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ABSTRACT In this paper, we present an extended Hermite radial basis functions interpolant for surface
reconstruction of sparse contours that allows for shape control with interactive constraints. Similar to the
differential operator, the difference operator is used to construct gradient constraint and tangent constraint.
Based on the theory of Hermite-Birkhoff interpolation, to construct more flexible geometry constraints,
we incorporate the differential operator and difference operator to construct interpolation conditions in the
interpolant. We construct some constraint rules to control the local trend of shape interactively. It is useful
when the method interpolates sparse data that satisfies all the constraints but exhibits an undesirable trend
of shape. For example, the interactive constraints can be used to fix holes or intersections for geometrically
valid meshes. Regarding the geometry domain as a signed distance field of implicit function, we implement
a constraint-based approach to interpolate the contours using the interpolant. The improved method can
flexibly handle both parallel and non-parallel sparse contours. The numerical results of real geological and
medical data show the robustness and performance of the extendedHermite radial basis functions interpolant.

INDEX TERMS Hermite radial basis functions, radial basis functions, contours interpolation, signed
distance field, geometry constraints.

I. INTRODUCTION
Surface reconstruction of parallel or non-parallel cross sec-
tions using radial basis functions (RBFs) is widely used in
the fields of geological interpretation (e.g., orebody contours
within parallel sections), medical engineering, and geo-
metric processing. This involves the problem of multivari-
ate scattered data approximation, especially recovering an
unknown implicit function from sparse contours to recon-
struct a desired surface.

However, the problem of inferring an implicit surface from
sparse contours is a non-trivial task. It requires not only a
minimal error in approximation but also a desired shape in
geometry. A set of sparse sections provides little information
about the local topology of the multiple contours to explore
the shape trend. It is a notoriously ill-posed problem, since the
type of contours data is often sparse, and hence requires much
extrapolation. For sparse data (e.g., sparse contours), it is nec-
essary to develop an implicit surface reconstruction method
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with flexible interactive constraints. To be useful for applica-
tions, more importantly, the same data has to meet different
correctness criteria in different circumstances. For example,
the stitching of multiple contours in adjacent sections has dif-
ferent extrapolation rules and topological connections. There-
fore, the contours need to have different constraint rules,
and the modeling method may need to dynamically adjust
the local constraint rules to adapt to the different application
requirements.

We try to interpolate the sparse contours by improv-
ing the Hermite-Birkhoff interpolation using radial basis
functions. The RBF-based interpolants can easily gener-
ate the isosurface from dense point clouds, with a lack
of interactive tools, so it is more suitable for modeling
dense data. To avoid approximating the normals by off-
setting points, the Hermite radial basis functions (HRBF)
interpolant [1], [2] is developed to exactly interpolate the
first-order Hermite data (known as gradient constraints). The
problem of Hermite-Birkhoff interpolation of scattered data
using radial basis functions is further investigated to satisfy
more interpolation constraints. This extended problem is also
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called as generalized interpolation by Wendland [3], and
Hermite Radial Basis Functions Implicits are indeed a special
case of the generalized interpolation theory [1].

In this paper, we present an extended Hermite radial basis
functions (EHRBF) interpolant for enforcing shape trends
and topological constraints when reconstructing surfaces
from sparse contours. Similar to the differential operator
(vector type, with three components), the difference operator
(scalar type) [4] is used to construct gradient constraint and
tangent constraint. For example, the tangent constraint con-
structed by difference operator can be also used to change the
local trend of shape. It is useful to fix holes or intersections
for geometrically valid meshes. To construct more flexible
geometry constraints, we incorporate the differential operator
and difference operator to construct interpolation conditions
in the interpolant.

There are many applications for the RBF-based methods
with extended constraints in surface reconstruction. Similar
to the generalized radial basis functions interpolant (GRBF),
based on the interpolation constraints, some interactive con-
straints [5], including the trend line and the constraint line,
can be constructed to control the local trend of shape inter-
actively. It is useful when the method interpolates sparse
data that satisfies all the constraints but exhibits an unde-
sirable trend of shape. In orebody modeling, the interactive
constraints are used to interpolate sparse drillholes and to
construct geology rules [5]. In this paper, the EHRBF inter-
polant is used to interpolate sparse contours. To interpolate
the contours, the geometry domain is viewed as a signed
distance field [6] of implicit function and the implicit sur-
face can be extracted using the Marching Cubes method [7].
This approach of surface reconstruction is known as implicit
modeling [8] in geometry processing. The numerical results
of real geological and medical data show the robustness and
performance of the EHRBF interpolant.

