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ABSTRACT Platform Screen Doors (PSDs) have been widely used in modern Asian and European metro
systems due to the advantages of safety, comfort for passengers. Unfortunately, someone or something
will be caught by PSDs and metro doors occasionally, which may lead to serious accidents. Therefore,
the foreign object detection between PSDs and metro doors is a burning problem. Moreover, this problem is
a challenging and still largely under-explored topic. In recent years, we have seen significant improvements
in generic object detection built on deep learning techniques. Accordingly, this paper adopts deep learning
technologies to address the problem of foreign object detection between PSDs and metro doors. To the
best of our knowledge, this is the first attempt to use deep learning to solve the problem. To realize this,
a dataset including 984 real-world images (with 600 × 480 pixels) labeled for six types of foreign objects
(bag, bottle, person, plastic bag, umbrella, other) is developed. Then, we compared the performance of
some state-of-the-art object detection algorithms (such as You Only Look Once -YOLOv3, Single Shot
MultiBox Detector -SSD, and CenterNet) on the dataset. Experimental results demonstrate that the foreign
object detection algorithms based on deep neural networks have achieved excellent results, which not only
improves the accuracy of detection but also give the categories of foreign objects. YOLOv3 - tiny can achieve
the fastest detection speed, up to 200 Frame Per Second (FPS); CenterNet can achieve the best detection
results, up to 99.7% mean Average Precision (mAP).

INDEX TERMS PSDs, metro doors, foreign object detection, deep learning, computer vision.

I. INTRODUCTION
PSD is fast becoming a key instrument in modern metro
systems, due to its comfort and safety. According to theMetro
Industry Standards, a certain gap (as shown in Fig. 1) must
be kept between PSDs and metro doors to ensure the safety
of passengers. Occasionally, people or objects are clamped
in the gap by PSDs and metro doors, which usually leads to
serious accidents. Hence, it holds great practical significance
to solve the problem of foreign object detection between
PSDs and metro doors. For this reason, this paper is focused
on how to detect foreign objects rapidly and accurately.

Over the years, many metro corporations still use manual
observation to determine whether there exists foreign objects
between PSDs and metro doors. In a consequence of the
complex metro systems and the influence of various external
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environments, the false detection rate of manual observation
is high. Moreover, the driverless metro is the inevitable trend
of urban rail transit in the future, so it is no longer possible
to detect foreign objects by manual observation. On one
hand, there are little research on detecting foreign objects
between PSDs and metro doors. On the other hand, with the
development of sensor technology, there has been a lot of
research on the area of foreign objects invasion in general
sense. Thus, some researchers are trying to solve the problem
of foreign object detection between PSDs and metro doors
with traditional sensor technology. Foreign object detection
system based on sensor technology mainly includes the fol-
lowing three ways: infrared multi-beam detector [1], laser-
based detector [2] and video-sensors-based detector [3].

Infrared multi-beam detector and the laser-based detector
work similarly in principle, but the former has a certain
emission angle, and the laser focusing performance is strong.
Infrared multi-beam detector and the laser-based detector are
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FIGURE 1. The gap between PSD and metro door.

point and area detectors, which may cause high false alarm
rate due to vibration. In addition, for large gap platforms,
there will be a huge blind area of detection, which does not
guarantee metro safety.

The video-sensors-based detector is mainly by setting up
the obstacle detection device based on traditional computer
vision between PSDs and metro doors. However, a large
number of features need to design manually in traditional
computer vision [4]–[7]. It is a time-consuming and labor-
intensive task. Moreover, traditional computer vision can
only give the results of the existence of foreign objects, but
the specific categories of foreign objects cannot be known.
Thus, people are needed to see the detection results thenmake
decisions. This can not reduce labor costs to some extent.

With the improvement of computing power, many scholars
have studied the possibility of using deep neural networks
to solve object detection. There have been many excellent
works, such as YOLOv1 [8], SSD [9], Regien-based Con-
volutional Neural Network (R-CNN) [10], Fast-RCNN [11],
Faster-RCNN [12], Mask-RCNN [13], CenterNet [14], etc.
Deep neural networks have strong representation and mod-
eling ability. They can learn the feature representation of
the object automatically through supervised or unsupervised
method layer by layer. Then generate high-level abstract
representation through a series of nonlinear transformation of
the original data, avoiding the tedious and inefficient manual
design features. Object detection algorithms based on deep
learning can be divided into two classes: one-stage and two-
stage. One-stage methods directly regress the class confi-
dence and coordinates of objects (no region proposals), which
is relatively fast. Two-stage methods first generate the region
proposals (possibly containing the object) and then clas-
sify each region proposal (which also correct the location).
Two-stage methods are slower than one-stage methods but
have better performance. The aforementioned YOLO, SSD

belong to one-stage methods. The representative works of
two-stage methods include Fast-RCNN, Mask-RCNN, and
so on.

