals are generated when the system is in normal operation,
and the uncertainty factor occupies the main component,
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which is characterized by the unknown probability distri-
bution and lack of prior information. The symptom of the
fault is often in the state lacking related information, and
its probability distribution is unknown. Therefore, the sparse
DBN can be used to extract and identify the unknown features
of the probability distribution for non-stationary monitoring
signals.

D. MODEL TRAINING AND FAULT DIAGNOSIS

As aforementioned, the ability of feature extraction of DBN
mainly reflects in learning unknown probability distribution
features by RBM. The top layer of BP neural network just
acts as a classification or recognition function. Therefore,
the high-dimensional feature set can be used to pre-train
each RBM layer, and finally BP neural network is used for
fine-tuning to achieve feature extraction and fault diagnosis
for non-stationary monitoring signals.

As shown in figure 7, model training, feature extraction
and fault diagnosis can be divided into two major stages, and
eight steps based on the topological structure of sparse deep
belief neural network.

Step 1. Normalize original high-dimensional initial feature
set so that its value is between (0,1).

Step 2. Classify the initial feature set into two categories:
labeled and unlabeled data samples.

Step 3. Determine the number of visible layer nodes of the
first RBM layer according to the input dimensions of initial
feature set.

Step 4. Input the data to the first RBM layer (visible layer),
and the unit state A (the input of next layer) and network
parameters of first layer can be obtained by network training.

Step 5. Input the learned first layer RBM hidden layer
unit state to the visible layer unit v of the second RBM
layer. Similarly, the second layer of hidden layer unit states &
and the second layer network parameters 6 are also learned
according to the foregoing network training method.

Step 6. Repeat step 4 and 5 until all RBM learning can
be completed, and the learned RBM can be expanded to
construct sparse deep auto-encoder neural network with RBM
as kernel.

Step 7. Train the entire SDBN again with the labeled data
samples to obtain the output fused feature set, and leveraging
them for pre-training BP neural network.
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Step 8. Leverage SDBN and pre-trained BP neural net-
work, and then re-adjust the network again to obtain a SDBN
with complex feature fusion and recognition capabilities.

From the perspective of the whole training steps, the first
stage of whole network training includes two processes of
initial training set classification and network pre-training.
The network fine-tuning is mainly in the second stage of
the whole process, and its main purpose can be regarded
as to use the labeled data samples to fine-tune the entire
network again, so that the whole network has the ability of
feature extraction and classification recognition. After the
whole network training completed, the SDBN with certain
feature fusion and classification ability can input anomaly
data to perform abnormal recognition or fault diagnosis.

IV. SIMULATION AND RESULTS

This section employs two simulations, one is about fault
diagnosis of self-confirmation sensor, and another is on fault
diagnosis of rolling bearing, whose data is from Bearing Data
Center of Case Western Reserve University. Final results of
these two simulation experiments can be used to verify the
effectiveness of this proposed method.

A. SELF-CONFIRMATION SENSORS SIMULATION

The top difference between self-confirmation sensors and
general sensors can be regarded as it can not only acquire the
measure object state, but also evaluate its own state, such as its
own performance. This type sensor can be considered as the
new intelligent sensor with self-diagnosis of abnormalities or
faults. Generally, it contains a plurality of sensitive compo-
nents, and the composition of its structure is also complex.
Therefore, the involved theoretical methods of fault diagnosis
are relatively complicated and technically difficult.

The self-diagnosis part of abnormalities or faults can be
carried out by relevant self-installed operation unit, which
mainly based on the sensing of external environment changes
by multiple types of sensitive device, and the sensors states
can be realized through analysis and processing of multiple
signals. The core principle of fault diagnosis is to use the
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correlation between the output of different sources of sen-
sitive systems to generate redundant information, so as to
realize fault detection and diagnosis. Conclusion can be easily
obtained that signal source is multiple, and the measured
signal is often a non-stationary monitoring signal, which is
very suitable for the simulation test for this proposed method.