The outline of this paper is as follows. We first review
some preliminary knowledge about generalized interpolation
theory, and then present the extended Hermite Radial Basis
Functions interpolant in Section II. Section III presents the
improved method of implicit modeling from sparse cross
sections, including some constraint rules. The experimen-
tal results and comparisons are demonstrated in Section IV.
We conclude the paper in the last section with some future
research problems.

A. RELATED WORKS
The problem of radial basis functions interpolation has been
widely studied in the past two decades. Two bodies of work
are briefly reviewed, namely Hermite-Birkhoff interpolation
and contours interpolation.

The possibility of Hermite interpolation using radial basis
function was first introduced by Wu [9] in 1992. Since then,
this topic has been further investigated significantly. The
data types are extended to interpolate some linear functional
data and the corresponding interpolant is called a general-
ized interpolant. The HRBF interpolant can be viewed as

a special case of the generalized interpolant. In more gen-
eral situation, the domain constraints and the gradient con-
straints of the HRBF interpolant can be interpolated in the
same points. Based on the Hermite-Birkhoff interpolation
theory with RBFs, Macedo et al. [1] derived HRBF Implicits
to interpolate implicit surface. To accelerate the speed of
solution, they replaced the globally-supported RBFs with
compactly-supported RBFs. Instead of interpolating all pairs
of point-normals, Harlen et al. [10] selected a small subset of
point-normals as interpolation centers using adaptive greedy
method. Further, Liu et al. [11] proposed a closed-form
HRBF method to solve the efficiency problem of surface
reconstruction using quasi-interpolation techniques.

The approach is the closest to the class of methods that
extend the constraints of the RBF-based interpolant [12], [13]
to interpolate the geometry domain as an implicit func-
tion. Based on the theory of Hermite-Birkhoff interpolation
with radial basis functions, some generalized interpolants
with different interpolation constraints are developed, includ-
ing the anisotropic radial basis functions (ARBF) inter-
polant [14], the generalized radial basis functions (GRBF)
interpolant [15] and the generalized Hermite radial basis
functions (GHRBF) interpolant [16]. Gois et al. [17] applied
the GHRBF to reconstruct implicit surface from polygonal
meshes. Liu et al. [18] utilized the ARBF to interpolate
images with local feature orientations (anisotropic intensi-
ties). In this work, we extend the general constraints based
on the theory of generalized interpolation to interpolate the
implicit surface for additional flexibility.

The methods of surface reconstruction from contours can
be divided as explicit modeling and implicit modeling. In con-
trast to the explicit modeling, such as the Delaunay triangu-
lation from cross-section curves [19], the implicit modeling
defines the wireframe-free surface with constraints by an
implicit function, which is easy to dynamically update the
meshes. Note that the method using projection strategy pro-
posed by Liu et al. [20] may also be considered as an explicit
modeling method in fact. Several implicit functions such as
Moving Least Squares [21], harmonic functions [22], mean-
value interpolation [23] and radial basis functions can be
used to interpolate an implicit surface. However, the current
implicit functions are often used for surface reconstruction
from dense data, particular dense point clouds, lacking the
necessary interactive constraint tools.

We mainly focus on three aspects of the reconstruction
methods. For normal estimation, Ijiri et al. [24] improved
the previous estimation method, and proposed a novel
contour-based volume image segmentation technique using
Bilateral Hermite Radial Basis Functions (B-HRBF). For
contours interpolation, several signed scalar field methods
such as RBF, HRBF and harmonic functions are used in
the implicit modeling of contours. By defining multi-labeled
implicit function, Huang et al. [25] extended the topology-
controlled reconstruction algorithm of Zou et al. [22] to
reconstruct multi-labeled material interfaces from cross-
sections. Kim et al. [26] developed an energy minimization
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model with constraints for the accurate surface reconstruc-
tion from parallel cross sections. However, these methods
lack effective constraint rules to control the shape trend and
topology relationships. For interpolation constraints, apart
from incremental sampling (e.g. Zou et al. [22]), template-
based constraints (e.g. Holloway et al. [27]), constraint
points (e.g. RBF-based method) and constraint normals (e.g.
HRBF-based method) are the most common constraints. It is
a good strategy to define user-specified contours by con-
verting constraint lines into interpolation constraints (e.g.
Ijiri et al. [24]). Recently, Yin et al. [28] presented an inter-
active technique that allows the user to edit skeletal curves
to prescribe the surface topology. However, new flexible
constraint rules need to be developed to control the shape
trends.