In this paper, for the consideration of detecting speed,
we choose the one-stage methods to solve the problem of
foreign object detection between PSDs and metro doors.
Firstly, a dataset containing various foreign objects from real-
world is developed. (As we all know, the metro system is a
very complicated system, we tried our best to collect these
data. We will release this dataset for research as soon as pos-
sible and hope it can lay the foundation for future research.)
Then, some one-stagemethods are implemented. These deep-
learning-based models are trained, validated, and tested using
the dataset. The experimental results demonstrate that the
deep-learning-based methods can detect the presence of for-
eign objects efficiently and give the classes of foreign objects.
Therefore, deep-learning-based methods are helpful to assist
the driver in safety detection before driving, which can not
only effectively guarantee the safety of passengers, but also
help to reduce the operation cost. In addition, reducing the
detection time before the driver drives will help relieve the
pressure of people flow and improve the efficiency of metro
operation.

The contributions of this paper can be summarized as
follows:
• To the best of our knowledge, this paper is the first
research to adopt deep learning to solve the problem of
foreign object detection between PSDs and metro doors.
We hope our works can supply new insights for similar
problems.

• Experimental results demonstrate that deep neural net-
works perform excellent. On one hand, deep neural
networks can efficiently detect the presence of foreign
objects. On the other, they can also give the categories of
foreign objects that are present. Therefore, the workload
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of employees can be greatly reduced, and traffic pressure
will be eased.

The rest of the paper is organized as follows. Section II
introduces some important related works. Section III intro-
duces the methodologies of the YOLO series, SSD, and
anchor-free models. Section IV presents the procedure for
generating dataset. In Section V, we present all experimen-
tal details and results of the experiments performed on the
dataset. Finally, the paper is summarized in section VI.
We note that a shorter conference version of this paper
accepted by the 2019 6th International Conference on Sys-
tems and Informatics (ICSAI 2019). The shorter confer-
ence paper has not been published yet, so we can not
cite it. Our initial conference paper only experimented
with one type (anchor-based) of deep learning algorithm.
This manuscript attempts a new type (anchor-free) of
deep learning algorithms and adds a lot of comparative
experiments.

II. RELATED WORKS
A. TRADITIONAL METHODS IN FOREIGN
OBJECT DETECTION
1) INFRARED MULTI-BEAM DETECTOR
The infrared multi-beam is essentially an optoelectronic tech-
nology. It has a pair of transmitter and receiver. The trans-
mitter emits infrared with a certain Angle to ensure that the
receiver can receive it accurately. Thus, a light curtain is
formed between the transmitter and receiver. When an object
enters the area which infrared passes, the infrared is blocked,
which causes the receiver’s internal circuitry to produce an
alarm signal indicating an obstruction.

2) LASER-BASED DETECTOR
The laser-based detector also using optoelectronic technol-
ogy, but a laser signal is emitted. Compared with infrared
light, the laser has the characteristics of strong light, strong
signal, and less signal loss in the process of propagation. The
laser-based detector emits a beam of laser that bounces off
the surface of an object. By reflecting the light, the distance
between the object and the detector can be measured, so the
size and shape of the object can be measured.

Since the infrared multi-beam detector and the laser-based
detector belong to the point and area detector, there is a large
blind area, which will greatly affect metro safety. On one
hand, at least three pairs of transmitters and receivers need
to be installed at different heights to ensure the accuracy
of detecting the presence of foreign objects. At the same
time, transmitter and receiver must be accurately connected
to ensure the accurate reception of the signal. More trans-
mitters and receivers are installed at different heights, more
accurate the detection will be. On the other hand, the rate
of false alarm will increase also due to the actual field
environment (vibration). The maximum detection distance of
an infrared multi-beam detector can reach 15 meters. Thus,
for long-distance detection, the whole system needs a lot of

equipment, which greatly increases the costs and reduces the
stability of the system.

