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ABSTRACT With the rapid development of intelligent transportation and geographic information system,
spatial data query technology has attracted the attention of many scholars. Among them, the reverse farthest
neighbor query from the data point to find the target point as its farthest adjacent data points, used to obtain
target set of weak influence. Its research results have been widely applied to facility location, earthquake
relief, marketing and other major areas. Thus, the research of reverse furthest neighbor query technology
is of great significance. However, the existing methods only deal with a single query point, and do not
consider how to obtain the optimal farthest neighbor position of group reverse when the number of query
points changes from one to a group. In addition, considering it is difficult to avoid some geographical
location restrictions in the real situation, the existing studies are limited to road network or Euclidean space
simplely, without taking the existence of obstacles into consideration. To this end, this paper proposed
the V-OGRKFN(Voronoi-Obstacle Group Reverse k Farthest Neighbor) algorithm. Firstly, the algorithm
gets the minimum cover circle of query points which are considered into a whole. Secondly, we use the
framework based on the filtering and refining process of query by pruning strategy based on Voronoi
diagram’s properties. Then we get the candidate set using the theorem of transformation between k nearest
neighbors and k farthest neighbors. Finally, the refining algorithm is given to get the final results. V-OGRKFN
algorithm shows great performance of reverse k farthest neighbor query through the specific comparative
experimental analysis.

INDEX TERMS Obstacle space, reverse farthest neighbor query, Voronoi diagram, minimum coverage
circle.

I. INTRODUCTION

The popularity of smart devices and the rapid development of
geographic information system, makes the spatial data query
technology plays a more and more important role in real life.
In recent years, the concept of reverse farthest neighbor query
has attracted the extensive attention of many scholars. It is
used to search the target point as the farthest neighbor data
point from the data point set to obtain the weak influence
set of the target point. It has important application value
in the fields of facility location, earthquake relief, resource
allocation, marketing and so on. For example, in the location
selection of chemical treatment plants, cause toxic substances
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are likely to be formed in the process of treatment, endan-
gering the normal life of nearby residents, it is necessary
to arrange the location of the plants as far as possible in a
safe range away from the residential area. And as for the
customers, when they are shopping,they would like to the
shops which are closer to them, but the mall managers who
are far from these customers are also hope that more and more
people go to their store shopping. Therefore, it is necessary to
take effective measures for customers who are far away from
the mall, such as registering monitoring query on the server
to obtain its reverse farthest neighbor object in real time,
and selecting effective marketing means, such as increasing
propaganda and increasing shuttle bus to attract consumers.
In addition, the reverse farthest neighbor query can also be
used for facility site selection to effectively avoid competition

50659


https://orcid.org/0000-0002-0170-2982
https://orcid.org/0000-0002-4626-5675
https://orcid.org/0000-0003-3240-3771

IEEE Access

Y. Liu et al.: Voronoi-Based Group Reverse k Farthest Neighbor Query Method

among peers and to find suitable settlements to settle the vic-
tims in earthquake relief, in order to avoid potential epidemic
threats caused by the mutual influence between settlements
effectively. Therefore, it is of great practical significance to
solve the related problems of reverse farthest neighbor query
reasonably and efficiently.

However, the existing reverse farthest neighbor query tech-
nology is only limited to the road network space and the
Euclidean space, and does not consider the existence of
obstacles, in the real situation, it is difficult to avoid some
geographical restrictions, such as buildings, rivers and moun-
tains. In addition, existing studies are only limited to the
reverse farthest neighbor query of a single point, and fail to
consider how to obtain the optimal farthest neighbor posi-
tion of the reverse group when the number of query points
changes from one to a group. Considering that this kind of
problem has many applications in real situations, such as
how to effectively determine the location of a special facility
(such as chemical plant, waste disposal plant, etc.) in a group
of residential communities adjacent to the location under
the constraint of obstacles. Therefore, this paper studies the
group reverse k farthest neighbor query based on the reverse
farthest neighbor query in obstacle space.

In order to solve this problem effectively, this paper first
proposed the definition of group reverse k farthest neighbor
query based on obstacle space, we proposed V-OGRKFN
algorithm based on Voronoi diagram. This algorithm has
good query performance and has certain advantages to solve
the reverse k farthest neighbor query problem of multiple
points in the obstacle space. The main contributions of this
paper are as follows:

1) V-OGRKFN algorithm is proposed to reach the fast
speed of group reverse k fartheset neighbor query. The the-
orems and definitions are identified before the V-OGRKFN
algorithm.

2) Some related algorithms’s studies are conducted to help
making best use of the V-OGRKFN algorithm, including
minimun coverage cicle algorithm, pruning algorithm, tran-
sofrmation algorithm and refining algorithm. These work are
all made contribution to understand the main meaning of the
V-OGRKEFN algorithm better.

3) An analysis system is using made by us to verify the
algorithm’s speed and stability. At the same time, a compar-
ative test is conducted to hold our main idea of this paper.

The remainder of the paper is organized as follows.
Section 2 overviews the state of group reverse k farthest
neighbor query and some related work. In section 3, the con-
cept of group reverse k farthest neighbor query based on
obstacle space is proposed and the related theorems are intro-
duced briefly. Next section 4 describes the process of the
group reverse k farthest neighbor query in the obstacle space
in detail and the analysis of algorithm in the pruning and
refining process. In the last section 5, experimental compar-
ison is made with simulation data to prove the effectiveness
and robustness of the proposed query algorithm.
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Il. RELATED WORK