1) MULTIPLE SOURCE NON-STATIONARY MONITORING
SIGNALS OF SELF-CONFIRMATION SENSORS

As shown in figure 8, existing intelligent sensor system basi-
cally obtains original measurement information by adding a
plurality of sensitive devices made of different materials in
the probe portion, i.e., the sensitive array is always used for
measurement at the front of the sensor. The output data of
sensor arrays of different sources is usually non-stationary
monitoring signals analog-to-digital converted.

These multiple source non-stationary monitoring signals
can not only improve the sensing accuracy of monitored
object changes, but also perform self-detection and recog-
nition of the entire sensor operation abnormality or fault.
Self-confirmation sensors usually monitor outside vibration
response signals, sound signals, pressure signals, stress sig-
nals and so on, and then to generate monitoring signals via
analog-to-digital conversion circuit. The top three charac-
teristics of these signals are regarded as multiple sources,
non-stationary and nonlinear.

2) SIMULATION FRAMEWORK OF FAULT DIAGNOSIS
Self-confirmation sensor abnormality or fault diagnosis can
be considered as an important research content to ensure the
normal operation of sensor measurement system. This sim-
ulation section only takes the monitoring signal of multiple
sources as the study object, and constructs multiple domain
spatial transformation and abnormality or fault diagnosis
method based on SDBN, and finally, verifies the effectiveness
and validity of this method.

As shown in figure 9, the idea and procedure of
self-confirmation for fault detection and diagnosis are mainly
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FIGURE 9. Schematic of abnormal identification of self-validating sensor.

divided into two steps: one is feature extraction and feature
fusion diagnosis. Feature extraction mainly uses distributed
multiple domain spatial transformation to calculate features
output of each source to form the initial feature sets of mul-
tiple sources. And then, the initial feature sets of multiple
sources feed into the SDBN for anomaly detection and diag-
nosis.

From self-confirmation process of global sensor operation
state, although fault diagnosis is usually divided into three
steps: feature extraction, feature fusion and feature recogni-
tion. However, there is no obvious boundary between them,
and feature fusion of SDBN can also be regarded as a process
of feature extraction in practical application.

3) SENSOR FAULT MODE AND ITS CHARACTERISTICS
Generally, the information source of sensor mainly comes
from measurement signals of each sensitive unit, and the
state of each sensitive unit exhibits on the abnormality in
monitoring signals, which can be regarded as three types: jam,
gain and drift. And all of these influence the performance
of the whole sensor with four patterns: normal, deviation,
accuracy degradation and drift. Among these abnormalities,
only normal can be considered as a non-abnormal operation
state, which can be used to reflect the measured object, and
others need to be adjusted, as shown in figure 10.

From figure 10, it can be known that self-confirmation
sensor output with reduced accuracy has a large amplitude
fluctuation. The amplitude of self-confirmation sensor mea-
sured by drift is gradually decreasing. The amplitude of
deviation abnormality is the largest. All of above is subjec-
tive judgement, but when the sensor performs information
measurement, it is impossible to judge whether the sensor
is abnormal or not, such as the output signal with reduced
accuracy shown in figure 10.

Therefore, when sensor receives the external environment
information from each sensitive unit, it needs to first deter-
mine whether the sensoraf's measurement output is abnormal
or not. If there is no abnormality, the measured value can be
directly output, otherwise, the abnormal source identification
needs to be further identified.

Since self-confirmation sensors require the high-precision
measurement values, a large number of sensitive modules are
often installed in source part. When the materials of sensors
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TABLE 3. Parameters settings of SDBN.

Name SRBM; | SRBM> | SRBMs3
Number Neurons 100 100 50
Learning Rate 0.008 0.008 0.015
Training Iterations 200 150 150
Mini-batch 4 3 3

100 e

100

100 o

0 SREM-2 100

FIGURE 11. Weights visualization of sparse deep belief networks.

are different, monitored signals of different objects are often
non-stationary signals. This section uses four different sensi-
tive with non-stationary signals.