3) VIDEO-SENSORS-BASED DETECTOR
A vision sensor is a machine vision system integrating image
collecting, processing, and transmitting. The video-sensors-
based detector is widely used for detecting the shape, size,
quality of industrial equipment. In traditional machine vision,
the design of good features is the key and bottleneck of
model performance. Manual design features require a lot of
experience, special knowledge of the field and data, and a
lot of debugging. Another difficulty is that the traditional
classifier algorithm belongs to the general classifier, and has
not made special optimization for manual-design features.

B. DEEP NEURAL NETWORKS IN OBJECT DETECTION
1) TWO-STAGE METHODS
The two-stage methods divide the detection problem into two
stages, first extracts a series of proposals, and then classifies
the proposals.

R-CNN applied CNN to extract features, due to the advan-
tage of CNN’s good performance for feature extraction.
Compared with the traditional detection methods, the detec-
tion accuracy of R-CNN had been greatly improved.
Fast-RCNN was based on VGG16 [15], and the training
was end-to-end. At the same time, Fast-RCNN was nearly
9 times faster than RCNN in training and 213 times faster than
R-CNN in testing. The biggest innovation of Faster-RCNN
lied in the propose of Region Proposal Network (RPN),
which used the anchor mechanism to combine the pro-
posal generate and CNN. Region-based Fully Convolutional
Network (R-FCN) used a well-designed position-sensitive
score maps to realize position sensitivity and used fully
convolutional networks, which greatly reduced the network
parameters.Mask-RCNN not only solved the object detection
efficiently but also achieved high-quality instance segmenta-
tion. Cascade-RCNN continuously optimized the results by
cascading multiple detectors. Each detector defined positive
and negative samples based on different IoU thresholds. The
output of the former detector was the input of the latter, and
the later the detector was, the higher the threshold value of
IoU was.

2) ONE-STAGE METHODS
The one-stage methods remove the step for proposal genera-
tion. They usually take the whole picture as input, and carry
out classification and regression at the same time, realizing
the end-to-end detection process and significantly improving
the computing speed.

Inspired by the idea of regression, YOLOv1 used the
one-stage network to directly detect objects, which is fast
but not very accurate. SSD borrowed the ideas of Faster
RCNN andYOLOv1, usesd fixed bounding boxes to generate
proposals on the basis of one-stage networks, and utilized
multi-layer feature information to improve the speed and
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TABLE 1. The deep neural networks used in this paper.

detection accuracy. In YOLOv2 [16], better anchor pri-
ors were defined by performing k-means [17] clustering
on the training data instead of setting them manually.
For the imbalance problems in object detection, Retina-
Net [18] tried to use focal loss to solve it. Combining other
good ideas, YOLOv3 [19] improved prediction accuracy,
especially for small objects, while maintaining its speed
advantage. Based on the network of YOLOv3, Gaussian
YOLOv3 [20] improved the performance of the model by
increasing the output of the network and improving the loss
function of the network.

For the object detection methods based on anchor-free,
YOLOv1 was one of the early representatives, and then
ushered in the blowout period of anchor-free methods. The
main idea of CenterNet was to regress to other bounding box
properties through the information of the key point, such as
the distance between the key point and the four sides, posture,
direction, and other information. Unlike CenterNet regress-
ing from the key point to the boundary distance to get the
bounding box, CornerNet [21] goes the other way. CornetNet
defined the bounding box directly using two corner points:
top-left, bottom-right. It used a set of corners to identify a
target. FCOS [22] used the idea of semantic segmentation,
the problem of object detection is solved by means of per-
pixel prediction.

III. METHODOLOGY
To detect and localize multiple types of foreign objects
between PSDs and metro doors, deep-learning-based meth-
ods are used for quasi real-time processing of images. In this
section, we will give an introduction to some state-of-the-
art object detection deep-learning-based methods, including

SSD, YOLOv3, CenterNet and so on. Table 1 was a simple
comparison of deep neural networks that used in this paper.
From the simple summary in Table 1, we can see that the
methods used in this paper basically have the characteristics
of fast detection speed and high accuracy. This meets the
requirements of real-time detection and can be applied to
practical projects well.

A. MODELS IN THE YOLO FAMILY
In this section, four models in YOLO family are introduced.
YOLOv3 and Gaussian YOLOv3 are the two methods used
in this paper.