II. MATHEMATICAL FRAMEWORK
A. PRELIMINARIES
The method relies on the theory of Hermite-Birkhoff interpo-
lation using radial basis functions [3], [9], [29], [30], which is
used to deal with the problem of recovering an unknown func-
tion f from the linear functional data. The linear functionals
involve linear combinations of point evaluations, differentia-
tions, and difference operators that are evaluated on some of
the sampling points.

Specifically, the Hermite-Birkhoff interpolation deals
with the following situation: Given N distinct points
{x1, x2, . . . , xN } and a set of relevant independent linear
functionals L = {L1,L2, . . . ,LN }, we try to construct an
interpolant s (x) to satisfy the generalized constraints Ls =
Lf .

If s (x) is constructed from a radial basis function inter-
polant, the generalized interpolant in a real Hilbert space H
of functions has the form [3]

s (x) =
N∑
j=1

ωjλ
x′
j 8

(
x, x′

)
+ p (x) , s ∈ H (1)

whereωj are coefficients to be determined, λx
′

j are continuous
linear functionals acting on a usual radial basis function
8
(
x, x′

)
viewed as a function of x′ = (x ′, y′, z′). When

conditionally positive definite functions are used, it is often
required to construct low-order polynomials p (x) to ensure
that the function converges. And the interpolant requires
satisfying the orthogonality or side conditions [3]

N∑
j=1

ωjλ
x
j ps (x) = 0, 1 ≤ s ≤ Q (2)

where Q is the number of monomials ps (x). The (m − 1)
degree trivariate polynomial can be defined as

p (x) =
Q∑
s=1

gsps (x) (3)

where gs areweight coefficients to be determined. In the inter-
polant, the selection of the degree m depends on the positive

definite type of RBF. The condition of positive definiteness
is used to ensure the norm-minimal generalized interpolant.

B. EXTENDED HRBF
Let δx denotes the point-evaluation functional defined by
δx (f ) = f (x). The differential operator [1] ∇ ′n can be com-
puted by the derivation of8

(
x, x

′
)
with respect to the second

variable x
′

. The difference operator [4] 1′t can be computed
as the difference value of 8

(
x, x ′ + t

)
− 8

(
x, x ′ − t

)
with

respect to the second variable x ′.
Thenwe can define the linear functionals λx

′

j which operate

on the radial basis function 8
(
x, x

′
)
as

λx
′

j =


δx
′

x′j
, j = 1, 2, . . . , µ

δx
′
◦

xj ∇
′
n, j = µ+ 1, µ+ 2, . . . , µ+ σ

δx
′

xj1
′
t , j = µ+σ+1, µ+σ+2, . . . , µ+σ+τ

(4)

where the functionals δx
′

xj denote point evaluation functionals
at xj, ∇ ′n are differential operator of gradient and 1′t are
difference operator along the tangent direction with respect
to the second variable x

′

of 8
(
x, x

′
)
. Similarly, δxxj , ∇n and

1t are operators with respect to the first variable x.
Based on the definition of the generalized interpolant

in Equation (1) and the linear functionals in Equation (4),
the expansion of the EHRBF interpolant has the form

s (x) =
N∑
j=1

ωjλ
x′
j 8

(
x, x′

)
+ p (x)

=

µ∑
j=1

aj8(x, xj)

+

σ∑
k=1

〈bk ,∇ ′n8(x, xµ+k )〉

+

τ∑
l=1

cl1′t8
(
x, xµ+σ+l

)
+ p (x) (5)

where aj, cl are scalar coefficients to be determined and are
vector coefficients to be bk = (bx,k , by,k , bz,k ) determined.
Similar to the RBF interpolation, the unknown weight coef-
ficients of aj, bk and cl can be determined by solving a linear
system. 〈., .〉 denotes the inner product of two vectors.

In the problem of the extended HRBF interpolation,
we consider the method of surface reconstruction that
includes µ domain constraints, σ gradient constraints and
τ tangent constraints in N sampling points with point eval-
uations, differential values or difference values. Among of
them, the gradient constraints are vector constraints with
three coordinate components.