A. THE REARCH OF NEAREST AND FARTHEST NEIGHBOR
QUERY

In 2000, Korn and Muthukrishnan [1] first proposed the
concept of reverse farthest neighbor query for obtaining weak
influence set. In 2009, Li and Hao [2] proposed a query algo-
rithm to determine RFN candidate sets by using the property
of quartile neighborhood. In the same year, Yao et al. [3]
proposed the PFC algorithm. Due to its high processing
cost, Yao made improvements on it, and then proposed the
CHEFC algorithm, which was used to solve the problem of
monochrome and two-color reverse farthest neighbor query
in Euclidean space. At the same time, Tran et al. [4] pre-
sented a method to solve the reverse farthest neighbor query
and reverse k farthest neighbor query in road network space
by using Voronoi diagram related attributes and Dijkstra
algorithm. In 2010, Liu ef al. [5] proposed an optimization
algorithm for reverse furthest neighbor query, which used
the properties of convex hull and triangle inequality to trim,
effectively shortening the query time. In 2011, Gao et al. [6]
studied the aggregation k distant neighbor problem defined
by the aggregation functions SUM, MAX and MIN, and
presented the MB and BF algorithms based on R tree. In 2012,
Liu et al. [7] proposed the reverse farthest neighbor query
algorithm without location restrictions, and compared it with
the PIV algorithm proposed in 2010. In 2013, Said et al. [8]
proposed a collaborative filtering scheduling algorithm based
on k distant neighborhood. In 2014, Wang et al. [9] discussed
the problem of searching k furthest neighbors on the road
network. By organizing objects into a compact cluster and
calculating the network distance from the cluster to a group
of reference points in advance, most of the clusters were
pruned to achieve the operation of searching top k points in
the data set of the aggregation network distance efficiently.
In 2016, Li [10] conducted a precise pruning of the query
space based on the algorithm of filter-purification framework,
and proposed the dynamic reverse farthest neighbor query
algorithm and probabilistic reverse farthest neighbor query
algorithm. In the same year, Wang et al. [11] first studied
the reverse farthest neighbor query problem based on any
k value. In 2017, Xu et al. [12] proposed an algorithm
for solving the monochrome and two-color reverse farthest
neighbor query in the road network by using landmark and
zoning technology. In the same year, Li et al. [13] proposed
a probabilistic RFN query algorithm for uncertain moving
objects in Euclidean space, which solved the weak influ-
ence set problem of uncertain moving objects. In the same
year, Liu and Hao [14] proposed the farthest neighbor query
problem based on MOIS- tree index structure, and gave the
definition of minimum maximum distance and maximum
distance, and then gave the farthest neighbor query algorithm.
In 2018, Wang et al. [15] proposed two verification methods
applicable to reverse k farthest neighbor query in outsourcing
spatial database based on the existing reverse k farthest neigh-
bor query method and mr-tree verification data structure.
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The algorithms mentioned above are all for Euclidean
space and road network space, and they are not com-
pletely applicable for group reverse farthest neighbor query
in obstacle space. A new density-based clustering algo-
rithm, RNN-DBSCAN, was presented which uses reverse
nearest neighbor counts as an estimate of observation den-
sity by Pei et al. [34]. Clustering is performed using a
DBSCAN-like approach based on k nearest neighbor graph
traversals through dense observations. Chen et al. [35] devel-
oped an approach which computes kNN for only promising
clients by utilising a two-level grid index (ADPGI) to find
a region for setting up a new service site such that it can
influence the most clients efficiently.

B. THE RESEARCH OF GROUP NEIGHBOR QUERY

In 2004, Papadias et al. [16] presented three algorithms for
solving group nearest neighbor query, namely MQM, SPM
and MBM. In 2005, Li et al. [17] proposed the GNN method
of pruning with the ellipse formed by the farthest point in the
set of query points and its MBR as the breakthrough point.
In 2005, Papadias et al. [18] and Yiu et al. [19] proposed
an aggregated nearest neighbor query algorithm based on a
set of query points. In 2008, Lian and Chen [20] proposed a
probabilistic nearest neighbor query algorithm for uncertain
data. In 2010, Song et al. [21] proposed to obtain the reverse
k nearest neighbor query algorithm in Euclidean space by
calculating the minimum coverage circle of the query object
and using the pruning method based on R tree. In the same
year, Sun and Hao [22] discussed from the perspectives of
collinear and incollinear of query point sets, and proposed
a group nearest neighbor query algorithm based on Voronoi
graph. In 2011, Chen et al. [23] proposed a method to obtain
the optimal solution of the nearest group query of constraint
group by iteratively updating clustering. In 2013, Yang and
Hao [24] proposed an algorithm to solve the nearest neighbor
query result set under the obstacle space based on the different
location relations between the points in the data set and the
minimum outsourcing distance of the query point set, pruning
the obstacles without influence and obtaining the obstacle
distance between the point sets. In 2017, Guo et al. [25] pro-
posed the nearest neighbor query algorithm for line segment
groups based on Voronoi graph in spatial database. In the
same year, Li ef al. [26] improved the nearest neighbor query
algorithm for the existing uncertain data sets and proposed the
GKNN query method based on Voronoi graph. Li et al. [27]
proposed an algorithm that can efficiently process top k query
of reverse spatial preference, determine the attribute level
of the object according to the spatial relationship between
objects, and use the user grouping strategy based on weight
to obtain those users meeting the top k attribute through batch
pruning of the data set. In 2018, Wang et al. [28] based
on the multi-user preference query of user groups, took the
preferences of members in the group into consideration of
the grouping, generated the pre-selected queue according to
the descending order of users’ preference similarity to the
query object, and obtained the final users in the same group
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through layers of filtering. In the same year, Guo et al. [29]
proposed the collaborative space keyword top k query, and
obtained the top k objects close to multiple query positions
and highly correlated between text and multiple groups of
query keywords through the pruning data set based on the
keyword relevance calculation formula based on the weight
of query keywords. Zhou et al. [30] proposed a reverse k
rank query algorithm gp-rkr based on group, and obtained
query results gradually through dynamic threshold adjust-
ment and pruning strategy based on Ig-index Index structure.
The above research on group query is limited to the nearest
neighbor query and its related variant query, and has not been
involved in the reverse distant neighbor query. Guo et al. [36]
studied a new problem: a GNN search on a road network
that incorporates cohesive social relationships (CGNN). San-
toso et al. [37] provided a solution in the form of processing
a top-k dominating query using an indexing grid. Group data
indexing task is performed by placing data in groups on a grid
based on the aggregate value. Zhao and Xiong [38] studied a
new spatial keyword query motivated by the scenario where
a group of users staying at different places wishes to find a
compact set of POIs (such as a restaurant and two museums)
that is close to all users. Zhang er al. [39] proposed an
algorithm that deals with the group visible nearest surrounder
query based on the hybrid index structure for solving the
problem of group visible nearest surrounder query in obstacle
space.

To sum up, there is a lack of research on group reverse
k farthest neighbor query in obstacle space both indoor
and abroad. However, this kind of research has important
theoretical significance and practical value. Therefore, this
paper proposes the definition of group reverse k farthest
neighbor query in obstacle space and conducts intensive
research.

Ill. DEFINITIONS AND THEOREMS

A. PROBLEM DEFINITION

The problem studied in this section is based on the discussion
in the obstacle space. So it is necessary to emphasize the
concept of obstacle. The specific definition is described in
definition 1.

Definition 1 (Obstacles): In real life, an obstacle is an
object that hinders or hinders the progress of the subject
from the beginning to the end. In this paper, the obstacle is
abstracted as a straight line segment with varying lengths and
directions, represented by the letter o.

Due to the existence of obstacles, the visibility between
two points is not visible directly. The definition of visibility
between point sets is given in definition 2.

Definition 2 (Visibility): Given two points p and point g
and the set of obstacles O, if and only if the two points are
connected to any line segment in the set of obstacles do not
intersect, point p and point g are said to be visible.

In addition, due to the existence of obstacles, the path
between two points in the spatial data is no longer as simple
as the connection between two points. Therefore, in order
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FIGURE 1. Schematic diagram of obstacle distance.

to solve the problem of the path between two points in the
obstacle space, the relevant definition of the shortest obstacle
path is introduced, as described in definition 3.