1) YOLOv1
YOLOv1 creatively combined the two phases of region pro-
posals step and object recognition step into one. By eliminat-
ing the time-consuming step (region proposal), YOLOv1 was
extremely fast, almost in real-time. YOLOv1 utilized
GoogleNet [23]’s structure. It replaced GoogleNet’s incep-
tion modules with 1 × 1 reduction layers followed by 3× 3
convolutional layers. YOLOv1 was known for its speed,
which can reach 45 FPS. Fast YOLO (with a smaller network)
can even reach 155 FPS. The fast speedwas due to YOLOv1’s
network design, which combined recognition with location.
This unified design allows training and prediction to be done
in an end-to-end way, which was very efficient. The disad-
vantages of YOLOv1 were that the detection effect of small-
scaled objects was not good (especially some small objects
clustered together), the prediction accuracy of the borders
was not very high, and the overall prediction accuracy was
slightly lower than two-stage methods.
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FIGURE 2. Network architecture of YOLOv3.

2) YOLOv2/YOLO9000
Compared with YOLOv1, YOLOv2 had been improved in
three aspects: more accurate prediction, faster speed andmore
object recognition on the basis of maintaining the process-
ing speed. YOLO9000 was an attempt to use a very large
number of classification samples in ImageNet [24] to train
together with COCO [25]’s object detection dataset. This
made YOLO9000 able to detect many objects even if it has
not learned many samples. To further improve the speed,
YOLOv2 proposed the Darknet-19. Darknet-19 was smaller
than the VGG-16 and no less accurate than VGG-16, but the
floating-point computationwas reduced to about 1/5 to ensure
faster speed. Inspired by the idea of Network InNetwork [26],
Darknet-19 used global average pooling to make prediction,
placing the convolution kernel of 1 × 1 between the con-
volution kernel of 3 × 3 to compress features. In addition,
the Batch Normalization [27] was used to train and accelerate
the convergence and regularization of the model.

3) YOLOv3
YOLOv3 improved prediction accuracy, especially for small-
scale objects, while maintaining its speed advantage. The
main improvements of YOLOv3 included: adjusted the net-
work structure; multi-scale features were used for object
detection; object classification used multiple independent
logistic instead of softmax. In parts of basic image feature
extraction, YOLOv3 adopted a new network structure called
darknet-53. It learned from the residual network [28] and set
shortcut connections between some layers. YOLOv2 used
a passthrough structure to detect fine-grained features.
In YOLOv3, three feature maps of different scales were fur-
ther used for object detection. As the number and scale of the

output feature maps changed, the size of the prior bounding
box also needed to be adjusted accordingly. YOLOv2 had
started to use k-means clustering to obtain the size of the
prior bounding box. And YOLOv3 continued this method by
setting three prior bounding boxes for each downsampling
scale, and a total of nine prior bounding boxes with different
sizes can be obtained by clustering. The nine prior bounding
boxes in the COCO dataset were: (10 × 13), (16 × 30),
(33×23), (30×61), (62×45), (59×119), (116×90), (156×
198), (373×326). Moreover, using logistic for prediction was
helpful to support the detection of multi-label objects. The
network architecture of YOLOv3 was shown in Fig. 2.

4) GAUSSIAN YOLOv3
In the project of object detection, the trade-off of speed-
accuracy is very important, and YOLOv3 is outstanding.
Gaussian YOLOv3 improved the network architecture of
YOLOv3 by taking advantage of the Gaussian distribution so
that the network can output the uncertainty of each bounding
box, thus improving the accuracy of the network. Specifically,
Gaussian YOLOv3 implementd the output to the bounding
box reliability by increasing the output of the network and
reconstructing the loss function of the network. Thus, Gaus-
sian YOLOv3 can output the reliability of each bounding
box without changing the network structure of YOLOv3 or
increasing the amount of computation, which improved the
overall performance of the algorithm.