In past, wavelet transform or empirical mode decom-
position can be used for abnormal or fault classification
with non-stationary signal, so this section directly performed
multi-domain spatial transformation on each sensitive unit to
verify the effectiveness of the proposed method

4) SDBN TRAINING WEIGHTS AND THEIR ANALYSIS
When training SDBN, its initial feature set is com-
posed of multiple transformation in time, frequency and
time-frequency domain, and the total of its dimension is
100. Since the structure of SDBN is stacked layer-by-layer,
the first layer RBM is trained with all training samples,
and second layer RBM is also trained as to first layer. All
parameters of this trained model have been shown in table 3.
Generally, the size of mini-batch can be regarded as the
number of classes, so it is set to 4. The first layer is the
initial feature dimension 100. Initial feature set is dimension-
reduced. Therefore, the model parameter is set to 100-100-50,
and the weight of model training is shown in figure 11.
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TABLE 4. Recognition results of self-validating sensor.

Fault Mode | Normal | Deviation | Degradation | Drift
Normal 97.76 0.62 0.65 0.65
Deviation 2.48 95.04 0.23 0.32
Degradation 0.00 0.00 100.0 0.00
Drift 0.00 0.00 0.00 100.0

TABLE 5. Recognition results comparison of self-confirmation sensor
fault diagnosis method.

Fault Wavelet | EEMD LMD this
Mode +SVM +SVM | +Soft-max | method
Normal 95.87 97.67 90.35 97.76
Deviation 93.33 99.01 87.36 99.04
Degradation 98.79 98.43 79.54 100.0
Drift 99.13 99.19 92.65 100.0

The weights of the first layer SRBM in SDBN have slight
differences.

However, the second and third layer further abstract
the output of first layer. Throughout this whole pro-
cess, the effects presented are obvious, indicating feature
re-extraction and fusion selection have achieved expected
effect. It should be noted that feature selection is performed
in a dimension reduction manner when the extracted features
is subjected to fusion.

5) SIMULATION RESULT AND CONCLUSION

The result of final simulation experiment can be regarded as
to identify whether the entire self-confirmation sensor has
an abnormality and what kind of it has occurred, i.e., to
identify three abnormalities of self-confirmation sensor. The
results in table 4 are the average of initial feature set using
multi-domain spatial transform, and then the average value
of SDBN.

As shown in table 4, the accuracy of these three types of
fault diagnosis is up to 100% from the accuracy perspective
of fault diagnosis, and the lowest is 97.76 % . It is sufficient to
demonstrate that foregoing method can achieve effectiveness
of fault detection and diagnosis for self-confirmation sensor.

To better illustrate the effectiveness of this method, this
section also compares with other methods of self-confirmation
sensor fault detection and diagnosis. The data can be found
in [43], as shown in table 5. By comparing the other three
methods to realize the abnormal state detection and recog-
nition of self-confirmation sensor, this method can obtain
a good recognition performance in all four states, and the
recognition rate is up to 100%, which verifies the effective-
ness of this proposed method in this article.

B. BEARING FAULT DIAGNOSIS SIMULATION

As an important bearing rotating component, the bearing has
fast running speed and complicated lubrication conditions.
At the same time, it has to withstand the harsh environ-
ment of high pressure, high speed, strong vibration and large
stress. Through the research on bearing fault detection and
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diagnosis, it can be used to improve the safety and reliabil-
ity of rotating machinery. For mechanical components like
rolling bearings, monitoring signals often exhibit significant
non-Gaussian, non-stationary and non-linear characteristics.
Therefore, fault diagnosis for rolling bearings is very suitable
for verifying the effectiveness of this proposed method.

1) THE SIMULATION DATA INTRODUCTION

The simulation data is derived from bearing data center of
Case Western Reserve University in U.S. Vibration signal
collected by acceleration sensor under different loads and
damage environments, and it can be regarded as a typical
non-stationary monitoring signals, which has become the
verification standard data-set for bearing fault diagnosis. This
simulation experiment uses the 6205-2RS SKF deep groove
bearing, as shown in figure 12.