Definition 3 (The Shortest Obstacle Path): Given one sets
of obstacles O = {01, 0...,0,} and two points p and ¢ in
one given point sets. The barrier path from point p to point
q is called Py, it can be described as follows. If the path
from point p to point ¢ without any obstacles is called the
obstacle path between point p and point g. There is more than
one obstacle path between any two points in the set. And
the shortest path is called the shortest obstacle path, which
is defined as SPy,. As shown in figure 1, point p and point
q are not visible, and there is an obstacle O, in the middle.
There are two obstacle paths from point p to point g, which
are (pa — aq) and (pb — bq) respectively. The shortest
obstacle path between point p and point g is expressed as:
SPpq = min{dist(pa + aq), dist(pb + bq)}.

When the existence of obstacles is taken into account,
the distance between two points in space is no longer a
Euclidean distance between two points and can’t be expressed
simply. Therefore, the definition of obstacle distance is
derived, as described in definition 4.

Definition 4 (Minimum Obstacle Distance): Given the
obstacles set O in two-dimensional space and any two points p
and q in the data set, the length of the obstacle path between
two points is the obstacle distance between two points, and
the length of the shortest obstacle path between two points is
the minimum obstacle distance between two points, denoted
by disto(p, q). That is the length of the shortest obstacle
path between p and g. When point p and point g are visi-
ble, the obstacle distance between p and ¢ is the Euclidean
distance between p and ¢, denoted as diste(p, q). The default
obstacle distance in this paper is the shortest obstacle distance
between two points.

The query object in the obstacle group reverse k distant
neighbor query is the query of a group of points. In order to
give the definition of the reverse k distant neighbor query in
the obstacle space more clearly, the definition of the obstacle
reverse k distant neighbor query when the query object is just
a point is first given in definition 5.

Definition 5 (Obstacle Reverse k Farthest Neighbors
(ORKFN)): In the obstacle space, a set of data points P is
given, a set of obstacles O(the set of line segments) and a
query point g are alse given. ORKFN query is just to find the
query point ¢ in the data set P as the data point set of its k
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FIGURE 2. Schematic diagram of obstacle reverse k farthest neighbor
query.
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FIGURE 3. Reverse k farthest neighbor query of obstacle group.

farthest neighbors, which can be defined as follows:
ORKFN (q) = {peP|qe OkFN (p)} )]

As shown in figure 2, given data object P = {p1, p2, p3, pa},
query point g and obstacle o1, if the line between the two
points is a solid line, it means that the two points are vis-
ible, which means the Euclidean distance. If the line is
a dotted line, it means there is an obstacle between two
points, and the dotted line length is the obstacle distance.
When obstacles are not considered, 2FN(p2) = {p1,4q}-
When obstacle o; appears, p>’s 2FN changes, and the
result set becomes 2FN(p;) = {p3,pa}. Thus, the exis-
tence of visible obstacles affects the results of RkKNN query
directly.

Based on the above understanding of each element in the
obstacle space, the central argument of this paper is given by
definition 6: the definition of reverse k distant neighbor query
of obstacle group.

Definition 6 (Obstacle Group Reverse k Farthest Neigh-
bors(OGRKFN)): In the obstacle space, given a set of data
points P, a set of obstacles O(the set of line segments) and a
set of query points Q, OGRKFN query is to find out the data
point set that takes any point in the query point set Q as its
farthest k neighbor in the data set P.

Figure 3 shows examples of GRKFN query and OGRkKFN
query. Given data set P = {p1, p2, p3}, query point set Q =
{q1, g2, g3}, and obstacle O. The solid line represents the
Euclidean distance and the dotted line represents the obstacle
distance. When obstacles are not considered, 2FN(p;) =
{q1, g92},91,92€ Q. When obstacles are considered, 2FN (p1) =
{p2, p3}, that is, point p; is not OGR2FN of query point
set Q.
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FIGURE 4. Minimum coverage circle.

As can be seen from the definition, there are multiple
query objects in the group query problem. If a group of query
objects are considered one by one, it will incur cost of time.
In order to realize the reverse farthest neighbor query of a
group of query points quickly, the set of query points needs to
be optimized firstly, and all query points should be considered
as a whole to reduce the access to data and avoid overlapping
of search areas, thus to improve the query efficiency. To this
end, the concept of a minimum covering circle is derived as
described in definition 7.

Definition 7 (Minimum Coverage Circle [31]): Suppose a
set of query objects Q = {q1, > . . . , qu}, the circle containing
all objects in Q with the minimum radius is defined as the
minimum covering circle of the set of query points, denoted
as Cir(0, r). The point O is the center of the circle and r is
the radius, which can be defined formally as a circle domain
satisfying as follows:

Cir(q, r) = {qildist(g;i, O) < r, qi€Q} (2)

As shown in figure 4, data point set P = {p; — p13}, and the
circle with point O as the center is the minimum coverage
circle of data set P.

Voronoi diagram is an important geometric structure in
computational geometry, which can be used to describe the
topological relationship between adjacent but it’s unrelated
to point sets. It provides a powerful tool for solving a series
of problems in the field of spatial database. As described in
definition 8.

Definition 8 (Voronoi diagram [32], [33]): A set of dis-
crete points with any n distinct positions on a given plane
P = {p1.p2,....pn} C R®,2 < n < oo, when i #
J» pi # pj. The Voronoi region is denoted as VR(p;) =
{pldist(p, p))edist(p, pj)}. dist(p, p;) is the shortest distance
between point p and p;. p; is Voronoi diagram’s generic point.
The region VR(p;) determined by p; is called Voronoi graph
polygon, and the side of Voronoi graph polygon is called
VL(p;). The vertices of a polygon of a Voronoi graph are
called the vertices of a Voronoi graph, and the number of
edges connected by each Voronoi vertex v is called the degree
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FIGURE 5. Voronoi diagram.

of v. Voronoi polygons that share the same edge with VR(p;)
are called adjacent polygons of p;, and their generating points
are called first order adjacent generating points of p;, which
are called AG((p;). And AG(p;) = p;jIVR(p;) and VR(p))
have common sides. This leads to the k order adjacency
point(k > 2), denoted as: AGx(p;) = {pj|VR(p) and VR(p;)
have common sides, peAG,—_1(p;)}. The Voronoi diagram is
shown in figure 5.

From the structure and definition of the Voronoi diagram,
the following three basic properties can be obtained.

Property 1: If point g is in the Voronoi polygon VR(p;),
then the distance from g to the point p; is less than the distance
from ¢ to other points.

Property 2: The distance from any point on the edge of
the Voronoi diagram to the product of two adjacent Voronoi
polygons is equal.

Property 3: For any point p in the Voronoi diagram, py1,
the nearest neighbor in level k 4 1 of p, has py1€AG1(p) U
AGy(p)... U AGr(p)(k is an integer and k > 1, AGi(p)
represents the i — th order adjacency point set of the product
point p).