B. SSD
Some of the basic concepts of SSD are presented in this
section. More details about SSD can be found in original
paper. In view of the respective shortcomings and advantages
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FIGURE 3. Network architecture of SSD.

of YOLOv1 and Faster-RCNN, SSD was proposed. The
entire network of SSD adopted the idea of one-stage to
improve the detection speed. Moreover, SSD incorporated
the idea of anchors from Faster-RCNN. Then, SSD per-
formed layered feature extraction, successively calculates
border regression and classification operations. Hence, SSD
can adapt to the training and detection tasks of multiple
scale objects. The backbone network of SSD was VGG-16.
Researchers have made some fine-tuning to make it use-
ful for detection tasks, including using convolution layer to
replace the fully connected layer, removing the dropout layer,
and replacing the final max-pooling layer with an expanded
convolution. However, the main disadvantage of SSD was
that it still has poor recognition of small objects. This was
mainly because small-scale objects are mostly trained with
anchors of lower levels, but the features of lower levels are not
sufficiently nonlinear and cannot be trained with sufficient
accuracy. SSD’s architecture was shown in Fig. 3.

C. ANCHOR-FREE METHODS
1) CenterNet
Different from the SSD and YOLOv3, CenterNet is a typical
representative of anchor-free object detection algorithms.
In general, most of the object detection algorithms usually
identify the objects as axis-aligned boxes in the image.
Many excellent algorithms will exhaustivity potential object
locations and then classify them, which is time-consuming
and inefficient. CenterNet simplified the complexity and
directly predicted the object as a point, completely dropping
post-processing operations such as Non Maximum Sup-
pression (NMS), and applied this method to pose estima-
tion and 3D object detection. In the original paper, four
architectures (ResNet-18, ResNet-101, DLA-34 [29], and
Hourglass-104 [30]) were experimented. Experimental
results show that DLA-34 was the best-performing

FIGURE 4. Network architecture of DLA-34.

architecture. Therefore, DLA-34 was used as our architecture
in this paper. The network architecture of DLA-34 was shown
in Fig. 4.

2) FULLY CONVOLUTIONAL ONE-STAGE OBJECT DETECTION
FCOS is another representative of anchor-free object detec-
tion algorithm. FCOS solved the problem of object detection
by means of per-pixel prediction, similar to semantic seg-
mentation. FCOS implemented the proposal free and anchor
free, significantly reducing the number of hyperparameters.
Designing hyperparameters usually requires heuristic adjust-
ments, and there are many tricks. In addition, by eliminating
the anchor, FCOS completely avoided complex IoU calcula-
tions and matches between the anchor and the ground truth
during training, reducing the total training memory foot-
print by about two times. FCOS can also be used as RPN
of the two-stage detector, and its performance is obviously
better than other RPN algorithms based on anchor. Finally,
with a few modifications, FCOS can be extended to other
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FIGURE 5. An example of annotated image.

visual tasks, including instance segmentation and key point
detection.

IV. DATASET
In this section, the acquisition of the dataset are illustrated in
detail.

A. DATASET CONSTRUCTION
To develop a dataset containing foreign objects as
many as possible, 164 images are collected using High-
Definition (HD) cameras. We first place all kinds of foreign
objects manually between the metro door and the PSD on
the premise of ensuring safety. Then we use the HD camera
to take pictures. The metro station where we collect data is
in Guangzhou, China. Due to the complexity and high safety
requirements of the metro system, our time and conditions for
collecting data are limited. Therefore, the number of images
is small. Since the same fixed light source was used to collect
the data, the visual-angle, the occlusion, and the illumination
have hardly changed. We will release the dataset for research
as soon as possible.

B. DATA AUGMENTATION
In general, a successful neural network needs a large num-
ber of parameters, and many neural networks have millions
of parameters. To make these parameters work correctly
requires a large number of data to train, but the actual
situation is that the dataset we got is very small (just as
mentioned before, we only 164 images). Therefore, we per-
formed a series of flips and crop operations on the images to
obtain 984 images in this paper.

C. TRAINING, VALIDATION, AND TEST DATASETS
The labelImg is labeled with the picture frame, a labeled
sample is shown in Fig. 5. An XML file is automatically
generated for each picture, recording various information of
the picture (file name, storage path, width, height, depth,
object information) and bounding box coordinate information

(top left, bottom right), etc. A total of 984 pictures, divided
into seven classes (normal, bag, bottle, person, other ,
umbrella, plasticbag). To generate the testing dataset, 30% of
the images are randomly selected from annotated images. The
remaining images not selected for the testing dataset are used
to generate a training and validation dataset. Table 2 shows
the details of the dataset.

V. EXPERIMENTS
A. MODELS’ IMPLEMENTATION DETAILS
All experiments are performed on a computer with a Intel
Core i7-6820HK Central Processing Unit (CPU), 32 GB
DDR4 memory, and two GeForce 1070 Graphics Processing
Units (GPUs). The hyperparameters of all deep neural net-
works used in this paper were set according to the original
papers.