The non-stationary monitoring signals can be classified
into four mode: normal, inner race fault, outer race fault
and ball fault. The sampling frequency is 12KHz. Bearing
load is Ohp, lhp, 2hp, 3hp, corresponding to motor speed
of 1797, 1772, 1750 and 1720 rpm. This section uses a single
fault where the spark is injected at the 3 afclock position
of bearing with a depth of 0.021 inches. The data length of
each non-stationary monitoring signals is about 120000, and
50 data samples are reconstructed. Each sample signal length
is 2000 sample points, and there are about 800 samples.
Figure 12 has shown different types of monitoring signals.

2) SIMULATION PROCEDURE

Bearing fault diagnosis is generally achieved by monitoring
its vibration signals, in which the top characteristic is non-
linear and non-stationary. Finally, this simulation experiment
has the following steps:

Step 1. Constructing product function (PF) component set.
The local mean decomposition (LMD) can be used to decom-
pose the original vibration monitoring signals to form the
initial feature set of PF set.

Step 2. Build an initial feature set. Multi-scale sample
entropy, Mel-frequency cepstrum coefficienttMFCC) and
multi-domain spatial transform can be regarded as suitable
methods to extract coarse-grained features of the PF set,
which can be used to form an initial feature set.

Step 3. SDBN modeling training. The initial feature set can
be classified into two parts: one is labeled sample set and the
other is unlabeled. The SDBN can be pre-trained according
to training method by unlabeled initial feature set, and then
fine-tuned by labeled samples.

Step 4. Output results. Input test samples and get the result of
fault diagnosis.

The simulation calculates sample entropy of PF2 com-
ponent obtained from non-stationary monitoring signals by
LMD, and which can be used to depth describe the character-
istics of rolling bearing under different operation conditions.
Sample entropy has shown that it is smaller of fault condition
than that of normal operation. The reason is that when bearing
is in normal operation, the bearing system is in an orderly
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FIGURE 12. The rolling bearing simulation experiment and vibration signals of four states.
TABLE 6. Average recognition results of four states with variety TTTRs.
Train-to-Test Ratios (TTTRs)
Samples State o1 [ 82 | 73 | 64 | 55 | 46 [ 37 [ 28 | 19
Ball 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.71 | 97.57 | 94.37 | 89.58
Ball Fault Inner-Ring 0.00 0.00 0.00 0.00 0.00 0.23 0.64 532 | 10.38
Outer-Ring 0.00 0.00 0.00 0.00 0.00 0.22 0.64 1.31 0.98
Normal State | 0.00 0.00 0.00 0.00 0.00 0.57 1.28 1.47 0.95
Ball 0.00 0.00 0.00 0.00 0.16 0.47 3.05 1337 | 21.86
Inner-Rine Fault Inner-Ring 100.0 | 100.0 | 100.0 | 100.0 | 99.56 | 98.88 | 96.25 | 86.76 | 72.47
& Outer-Ring 0.00 0.00 0.00 0.00 0.06 0.44 0.44 0.96 2.78
Normal State | 0.00 0.00 0.00 0.00 0.19 0.08 0.07 1.83 1.29
Ball 0.00 0.00 0.00 0.00 0.00 1.04 0.73 2.10 4.52
Outer-Rine Fault Inner-Ring 0.00 0.00 0.00 0.00 0.00 0.88 0.44 1.73 2.98
& Outer-Ring 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 96.28 | 95.74 | 93.44 | 68.76
Normal State | 0.00 0.00 0.00 0.00 0.00 0.47 0.08 0.38 3.30
Ball 0.00 0.00 0.00 0.00 0.00 0.00 0.91 1.95 6.06
Normal State Inner-Ring 0.00 0.00 0.00 0.00 0.00 0.10 0.85 1.48 6.88
Outer-Ring 0.00 0.00 0.00 0.00 0.00 0.15 0.25 0.51 2.11
Normal State | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 97.65 | 95.63 | 74.76 | 66.78
TABLE 7. Comparison of bearing fault diagnosis method.
Fault Mode HHT+MDS+SVM | HHT+LLE+SVM | LMD+LLE+SVM | This method
Normal State 99.16 99.87 100.0 100.0
Ball Fault 87.96 97.81 98.99 99.01
Inner-Ring Fault 89.56 99.05 99.45 100.0
Outer-Ring Fault 94.56 95.64 98.99 100.0

working condition, and its entropy is small. Similarly, when
bearing is in a fault operation condition, bearing system is
in an unordered or disturbing working state, and its entropy
value is larger.