Definition 9 (Product points): All the product points appear
in this paper is represents the points are generated by the
algorithm or some relevant steps. They are only used in the
middle of a process.

B. THE RELATED THEOREM

The V-OGRKFN algorithm proposed in this paper obtains the
minimum covering circle and its center of the set of query
points firstly through the minimum covering circle algorithm
of constant complexity, regards a group of query points as a
whole, and transforms the query problem of a group of target
objects into a single point query skillfully. Secondly, Voronoi
graph was constructed for the experimental data set. The
pruning strategy based on Voronoi graph was used to filter
the data set and obtain the obstacle reverse k nearest neighbor
of the target object. Then the candidate set of the reverse k
farthest neighborhood of the query point is earned accord-
ing to the theorem of the conversion between the reverse
nearest neighbor and the reverse farthest neighbor. Finally,
the candidate set is purified and the result set is obtained by
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refining algorithm, which solves the problem of group reverse
k farthest neighbor query in obstacle space.

Among them, the mutual transformation theorem between
reverse k nearest neighbor and reverse k farthest neighbor
is the main idea to the reverse k far neighbor query algo-
rithm of obstacle group. It is assumed that data set P =
{r1,p2,...,pn} and query point g, if the reverse farthest
neighbor of point g is to be watched out. In other words, it is
to screen the reverse (n— 1) nearest neighbor of dropped point
g. By this transformation, many reverse nearest neighbor
query algorithms can be applied to reverse farthest neighbor
research. The conversion rule is described in theorem 1.

Theorem 1: Given a set of obstacle set O and a set of
discrete data points P and a query point g, if P is the farthest
neighbor of obstacle reverse k of g, then P must not be the
nearest neighbor of obstacle reverse (n—k —1) of g, where n is
the sum of all data points including query points. The theorem
can be expressed as: P = {p1, p2, ...pn}, pieP, (1 <i <k),
qeP. If pe ORKFN(g), then p ¢ OR(n — k — 1)NN(g). Vice
versa. The proof is as follows:

(1) sufficiency: From the pe ORKFN(qg), the p ¢ OR(n —
k — 1)NN(g) can be deduced. Suppose pe ORKFN(g), for any
pe ORKFN(qg), p is the i —th obstacle reverse farthest neighbor
of ¢ (1 < i < k). From definition 7, it can be seen that the
most farthest neighbor of p, contains g. Because ¢ is the k
farthest neighbor of p, point g is definitely not the (n —k — 1)
nearest neighbor of p. That is p ¢ OR(n — k — 1)NN(g).

(2)necessity: pe ORKFN(g) is derived from p ¢ OR(n-k-
1)NN(g). Assuming p ¢ OR(n — k — 1)NN(g), for any p ¢
OR(n — k — 1)NN(g), it can be known from the definition of
the obstacle reverse nearest neighbor that ¢ must not belong
to the n—k — 1 obstacle nearest neighbor of p, namely g ¢ (n—
k — 1)NN(P). Since q is not the nearest neighbor of n —k — 1
obstacle of P, then q is the farthest neighbor of k obstacle of
P, namely: ge OKFN(P), then it can be known from definition
7 that pe ORKFN(P).

Note that this theorem only applies to the set of monochro-
matic points in the obstacle space, and cannot be applied
to the set of bichromatic points. In other words, only when
the query point and data point set belong to the same class
of points can be transformed by this theorem. Cause in
monochrome reverse nearest neighbor query, both query
point and data point belong to the same data type, and the
query point itself is been taken into account. While in bichro-
matic reverse nearest neighbor query, data point and query
point belong to two different types of points, and the query
point itself is not required to be considered when transform-
ing in bichromatic query. Therefore, the farthest neighbor of
monochrome reverse query is to exclude the nearest neighbor
of monochrome reverse (n —k — 1) of query point g, while the
farthest neighbor of bichromatic reverse query is to exclude
the nearest neighbor of bichromatic reverse (n — k) of query
point. In this paper, we only discuss the monochromatic point
set, and do not discuss the bichromatic point set.

As shown in figure 6, there are 8 discrete data object points
(»1 — pg), 1 query point g and 4 obstacles (line segment
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FIGURE 6. Schematic diagram of the obstacle reverse k farthest neighbor
query.

01 — o04) in the figure, which means there are 9 interest
points (data points and query points). Using the mentionoed
theorem, the farthest neighbor of obstacle reverse 2 of query
point g is found out. That is the nearest neighbor of obstacle
reverse of removing point ¢. Further analysis is to find out
which object points have the nearest neighbor of 6 obstacles
that do not contain ¢, so such object points are the farthest
neighbor of the obstacle 2 reverse of ¢ which we are looking
for. In figure 4, the nearest neighbor of p;, O6NN(p;) =
{p2, 3. P4, p5, Pe, p7}, namely g O6NN (p1). So p; is OR2FN
of g. Similarly, it can be found out that the result set of
the obstacle 2 reverse furthest neighbor query of point g is
OR2FN(q) = {p1. p2, p3, pa}.

The main work of the pruning process is to optimize the
experimental data point set, and then to cut off a large number
of meaningless points. The remaining data points that have
not been pruned will take into other consideration for further
query. Three pruning strategies and their related proofs are
given below in the form of theorems.

Theorem 2: Only the former k-order adjacency prod-
ucts of the nearest neighbor product point of query point
g can be included in the candidate set of the reverse
k-neighbor query of query point g, that is, the k-order of
the nearest neighbor product point of query point ¢ and
the adjacent products and obstacles beyond the k-order are
pruned.

Prove: Assuming that the query point ¢ is in the
Voronoi graph polygon with point p as the product point,
the related properties of the Voronoi graph can be obtained:
qr+1€AG1(p) U AGa(p) U ... U AGk(p),(k is an integer and
k > 1). That is, the nearest neighbor of k + 1 of g is in the
pre—k order adjacency product point of p, so kNN of g cannot
exist in the k£ order of ¢ and the adjacency product point
higher than k order. If pjeAG,(p)(n > k). In other words,
the result set of RKNN query of ¢ must not contain point p;.
In the case of obstacles, the obstacle distance from point p;
to point g must be huger or equal to the Euclidean distance
between two points, so ORKNN of query point g is less
likely to contain point p;. Which means, the adjacent prod-
uct points and obstacles beyond k-order and k-order in the
region where point g is located are all pruned. Theorem 2 is
proved.
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FIGURE 7. Schematic proof of theorem 2.

As shown in figure 7, the nearest neighbor of query point g
is point p, and points p1,p2,p3, p4 and ps are any of the 1-order
to 5-order adjacency product points of point p respectively.
When k = 3, according to the property 3 of Voronoi diagram,
3NN of point py4 is in the first 3 adjacent points of ps, while
point p is the 4-order adjacent point of point p4, so: p ¢
3NN(p4). Since query point ¢ is located in VR(p), point ¢ is
not 3NN of point p4, namely ps ¢ R3NN(g). Similarly, R3ANN
of ¢ is not ps, pg . . ., pp. Cause there are obstacles between
point p4 and query point ¢, the obstacle distance between
them must be larger than the Euclidean distance. Therefore,
point py4 in the obstacle space is more unlikely to be the result
set of R3NN query of query point q.