1) SSD
The total loss function of SSD as follows:

L(x, c, l, g) =
1
N
(Lconf (x, c)+ αLloc(x, l, g)). (1)

As can be seen, the loss function of SSD contains two items:
localization loss (Lloc) and the confidence loss (Lconf ). N is
the number of matched default boxes. (l) and (g) represent
the predicted box and the ground truth box, respectively. (c)
is the classes confidences, and the weight term α is setted to
one follow the original paper.

2) YOLOv3
YOLOv3 made more subtle design adjustments to YOLOv2
and redesigned a new network with a slightly more complex
structure, improving accuracy while maintaining speed. The
loss function of YOLOv3 as follows:

Loss= λcoord
S2∑
i=0

B∑
j=0

Iobjij [(xi − x̂i)2 + (yi − ŷi)2]

+λcoord

S2∑
i=0

B∑
j=0

Iobjij (2−wi×hi)[(wi−ŵi)2+(hi−ĥi)2]

−

S2∑
i=0

B∑
j=0

Iobjij [Ĉilog(Ci)+ (1− Ĉi)log(1− Ci)]

− λnoobj

S2∑
i=0

B∑
j=0

Inoobj[Ĉilog(Ci)+(1−Ĉi)log(1−Ci)]

−

S2∑
i=0

Iobji

∑
c∈classes

[p̂i(c)log(pi(c)

+ (1− p̂i(c))log(1− pi(c)]. (2)

where λcoord is the weight of the loss of the coordinates of a
boundary box. λnoobj is the weight of the loss when detecting
background. Iobjij is the jth bounding box predictor that is in
the ith cell is valid in prediction. s2 is the number of grid cells.
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TABLE 2. The proportion of training, validation, and test sets. Normal means there are no foreign objects.

B is the number of bounding boxes to be predicted in each
grid cell. xi and yi denote the coordinates of the base point
of the ith bounding box. wi and hi denote the weight and
height of the ith bounding box. Ci is the confidence score of
the jth bounding. pi(c) is the conditional class probability for
category c.

3) GAUSSIAN YOLOv3
Gaussian YOLOv3 estimates the uncertainty of the bounding
box by the following Gaussian model.

p(y|x) = N (y;µ(x),
∑

(x)) (3)

where x is a given test input, y is the output. And µ(x) is the
mean functions,

∑
(x) is the variance functions.

The reconstructed loss function is as follows:

Lx =−
W∑
i=1

H∑
j=1

K∑
k=1

γijk log(N (xGijk |µtx (xijk ),
∑

tx
(xijk ))+ε).

(4)

where Lx is the NLL (Negative Log-Likelihood) loss of tx .
W and H are the number of grids in horizontal and vertical
directions respectively. K is the number of anchors. µtx (xijk )
and

∑
tx (xijk ) are prediction values and variance from the

detection layer respectively. xGijk is the GT of tx .

4) CenterNet
In original paper, CenterNet can be used to do object detec-
tion, 3D detection and pose estimation. In this paper, we only
focus on object detection. More details about CenterNet, can
be found in the original paper. The loss function of CenterNet
as follows:

Lk =
−1
N

∑
xyc

{
(1− Ŷxyc)αlog(Ŷxyc) if Yxyc = 1
(1−Yxyc)β (Ŷxyc)αlog(1−Ŷxyc) otherwise.

(5)

Equation (5) is the loss function of the keypoint prediction.
α and β are hyper-parameters of the focal loss, and N is the

number of keypoints in image I .

Loff =
1
N

∑
p

|Ôp̃ − (
p
R
− p̃)|. (6)

Equation (6) is the loss function of the local offset. CenterNet
conducted downsampling on the image, and accuracy error
would be caused when the obtained feature map was remold-
ing to the original image. Therefore, an additional local offset
was used for each center point.

Lsize =
1
N

N∑
k=1

|Ŝpk − sk |. (7)

Equation (7) is the object size loss.

Ldet = Lk + λsizeLsize + λoff Loff . (8)

Equation (8) is the total loss, which is the sum of keypoint
prediction loss, local offset loss and object size loss.