This conclusion is consistent with the definition of infor-
mation entropy, and it can be also used to validates the validity
of feature information fusion by sample entropy. Due to space
limitations, this section only shows the sample entropy results
of PF2 under scale factor of 4, and other feature vectors will
not describe.
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3) SIMULATION RESULT AND ANALYSIS

In order to effectively exclude the influence of training sam-
ples on experimental results and prevent them from affecting
the final results of model verification. Table 6 has shown the
accuracy of bearing fault diagnosis when the TTTR is set
to 9 groups: 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9. The
results show that no matter which state the bearing is in, all
fault diagnosis results generally tend to stabilize when trained
TTTR is set to 4:6, indicating that proposed method is less
impacted by training samples amount. When the TTTR is set
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FIGURE 13. The rolling bearing fault diagnosis simulation experiment
framework.

to 4:6, the proposed method can be used to achieve accuracy
of 99.71%, 98.88 %, 96.28 % and 97.65%.

To better illustrate the effectiveness of proposed method,
this section is also compared with other methods for bearing
fault diagnosis. This data can be found in [28], as shown in
table 7. By comparing other three methods to achieve bearing
fault diagnosis, this proposed method can be used to obtain
super performance in the four operation states, and the top
fault diagnosis accuracy is 100%, all of above can be used to
verify the effectiveness of this proposed method.

V. CONCLUSION AND FUTURE WORKS

In practical industrial system, a large amount of monitoring
signals are generated in normal operation state, and uncer-
tainty factors occupy main components. The main charac-
teristic of these signals is unknowing probability distribu-
tion and lacking prior information. This article proposes that
sparse deep belief network can be used to extract features and
achieve fault diagnosis. The specific works consist of three
works:

i) Leveraging different feature space transformation meth-
ods to realize the analysis and feature rough extrac-
tion for non-stationary monitoring signals and to form
high-dimensional initial feature set.

ii) Deep belief network can be used to re-extract fine-
grained features from the initial coarse-grained feature set
with unknown probability distribution.

iii) Finally, BP neural network can be used to realize
fault diagnosis for non-stationary signals. In this article,
deep belief network is only used to realize the re-extraction
features from unknown probability distribution. However,
the interrelationship between multiple features and the sen-
sitivity of different feature to faults are not considered. The
sensitivity of multi-layer RBM internal mapping structure of
SDBN to features has not been studied.

REFERENCES

[1] K. Severson, P. Chaiwatanodom, and R. D. Braatz, “Perspectives on
process monitoring of industrial systems,” Annu. Rev. Control, vol. 42,
pp- 190-200, Jan. 2016.

[2] M. Adil, M. Abid, A. Q. Khan, G. Mustafa, and N. Ahmed, “Exponen-
tial discriminant analysis for fault diagnosis,” Neurocomputing, vol. 171,
pp. 1344-1353, Jan. 2016.

VOLUME 8, 2020

[3]

[4

=

[5

—

[6]

[7]

[8]

9

—

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(25]

Y. Lin, U. Kruger, F. Gu, A. Ball, and Q. Chen, “Monitoring nonstationary
processes using stationary subspace analysis and fractional integration
order estimation,” Ind. Eng. Chem. Res., vol. 58, no. 16, pp. 6486-6504,
Apr. 2019.

Y. Lin, U. Kruger, F. Gu, A. Ball, and Q. Chen, ‘“Monitoring nonstationary
and dynamic trends for practical process fault diagnosis,” Control Eng.
Pract., vol. 84, pp. 139-158, Mar. 2019.