Theorem 3: If the data point p on the nearest neighbor
query point g n level adjacency involves, p to g after a
certain number of data points on the path to the nearest p,
as p;, to make a single path through the number of data
points to no more than n (including attention, p and py not
included in the n), and p visual p; as the number of combined
totalCount (p, po), if totalCount (p, pg) > k, data point p is
pruning.

Prove: When k£ = 1, the path from p to pg can only pass
through one data point p; at most. If p; and p are visible, that
is, the distance between them is Euclidean distance, then there
must be diste(p, pi) < dist(p, po); When k > 1 is true, if the
sum of the number of points visible to p on all paths from p
to po is larger than or equal to k, then the k nearest neighbor
of p, the OKNN of p may contain 1-k of p;, but it must not
contain q.

As shown in figure 8, data point pie is in the 3-order
adjacency product point of the nearest neighbor py of query
point g. At this point, there are two paths in which the number
of data points passing on the path from pg to pi6 is no more
than 3, respectively {po, p12, p7, P16}, {Po. P6. P13, p16}. The
sum of data points on two paths between p1¢ and query point
q is 4, respectively {ps, p7, P12, p13}. But there are only three
data points p7, p12 and p13 are visible with pjg on these two
paths, we define it as totalCount (p1¢, po) = 3. When k = 3,
3NN of p1¢ may include {p7, p12, p13}, but it must not contain
point g. When £ is less than 3, kNN of pj¢ may contain 1-k
of {p7, p12, p13}, but it must not contain g. To sum up, when
totalCount (p, pp) is larger than or equal to k, the result set
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FIGURE 9. Proof schematic diagram of theorem 3.

of p’s KNN query must not contain point g, which means point
p must can’t be included in the ORKNN query result of g. For
this reason, data point p is pruned.

Theorem 4: 1t is assumed that there are several generating
points between query point ¢ and data point p, which are
collectively referred to as point p;. p; and p are connected.
If the line does not intersect with any obstacles, the counter
value will increase by 1. Data point p will be pruned when
the counter value is larger than the &

Prove: Since there are several Voronoi polygons with point
pi as the product points between query point ¢ and point p,
suppose that point p is the k-th adjacency product point of
the nearest neighbor product point of query point, then point
pi must be the k-th adjacency product point of point p. If such
point p; and point g are visible, then dist(q, p;) < dist(q, p),
When the number of points p; is visible to point p exceeds k,
then point ¢ must not be the result set of p’s ORKNN. Theo-
rem 4 is proved.

As shown in figure 9, the path from point g to point p3 in the
Voronoi graph polygon with point p as the generating point
passes through the Voronoi diagram region with point p; and
P> as the generating points, and the query point g is visible to
both p; and p,. Thus, there are dist(q, p1) < dist(q, p3) and
dist(q, p2) < dist(q, p3). So p3 ¢ R2NN(q).

Theorem 5: If the first-fliter adjacent product points of data
point p in the candidate set are all pruned, then the point p is
also pruned.

Prove: Suppose point p for any point of the candidate set,
several points s for one of the primary adjacency involves
point p, and s is p to g of the nearest neighbor involves
po path through the point, if the level of p adjacency
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Algorithm 1 V-OGRKFN Algorithm

Algorithm 2 Minimum Coverage Circle Algorithm(Q)

Input: Dataset P, Queryset Q, k
Output: Resultsets
1 CreateVoronoi(P);
2 g <—Minimum Coverage Circle Algorithm(Q);
3 NNk <P.Count — 1 —k;
4 Sc < firstFilter(P, g, NNK);
5 if Sc # null then

6 Sc <—secondFilter(P, g, NNK);
7 if Sc # null then
8 Sc «thirdFilter(P, g, NNK);
9 Fc <getReverse(P, Sc);
10 ResultSets<— ofOFRange — K (Fc, k);
11 return ResultSets;
12 end
13 end

involves are pruned, then the data point s are pruned clearly,
namely totalCount (s, po > k), so there must be totalCount
(,po) = k+ 1 > k. Point p will be pruned, theorem 5 is
proved.

IV. THE V-OGRKFN ALGORITHM

The reverse k farthest neighbor query algorithm is pro-
posed in this section. We call it as V-OGRKFN(Voronoi-
Obstacle Group Reverse k Farthest Neighbors) algorithm.
Firstly, the minimum coverage circle of the query points is
obtained, and we take a group of query points as a whole
into consideration to reduce the access to data. Secondly,
the index structure of Voronoi is constructed for the exper-
imental data point set, and the pruning strategy is designed
according to Voronoi’s properties for cutting off the nonsense
points and obstacle sets, so as to obtain the obstacle reverse
(n — 1 — k) nearest neighbor candidate set for the query
points. Then, the candidate set of obstacle reverse k farthest
neighbor is obtained by the conversion algorithm with con-
stant time complexity. Finally, the final result set is obtained
by the refining algorithm. The specific implementation of
V-OGRKFN query algorithm’s pseudo code is shown in algo-
rithm 1. First, the Voronoi index structure was constructed
for the set of experimental data points. A set of query point
sets was considered as a whole by the minimum covering
circle algorithm, and the center of the minimum covering
circle was recorded as the query point. The required “k”
value in the reverse “k’’ nearest neighbor query was deduced
according to theorem 1. The pruning strategy mentioned in
theorem 2-5 was used to obtain the obstacle reverse k nearest
neighbor result set. Finally, the candidate set of the obstacle
reverse k farthest neighbor query was obtained through the
transformation theorem, and the final accurate result set was
obtained through the refining algorithm. The minimum cov-
erage circle algorithm, pruning algorithm, conversion algo-
rithm and refining algorithm will be introduced respectively
below.
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Input: Querysets O
Output: Center of the circle g
1 for each point i in the QuerySets do

2 if incircle(querySets[i]) = false then

3 P < querySets[i] ;

4 for eachjinido

5 if incircle(querySets[j]) = false then

6 P, «getCenterPoint(querySets i,j]);

7 Radius q <—getDist(Py,querySets][i]);

8 end

9 for each k injdo

10 if incircle(querySets[k]) = false then

11 Py < getCenterPoint(querySets i.j);

12 Radius q <
getDist(Py,querySets[i]);

13 return q;

14 end

15 end

16 end

17 end

18 end

A. MINIMUM COVERAGE CIRCLE ALGORITHM

The minimum covering circle algorithm is used to solve the
center of the minimum covering circle of the query point
set. Although it is an approximate estimate, it can still better
meet the application requirements in practice. This algorithm
can effectively transform the group reverse farthest neighbor
query into a reverse farthest neighbor query of a query point.
The specific minimum coverage circle algorithm is shown in
algorithm 2.