5) FCOS
The total loss function in FCOS is as follows:

L({px,y}, {tx,y}) =
1

Npos

∑
x,y

Lcls(px,y, c∗x,y)

+
λ

Npos
1{c∗x,y>0}

∑
x,y

Lreg(tx,y, t∗x,y). (9)

where Lcls and Lreg are focal loss and IoU loss respectively.

B. EVALUATION METRICS
The evaluation metrics often used in object detection is mAP,
which is the average of AP (Average Precision) over all
categories. In this paper, we follow the calculation method
prior to VOC2010 [31]: AP is computed by sampling the
monotonically decreasing curve at a fixed set of uniformly-
spaced recall values 0, 0.1, 0.2 . . . 1. In addition to detection
accuracy, another important evaluationmetric of object detec-
tion algorithm is speed. Only fast speed can realize real-time
detection. A common measure of speed is FPS, the number
of images that can be processed per second. Higher value of
mAP and FPS were, better algorithm would be.
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FIGURE 6. The performance of the networks for the testing set.

TABLE 3. Experiments results. The best results are indicated in bold rows.

FIGURE 7. Major modules in YOLOv3.

C. COMPARISON OF METHODS
As can be seen from Table 3, the methods based on deep
learning can achieve impressive results while maintaining a
fast detection speed. YOLOv3 - tiny is the fastest foreign
object detection (200 FPS) method on the dataset, with 87.2%
mAP. Its mAP value is twice than SSD, and the FPS value
is more than three times than SSD. As can be seen from
Fig. 7 and Fig. 8, YOLOv3 - tiny is a simplified version

FIGURE 8. Major modules in YOLOv3 - tiny.

of YOLOv3. The backbone of YOLOv3 - tiny removes the
residual layer and is shallower (only 7 layers, similar to
Darknet-19), which makes YOLOv3 - tiny unable to extract
higher-level semantic features. In addition, compared with
YOLOv3, YOLOv3 - tiny removes some feature layers, only
2 independent prediction branches are retained, and the scale
information is not sufficient as YOLOv3. YOLOv3 pushes
mAP to 98.4% while still maintaining fast performance
(45 FPS). The FPS of Gaussian YOLOv3 is similar to that
of YOLOv3 (44 vs. 45), but the detection is slightly less
effective than that of YOLOv3 (95% vs. 98.4%). However,
CenterNet was the best performer in the mAP value, with
99.7%. This somewhat compromises its speed, which is only
25 FPS. As the anchor free method, FCOS is inferior to
Centernet (96.5% vs. 99.7%), especially in FPS (5 vs. 25).
Fig. 6 and Fig. 9 show the prediction performance of deep
neural networks in various classes in a more intuitive and
detailed way. It can be seen that almost all foreign objects
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FIGURE 9. Detection results. The categories from top to bottom are: person, bag, bottle, normal, other, plastic bag, umbrella.

can be detected by other deep neural networks except SSD.
Whether it’s a small foreign object like a bag or a very
obvious foreign object like a person. In these methods,
CenterNet and Gaussian YOLOv3 detect all foreign objects.
YOLOv3 and FCOS did not detect plastic bag and nor-
mal, respectively. In addition, as we aforementioned, these
methods based on deep learning can not only efficiently
detect the presence of foreign objects but also clearly inform
the classes of foreign objects. These advantages can effec-
tively reduce the detection time before driving, improve the

efficiency of metro operation, and further ensure the safety of
passengers.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we compared the performance of state-of-the-
art deep-learning-based object detection algorithms on for-
eign object detection between PSDs and metro doors. First,
we used HD cameras to develop a dataset in a real metro
station. Then, some deep neural networks were implemented,
we trained and tested them on the dataset. The experimental
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results show that deep neural networks can not only detect
the existence of foreign objects but also inform the types of
foreign objects. Deep-learning-basedmethods can effectively
assist drivers to conduct safety inspections before driving,
which can effectively protect the safety of passengers, and
help reduce operating costs and ease traffic pressure. In addi-
tion, deep-learning-based methods are one of the important
directions of intelligent transportation in the future.

In the future, following directions are to be explored:

• More diverse foreign object images will be collected in
more environments to further increase the robustness of
the algorithms. We will release the dataset used in this
paper for research as soon as possible.

• Deep learning requires high computational power.
We try to transplant these algorithms to low computa-
tional power devices such as mobile devices.

• Limited by the existing conditions, Few-shot learning is
an important research direction in the future.
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