H. Sun, S. Zhang, C. Zhao, and F. Gao, “A sparse reconstruction strategy
for online fault diagnosis in nonstationary processes with no a priori
fault information,” Ind. Eng. Chem. Res., vol. 56, no. 24, pp. 6993-7008,
Jun. 2017.

S.-C. Pei and S.-G. Huang, “‘Fast discrete linear canonical transform based
on CM-CC-CM decomposition and FFT,” IEEE Trans. Signal Process.,
vol. 64, no. 4, pp. 855-866, Feb. 2016.

P. J. Praba and S. S. Vinsley, “An optimal radar signal processor in short
time fractional Fourier transform,” J. Comput. Theor. Nanosci., vol. 14,
no. 6, pp. 2791-2801, Jun. 2017.

X. Xie, D. Yue, and S. Hu, ‘““Fault estimation observer design of discrete-
time nonlinear systems via a joint real-time scheduling law,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 47, no. 7, pp. 1451-1463, Jul. 2017.

H. Ren, J. F. Qu, Y. Chai, Q. Tang, and X. Ye, “Deep learning for fault
diagnosis: The state of the art and challenge,” Control Decis., vol. 32, no. 8,
pp. 1345-1358, 2017.

Q. Liu and S. J. Qin, “Perspectives on big data modeling of process
industries,” Acta Autom. Sinica, vol. 42, no. 2, pp. 161-171, 2016.

R. F. Engle and C. W. J. Granger, “Co-integration and error correction:
Representation, estimation, and testing,” Econometrica, vol. 55, no. 2,
pp. 251-276, Mar. 1987.

Q. Chen, U. Kruger, and A. Y. T. Leung, ““‘Cointegration testing method for
monitoring nonstationary processes,” Ind. Eng. Chem. Res., vol. 48, no. 7,
pp. 3533-3543, 2009.

C. Zhao and B. Huang, “A full-condition monitoring method for nonsta-
tionary dynamic chemical processes with cointegration and slow feature
analysis,” AIChE J., vol. 64, no. 5, pp. 1662-1681, May 2018.

S. Zhang and C. Zhao, “Slow-feature-analysis-based batch process mon-
itoring with comprehensive interpretation of operation condition devia-
tion and dynamic anomaly,” IEEE Trans. Ind. Electron., vol. 66, no. 5,
pp. 3773-3783, May 2019.

S. Zhang, C. Zhao, and F. Gao, “Incipient fault detection for multiphase
batch processes with limited batches,” IEEE Trans. Control Syst. Technol.,
vol. 27, no. 1, pp. 103-117, Jan. 2019.

S. Zhang, C. Zhao, and B. Huang, ‘““Simultaneous static and dynamic
analysis for fine-scale identification of process operation statuses,” IEEE
Trans. Ind. Informat., vol. 15, no. 9, pp. 5320-5329, Sep. 2019.

D. Baptista de Souza, E. V. Kuhn, and R. Seara, “A time-varying autore-
gressive model for characterizing nonstationary processes,” IEEE Signal
Process. Lett., vol. 26, no. 1, pp. 134-138, Jan. 2019.

Z. He, H. Zhou, J. Wang, Z. Chen, D. Wang, and Y. Xing, “An improved
detection statistic for monitoring the nonstationary and nonlinear pro-
cesses,” Chemometric Intell. Lab. Syst., vol. 145, pp. 114-124, Jul. 2015.
A. Firouzi, W. Yang, and C.-Q. Li, “Efficient solution for calculation
of upcrossing rate of nonstationary Gaussian process,” J. Eng. Mech.,
vol. 144, no. 4, Apr. 2018, Art. no. 04018015.

C. Zhao and B. Huang, “Incipient fault detection for complex industrial
processes with stationary and nonstationary hybrid characteristics,” Ind.
Eng. Chem. Res., vol. 57, no. 14, pp. 5045-5057, Apr. 2018.