The method to calculate the minimum covering circle of
the given point set has been given in literature [31], but
the time complexity of this method is O[lg(d/R)n], where:
d represents the distance from the nearest point outside
the circle to the circumference, and R represents the radius
of the minimum covering circle. The time complexity of
the algorithm for calculating the minimum coverage circle
mentioned in this section is linear: O(n). It is not regarded
the time complexity of this method is O®n%), it is O(n)
in real. The time complexity of the last layer of the for
loop is O(j). Next we consider the penultimate layer of for
loop, the mathematical expectation of the number j point
is having 3/j’s probability not in the circle forms by the
whole number of j — 1. In this case, a O(j) third layer cycle
is required. The overall time complexity is O(1). If p; is
inside the circle, the time complexity is also O(1), so the
total complexity of the second layer loop is O(i). For the
same reason, the total complexity of the first layer loop
is O(n).

The steps of this algorithm are described as follows:

(D)First, a set of randomly distributed query point set Q is
obtained.
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(2)The data points are added to the circle one by one, and
the position of the point and the circle needs to be determined
for each point added.

(3)If the current point p; is outside the circle, that is,
the point p; must be on the boundary of the minimum cov-
ering circle of all the previous points, we perform step (4)
to continue to determine the minimum circle, otherwise no
update is needed, and return (2).

(4)At this point, point p; must be on the boundary of the
current minimum covering circle. The current point p; can be
set as the center of the new circle with a radius of zero. Then,
the previous i—1 point is added to the circle through the above
steps.

(5)If point p; is outside the current minimum circle, that
is, point p; must be on the boundary of the current minimum
covering circle, we continue to perform step (6). Otherwise
no update operation is needed, and return (4).

(6)Point p;, p; must be in the current round of minimal
covering on the border, at this time it will be the first point
with the first j point of attachment point set as the new circle’s
center. The distance between two points set for the new round
radius, and then through the above steps will j— 1 point before
to join in this circle, each join point need to perform the next
step (7).

(NIf point py is on the outside of the current circle, that is,
point p; must be on the boundary of the minimum covering
circle of the first k points because of three points can deter-
mine a circle and the center of the common circle of these
three points can be directly calculated. Otherwise no update
operation is needed.

B. PRUNING ALGORITHM

According to the pruning strategy mentioned in theorem 2,
the first order pruning algorithm FirstFliter is given. The idea
of the algorithm can be summarized roughly as: get the near-
est neighbor p of the obstacle of query point g, put the first k-
order adjacency product point of p into the candidate set, and
the last of point sets and obstacles are pruned. In this process,
the Voronoi diagram needs to be built for the experimental
data point set firstly, and then the position of the query point
in the Voronoi diagram can be determined. There are three
possibilities:

(1) point g is inside VR(p), so Sc is the set of pre-k adjacent
product points of p;

(2) Point g is on the common edge of VR(p1) and VR(p»),
so Sc is the union of the set of pre — k adjacent product points
of p1 and p».

(3) When the query point g and a Voronoi diagram polygon
vertices v overlap, you first need to consider how much is
the vertex degrees, usually 3, when the query point g in
VR(p1) and VR(p2) and VR(p3) public vertex, then Sc is p1,
P2, p3, a former k level adjacency involves collection and
set, when the vertex v degree greater than 3, the same rules
apply.

Based on the above discussion, the first-level pruning algo-
rithm in the query process is given, as shown in algorithm 3.
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Algorithm 3 The Algorithm of FirstFliter(P, g, k)
Input: datasets P, Center of the circle g, k
Output: First candidate set: first_Sc

1 get the position of ¢ in Voronoi;

2 if onVertice(q) then

3 | pointSet«GetPPoint(q);

4 end

5 for each p in pointSet do

6

7

8

9

first_Sc.add(getK(p));

if OnEdge(q) then
pointSet<«—GetEadgPoints(q) ;
for each p in pointSet do

10 ‘ first_Sc.add(getK(p));

11 end

12 end

13 point<— GetONN (q);

14 first_Sc.add(getK (point));

15 end

16 return first_Sc;

(1) According to the first-fliter pruning algorithm proposed
in theorem 2, the first step is to obtain the position of point g
in the Voronoi diagram. If point ¢ is on the vertexes of the
Voronoi diagram, then get the set of product points corre-
sponding to the Voronoi diagram polygon containing point
vertex g by GetPPoint(q) method. If point ¢ is on the side
of the Voronoi polygon, then get the set of product points
corresponding to the Voronoi polygon on the side of point
q by GetEdgePoint(qg) method. Otherwise, point ¢ is inside
the Voronoi. The method of getK(p) is used to obtain the first
k order adjacency point of the nearest neighbor product point
of point g obstacle. The final set of points obtained as the
candidate set of first-order pruning.

(2) GetPPoint(g): Gets the product points corresponding
to the common vertices. And Voronoi Vertices is the vertices
set in the Voronoi graph. Loop through the vertices in the
Voronoi Vertices collection, and if it overlaps with g, then loop
through the delaunay triangle collection allTriangle, and get
the center point of the outer circle of each triangle. If point
q coincides with the center point of the circumscribed circle,
the three vertices of the triangle are stored in the set of prod-
uct points. According to the relationship between Voronoi
diagram and delaunay triangulation network, the vertices of
triangles in the triangulation network correspond to the gen-
erating points of Voronoi diagram, and the vertices of Voronoi
diagram are the center of the external circle of triangles in the
triangulation network, so the above algorithm idea is feasible.

(3) GetEdgePoint(p): Gets the product points correspond-
ing to the common edges. In the algorithm, VoronoiEdgeList
is the edge set of Voronoi graph. First traversal VoronoiEdge-
List edge set of each edge, obtain corresponding vertex
assigned to each edge point a and b, through onLine (q, a, b)
method for boolean whether point ¢ in the a and b on the
side of the vertices. If it’s true, the point g is on the edge
of ab, and traverse the delaunay triangulation of the triangle
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Algorithm 4 The
(first_Sc,q,k)

Algorithm of  SecondFilter

Algorithm 5 The ThirdFilter

(second_Sc,q.k)

Algorithm  of

Input: datasets P; candidate: first_Sc, center of the
circle g, k

Output: second_Candidate: second_Sc

1 count<—0;

2 for each nin first_Sc do

3 dist < getDistance(q, n);

4 pSets <— GetPointInCircle(P, dist, n);

5 for each m in pSets do

6 flag < JudgeVisible(m, n);

7 if (/flag) then

8

9

‘ count + + ;

end
10 if count> k then
11 ‘ first_Sc.remove(m) ;
12 end
13 second_Sc < first_Sc;
14 end
15 end

16 return second_Sc;

triangleEdgeList edge set, for each edge corresponds to the
two vertices and assign a value to the point m and »n. Finally
using cross product to find the a, b and m, n as vertices of
intersection respectively. If they are intersect, then m and n
are the product points.