G. Li, S. J. Qin, and T. Yuan, “Nonstationarity and cointegration tests for
fault detection of dynamic processes,” IFAC Proc. Volumes, vol. 47, no. 3,
pp. 10616-10621, 2014.

C. Zhao and H. Sun, “Dynamic distributed monitoring strategy for large-
scale nonstationary processes subject to frequently varying conditions
under closed-loop control,” IEEE Trans. Ind. Electron., vol. 66, no. 6,
pp. 4749-4758, Jun. 2019.

J. Shang, M. Chen, H. Ji, D. Zhou, H. Zhang, and M. Li, ““Dominant trend
based logistic regression for fault diagnosis in nonstationary processes,”
Control Eng. Pract., vol. 66, pp. 156-168, Sep. 2017.

X. Zou and C. Zhao, “Meticulous assessment of operating performance
for processes with a hybrid of stationary and nonstationary variables,” Ind.
Eng. Chem. Res., vol. 58, no. 3, pp. 1341-1351, Jan. 2019.

A. A. Orlov, A. A. Ushakov, V. P. Sovach, and D. F. Mymrina, “Modeling
of nonstationary processes during separation of multicomponent isotope
mixtures,” Separat. Sci. Technol., vol. 53, no. 5, pp. 796-806, Mar. 2018.

59835



IEEE Access

H. Lei et al.: Fault Diagnosis Methodology Based on Non-Stationary Monitoring Signals

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Y. Lin, U. Kruger, and Q. Chen, “Monitoring nonstationary dynamic sys-
tems using cointegration and common-trends analysis,” Ind. Eng. Chem.
Res., vol. 56, no. 31, pp. 8895-8905, Aug. 2017.

K. Worden, T. Baldacchino, J. Rowson, and E. J. Cross, ‘“Some recent
developments in SHM based on nonstationary time series analysis,” Proc.
IEEE, vol. 104, no. 8, pp. 1589-1603, Aug. 2016.

Z. Xing, J. Qu, Y. Chai, Q. Tang, and Y. Zhou, “Gear fault diagnosis
under variable conditions with intrinsic time-scale decomposition-singular
value decomposition and support vector machine,” J. Mech. Sci. Technol.,
vol. 31, no. 2, pp. 545-553, Feb. 2017.

Z. Zhang, T. Jiang, S. Li, and Y. Yang, “Automated feature learning
for nonlinear process monitoring—An approach using stacked denoising
autoencoder and k-nearest neighbor rule,” J. Process Control, vol. 64,
pp. 49-61, Apr. 2018.

Z. Zhang and J. Zhao, “A deep belief network based fault diagnosis
model for complex chemical processes,” Comput. Chem. Eng., vol. 107,
pp. 395-407, Dec. 2017.

W. Yan, P. Guo, L. Gong, and Z. Li, “Nonlinear and robust statistical
process monitoring based on variant autoencoders,” Chemometric Intell.
Lab. Syst., vol. 158, pp. 31-40, Nov. 2016.

Q. Zhang, L. T. Yang, and Z. Chen, “‘Deep computation model for unsuper-
vised feature learning on big data,” IEEE Trans. Services Comput., vol. 9,
no. 1, pp. 161-171, Jan./Feb. 2016.

N. Bayar, S. Darmoul, S. Hajri-Gabouj, and H. Pierreval, “‘Fault detection,
diagnosis and recovery using artificial immune systems: A review,” Eng.
Appl. Artif. Intell., vol. 46, pp. 43-57, Nov. 2015.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85-117, Jan. 2015.

L. V. Utkin, V. S. Zaborovskii, and S. G. Popov, “Detection of anomalous
behavior in a robot system based on deep learning elements,” Autom.
Control Comput. Sci., vol. 50, no. 8, pp. 726-733, Dec. 2016.

J. Leng and P. Jiang, ““A deep learning approach for relationship extraction
from interaction context in social manufacturing paradigm,” Knowl.-Based
Syst., vol. 100, pp. 188-199, May 2016.

W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, “A sparse auto-
encoder-based deep neural network approach for induction motor faults
classification,” Measurement, vol. 89, pp. 171-178, Jul. 2016.

L. Wang, X. Zhao, J. Pei, and G. Tang, “Transformer fault diagnosis
using continuous sparse autoencoder,” SpringerPlus, vol. 5, no. 1, p. 448,
Dec. 2016.

L. Deng, “A tutorial survey of architectures, algorithms, and applications
for deep learning,” APSIPA Trans. Signal Inf. Process., vol. 3, no. e2,
pp. 1-29, 2014,

W. Lu, B. Liang, Y. Cheng, D. Meng, J. Yang, and T. Zhang, “Deep model
based domain adaptation for fault diagnosis,” IEEE Trans. Ind. Electron.,
vol. 64, no. 3, pp. 2296-2305, Mar. 2017.

Y. Xiong and R. Zuo, “Recognition of geochemical anomalies using a deep
autoencoder network,” Comput. Geosci., vol. 86, pp. 75-82, Jan. 2016.
Z.N. Sadough Vanini, K. Khorasani, and N. Meskin, ““Fault detection and
isolation of a dual spool gas turbine engine using dynamic neural networks
and multiple model approach,” Inf. Sci., vol. 259, pp. 234-251, Feb. 2014.
J. Ji, J. F. Qu, Y. Chai, Y. Zhou, Q. Tang, and H. Ren, “An algorithm
for sensor fault diagnosis with EEMD-SVM,” Trans. Inst. Meas. Control,
vol. 40, no. 6, pp. 1746-1756, 2018.

H. Ren, Y. Chai, J. Qu, X. Ye, and Q. Tang, “A novel adaptive fault
detection methodology for complex system using deep belief networks and
multiple models: A case study on cryogenic propellant loading system,”
Neurocomputing, vol. 275, pp. 2111-2125, Jan. 2018.

D. A. Dickey and W. A. Fuller, “Likelihood ratio statistics for autore-
gressive time series with a unit root,” Econometrica, vol. 49, no. 4,
pp. 1057-1072, Jul. 1981.

G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
F. Yang, H. Dong, Z. Wang, W. Ren, and F. E. Alsaadi, “A new approach
to non-fragile state estimation for continuous neural networks with time-
delays,” Neurocomputing, vol. 197, pp. 205-211, Jul. 2016.

H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model
for visual area V2,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp- 873-880.

S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison
study of basic data-driven fault diagnosis and process monitoring methods
on the benchmark tennessee eastman process,” J. Process Control, vol. 22,
no. 9, pp. 1567-1581, Oct. 2012.

59836

HUANG LEI received the Ph.D. degree in control
theory and control engineering from Chongqing
University, China, in 2017. He is currently a Lec-
turer with the School of Computer Science and
Technology, Huaiyin Normal University, China.
His major research interests include fault diagno-
sis, deep learning, and video captioning.

WANG YIMING received the bachelor’s degree
from the College of Computer Science, Chongqing
University of Posts and Telecommunications,
China, in 2014. He is currently pursuing the
Ph.D. degree with the College of Automation,
Chongqing University, China. His research inter-
ests include fault diagnosis, reliability analysis,
and data-driven numerical analysis and their appli-
cations in industrial systems.

QU JIANFENG received the Ph.D. degree in
control theory and control engineering from
Chongqing University, China, in 2009. Since 2009,
he has been with the School of Automation,
Chongqing University, where he is currently an
Associate Professor. His research interests include
information fusion, fault diagnosis, intelligent
systems, machine learning, operation monitoring
systems, control theory and their applications in
complex industrial systems, and so on.

REN HAO was born in Anhui, China. He received
the B.E. and Ph.D. degrees in automation
from Chongqing University, Chongging, China,
in 2014 and 2019, respectively. His current
research interests include data-driven fault detec-
tion and diagnosis, monitoring signals analysis and
process, computers vision and their applications
to large-scale, and complex industrial processes
systems.

VOLUME 8, 2020