(4) GetONN(g): The obstacle nearest neighbor product
point for obtaining point g. When ¢ is in the Voronoi poly-
gon, the obstacle nearest neighbor of the query point is first
obtained through GetONN(g). If obstacles are not taken into
account, the closest point to point g must be the corresponding
point of Voronoi where point g is located. However, this rule
cannot be completely guaranteed to hold true in the obstacle
space, so it needs to be judged. This algorithm by using
getGenerator(q) method for polygoning if point g is involves,
and then get the involves the level of the adjacent involves.
Next traverse the requested level of adjacency involves in
the collection points, the distance to the query point g if the
calculated distance is less than the distance of the generator
to g. Finally the distance between the corresponding involves
is requested, otherwise the generator for prayer points.

According to the pruning strategy of filtering data sets
according to the visibility of points between two points
proposed in theorem 4. The second pruning algorithm Sec-
ondFilter in the query process of V-OGRKFN algorithm is
given. The specific algorithm description is described in algo-
rithm 4.

First of all, initialize a counter count, loop through the
element 7 in the first-level candidate set, and get the distance
dist between point n and point g. Take point g as the center
of the circle and dist as the radius of the circle to obtain
the points in the circle in dataset P. Loop through point set
m in the circle and judge whether point m and point n are
visible. If it’s true, the counter will increase 1. When count
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Input: Second_Candidate second_Sc, querypoint g,k
Output: Third_Candidate: 7_Sc

1 for each p in second_Sc do

2 adjSets < getAdjPoints(p);;

3 if /insectContain(adjSets, second_Sc) then

4 t_SC.remove(p);

5 t_Sc <« third_Sc;

6

7 end
8 return¢_Sc;

to k, the k nearest neighbor of point n must not contain
point g. Which means, the reverse k nearest neighbor of point
q does not contain point n, which is the pruning point n.
The unconstructed set of points constitutes a second-filter
candidate set.

According to the pruning strategy proposed by theorem
5 to filter the data set according to the pruning situation
of the first-fliter adjacent product points of the candidate
concentration point set. The third-fliter pruning algorithm
ThirdFilter in the query process of V-OGRKFN algorithm is
given next step, it is shown in algorithm 5.

Data in a loop through the secondary candidate set
second_Sc point p. Retrieve the first-level adjacency points
of p and place them into the collection adjSets, judge adjSets
and the second of candidates _Sc elements in the existence of
intersection. If there is no intersection, that level of adjacency
involves around the element p was pruning. On the basis of
theorem 5, point p will be pruning.

C. TRANSFORMATION ALGORITHM

According to theorem 1, the transformation relation between
reverse k nearest neighbor and reverse k farthest neighbor
can solve the query problem of reverse k farthest neighbor in
obstacle space effectively. The V-OGRKFN algorithm men-
tioned in this chapter reduced the data set with the minimum
covering circle algorithm mentioned above effectively and
the Voronoi based pruning algorithm. Both all obtained the
result set of the obstacle reverse (n — 1 — k) neighbor query.
Then, the difference set between the result set of the obstacle
reverse (n — 1 — k) neighbor query and the data set set P
was calculated through the conversion algorithm GetReverse,
so as to obtain the candidate set of OGRKFN query. The
conversion algorithm is shown in Algorithm 6.

Loop through element s in candidate set Sc and make
judgement whether point s exists in datasets in turn. If it does,
point s is removed from datasets. The reserved point set will
become candidate set.

D. REFINING ALGORITHM

The V-OGRKFN query algorithm is a query optimization
algorithm based on filtering and refining framework. The
refining process is the refining algorithm proposed in this
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Algorithm 6 The Algorithm of GetReverse(Sc,q)

Input: third_candidate: ¢_Sc, Datasets: P
Output: candidate: reverseSets
1 for each s int_Sc do

2 if P.contain(s) then
3 P.remove(s);

4 reverseSets <— p;
5 end

FIGURE 10. Schematic diagram of refining algorithm 1.

section — Obstacle farther-range query algorithm (OFRange-
k). This algorithm is improved on the basis of range-k algo-
rithm, which can refine candidate sets and remove incorrect
result sets effectively, which ensures the accuracy of query
results.

For a given data set P, obstacle set O and query point g,
the candidate set of obstacle reverse k farthest neighbor query
of point g can be obtained through the above pruning algo-
rithm and transformation algorithm. In the refining stage, data
points in the candidate set need to be verified one by one,
and the verification is mainly divided into the following two
aspects:

If the data point p and query point g are visible, the data
point p is the center of the circle, the Euclidean distance
between p and ¢, diste(p, q) is the radius of the circle,
and the counter count is used to count the number of data
points outside the circle. Because the data points outside
the circle regardless of whether or not the visual and centre
point p, the distance between two points will be larger than
diste(p, q), so when the count>k was founded, the query
point g will not appear in the data point p’s query result
set of kFN, namely q¢ kFN(p). In other words, data point
p must not be reverse k point ¢ distant neighbors query
result set, which named p¢RkFN(g), the data points are
eliminated p.

As shown in figure 10, point g and p are invisible, if want to
refining of candidate focused point p, to p as the center of the
circle, the distance between two points at point g and p for the
radius of a circle. At this point, there are 20 points outside the
circle, when requested obstacle space under reverse k farthest
neighbors query in k value less than or equal to 20, then the
data point p will be removed.
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FIGURE 11. Schematic diagram of refining algorithm 2.

If the candidate concentration point p is not visible to the
query point g, then point p is still taken as the center of the
circle. At this time, the obstacle distance disto(p, g) between
two points is taken as the radius for the circle. Then count
the number of data points outside the circle. If count>k,
it represents the point p need to be pruned.

As shown in figure 11, refining data points p, because of
point p with the query point g is invisible, obstacle distance
between two points in disto(p, g) as the radius of a circle
centered on p, there are 14 points outside the circle when the
distant neighbors query for obstacle space under the k value
of k is less than or equal to 14. So the data point p will be
removed.

Based on the above discussion, the refined algorithm is
given nextly, as is shown in algorithm 7.

Iterate over the data point p in the candidate set SC, make
judgement between the points p and ¢ if they are visible. If the
flag is false, namely the two points p and ¢ are visible. Then
the Euclidean distance are calculated between two points
called radius. Next step, determine whether data collection
of dataSets in elements in query point ¢ is as the center of the
circle. If the result trues wrong, then the counter count will
plus 1. When count > k was established, the data point p will
be removed. If flag is true, which means, point p and point g
are not visible, then the obstacle distance between points p
and ¢ is calculated. Similarly, continue to judge the number
of points outside the circle with the query point g as the center
and the obstacle distance as the radius in dataset p. If count k
is established, point p will be corrected. The set of reserved
points is gaind.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENTAL ENVIRONMENT SETTING AND DATA
The experimental operating environment is configured as
follows:64-bit Microsoft Windows 7 operating system,
hardware environment Intel(R) Core(TM) i5-2330m CPU
@ 2.20ghz, 4-core, SGRAM. All experiments were con-
ducted using C# development language and Visual Studio
2010 development tool. Among them, the data objects studied
are all distributed in regions with a two-dimensional data
region of 0<x<700, 0<y<700. Test data set, obstacle set
and query point are generated randomly by calling random
function in C# language in VS2010 environment.
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Algorithm 7 The Algorithm of OFRange-k(Sc,q,k)

Input: Candidate: SC, query point g,k
Output: result: resultSets

1 count <0;

2 for each p in SC do

3 flag < JudgeVisible(p, q);

4 if /flag then

5 radius < getDistance(p, q);

6 reverseSets<— p;

7 for each s in dataSets do

8 flag < SiteInCircle(s, radius, q);
9 if /flag then

10 ‘ count + +;

1 end

12 if count >k then

13 ‘ SC.remove(p);

14 end

15 end

16 end

17 else

18 radius < getObacleDistance(p, q);
19 for each s in dataSets do

20 flag < SiteInCircle(s, radius, q);
21 if flag.count > k then

22 ‘ SC.remove(p);

23 end

24 end

25 end

26 resultSets<SC;

27 end

28 return reverseSets;

B. ANALYSIS OF EXPERIMENTAL RESULTS

In this paper, the traditional algorithm Basic-Obstacle
Reverse k Farthest Neighbor(B-OGRkFN)query is adopted
as the comparison algorithm and the V-OGRKFN algorithm
proposed in this paper is compared and tested. The traditional
algorithm firstly through the acquisition of point set in the
center of mass for a query point, and by calculating the
distance barriers to obtain each data point k distant neighbors,
if included in the query results query any point in point set
O, then the data points can be incorporated into the query
point set Q obstacles set reverse k distant neighbors query
result set. The specific analysis of the experiment is described
below.

Firstly, the impact of different data set sizes are tested
efficiency. In order to follow the principle of single variable,
the experiment set other attribute values of the two groups
of algorithms to be consistent, which are: obstacle set O =
1 x 102, k = 10, query point set 0 = 1 x 10%. As shown
in figure 12, with the increase of data set size, the response
time of both algorithms increases, as the increase of data set
size will increase the execution time of pruning algorithm in
the query process, so the query time will gradually become
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FIGURE 13. The impact of query point set size on query efficiency.

longer. It can be find that in the comparison when the data set
size is small, the query time gap between the two is relatively
small, but with the increase of the data set size, the gap will
be quickly larged. In addition, from the perspective of growth
trend, the growth rate of V-OGRKFN algorithm’s running
time is close to 0, while B-OGRKFN algorithm’s running time
is gradually increasing, and the growth trend is significant,
which shows that V-OGRKFN algorithm has better query
performance.

Secondly, the impact of different query point set sizes on
query efficiency was tested. In order to maintain a single vari-
able, other attribute values of the two groups of algorithms
were set as follows: data point set P = 1 x 10, obstacle
set O = 1 x 104, k = 10. As shown in figure 13, both
from the perspective of growth trend, the rate of growth are
relatively small and the curve rises gently, indicating that
the size of the query point set does not have a great impact
on the query time. On the whole, the time consumption of
B-OGRKFN algorithm is much greater than the running time
of V-OGRKFN algorithm, which indicates that V-OGRKFN
algorithm has better query performance.

Thirdly, the impact of different obstacle sets on query
efficiency was tested. In order to maintain a single variable,
the experiment set other attribute values of the two groups
of algorithms to be consistent: data point set P = 1 x
103, query point set Q = 1 x 10?2, k = 10. As shown
in figure 14, the response time of both algorithms increases
with the increase of obstacle set capacity, which is mainly
because of the increase of obstacle set capacity will increase
the number of obstacle distance calculation, so the query
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time will gradually increase. The comparison shows that the
running time of B-OGRKFN algorithm increases gradually
and has a significant growth trend, while the V-OGRKFN
algorithm tends to be 0, which is mainly due to the fact
that Voronoi-based pruning algorithm can filter data sets
and obstacles effectively. This shows that the V-OGRKFN
algorithm has a better query performance.

Next step, the impact of different k£ values on query effi-
ciency was tested. In order to maintain a single variable, other
attribute values of the two groups of algorithms were set to
be consistent in the experiment, which were: data point set
P =1 x 103, query point set Q = 1 x 107, and obstacle set
O =1 x 10?. As shown in figure 15, with the increase of k
value, the response time of both algorithms increases, mainly
because of the number of required results increases, so the
query time will gradually increase. However, the comparison
shows that the query time growth rate of the V-OGRKFN
algorithm is close to 0, while the running time of B-OGRKFN
algorithm is gradually increasing with a significant growth
trend, which indicates that the V-OGRKFN algorithm has a
better query performance.

Finally, the impact of test obstacle rate on experimental
efficiency was tested. Data point set P = 1 x 103, query
point set O = 1 x 10%, k = 10. As shown in figure 16,
with the increase of obstacle rate, the response time of both
algorithms increases, mainly because of the obstacle den-
sity increases and the time needed to calculate the obstacle
distance increases, as the query time will gradually become
longer. However, the comparison shows that the running
time of B-OGRKFN algorithm increases gradually and has a
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significant growth trend, while the query time growth rate of
V-OGRKEFN algorithm is close to 0, which is mainly due to
the fact that Voronoi-based pruning algorithm can filter data
sets and obstacles effectively. This shows that the V-OGRkKFN
algorithm has a better query performance.

VI. CONCLUSION
In this paper, the concept of group reverse k farthest neighbor
query in obstacle space is defined for the first time, and a
query optimization algorithm based on Voronoi graph which
named V-OGRKFN algorithm is given. The algorithm used
the minimum cover circle algorithm to change the query
point set as a whole firltly, and then build Voronoi index by
using the experimental set. Next step to filter data points by
a series of pruning strategy based on Voronoi’s properties,
and with the transformation of the k nearest neighbor and the
k farthest neighbors to get the candidate set. Finally, through
the refined algorithm to focus the point set of candidates were
purified and the final result set are geted, it solved the group
reverse k farthest neighbors query problems in the obstacles.
An experimental system is constructed based on the proposed
algorithm. The V-OGRKFN algorithm and B-OGRKFN algo-
rithm are compared and analyzed respectively through data
sets of different sizes, query point sets, obstacle sets, as well
as different k£ values and different obstacle rates, to verify
that the algorithm proposed in this paper has good query
performance and robustness.

Although this way is fast and convenient solution for group
k farthest neighbor query problems, but there are still some
shortcomings and limitations. For example, in this paper,
the proposed algorithm is only for static data objects, and
doesn’t take the presence of moving objects in reality into
consideration, it can be discussed in our future futher studies.
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