1) DOMAIN CONSTRAINT
The given µ scattered data points {xi, f (xi)}

i=µ
i=1 satisfy

f (xi) = fi, i = 1, 2, . . . , µ (6)
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where fi are function values of the domain. Apply the linear
functionals {λxi }

i=µ
i=1 to the interpolant, we can obtain

λxi s (x) = δ
x
xi ◦ s (x)

=

µ∑
j=1

aj

A︷ ︸︸ ︷
8
(
xi, xj

)

+

σ∑
k=1

B︷ ︸︸ ︷〈
bk ,∇ ′n8

(
x, xµ+k

)〉

+

τ∑
l=1

cl

c︷ ︸︸ ︷
1′t8

(
x, xµ+σ+l

)
+

P︷ ︸︸ ︷
p (xi)

where the x, y, z components ofB =
[
Bx By Bz

]
correspond

to the x, y, z components of bk .
The domain constraints according to the different function

values can be divided into surface constraints (f (xi) = 0)
and off-surface (f (xi) 6= 0) constraints. The off-surface
constraints are often obtained by offsetting the contact point
along its normal direction. Domain constraints are the basis
for defining the domain boundary (zero level set).

2) GRADIENT CONSTRAINT
The given σ scattered data points {xi,∇nf (xi)}

i=µ+σ
i=µ+1 satisfy

∇nf (xi) = ni, i = µ+ 1, µ+ 2, . . . , µ+ σ (7)

where ni = (nx,i, ny,i, nz,i) are the unit normal vectors of
the domain. Apply the linear functionals {λxi }

i=µ+σ
i=µ+1 to the

interpolant, we can obtain

λxi s (x) = δ
x
xi ◦ ∇ns (x)

=

µ∑
j=1

aj

BT︷ ︸︸ ︷
∇n8

(
xi, xj

)

+

σ∑
k=1

D︷ ︸︸ ︷
∇n
〈
bk ,∇ ′n8

(
x, xµ+k

)〉

+

τ∑
l=1

cl

E︷ ︸︸ ︷
∇n1

′
t8
(
xi, xµ+σ+l

)
+

F︷ ︸︸ ︷
∇np (xi)

where

D =

Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

 , F =

FxFy
Fz


In the equation, ∇n∇ ′n and ∇n1

′
t are the composition oper-

ators. D is the Hessian matrix defined by the second-order
partial derivatives of the radial basis functions.

The gradient constraints can be used to define the model
direction form the interior to exterior and influence the trend
of the adjacent domain. Both gradient and domain constraints
can be defined at the same location. They can be taken as soft
constraints to control the trend of the domain.

3) TANGENT CONSTRAINT
The given τ scattered data points {xi,1t f (xi)}

i=µ+σ+τ
i=µ+σ+1 sat-

isfy

1t f (xi) = 0, i = µ+σ+1, µ+σ+2, . . . , µ+σ+τ

(8)

where t i are the real tangent vectors of the domain. The differ-
ence values of 1t f (xi) are defined as f (xi + t)− f (xi − t).
Apply the linear functionals {λxi }

i=µ+σ+τ
i=µ+σ+1 to the inter-

polant, we can obtain

λxi s (x) = δ
x
xi ◦1ts (x)

=

µ∑
j=1

aj

CT︷ ︸︸ ︷
1t8

(
xi, xj

)

+

σ∑
k=1

ET︷ ︸︸ ︷
1t
〈
bk ,∇ ′n8

(
x, xµ+k

)〉

+

τ∑
l=1

cl

G︷ ︸︸ ︷
1t1

′
t8
(
xi, xµ+σ+l

)
+

H︷ ︸︸ ︷
1tp (xi)

where

E =

ExEy
Ez


In the equation,1t∇

′
n and1t1

′
t are the composition oper-

ators.
The tangent constraints can be used to define the direction

trend with an unknown polarity of the gradient. Both tangent
and domain constraints can be defined at the same location.
They can also be taken as soft constraints to control the trend
of the domain.

Similarly, for the orthogonality conditions, apply the linear
functionals {λxi }

i=N
i=1 to the interpolant, we can obtain

λxi p (x) = (δxxi + δ
x
xi ◦ ∇n + δ

x
xi ◦1t) ◦ p (x)

=

µ∑
i=1

PT︷ ︸︸ ︷
Q∑
s=1

gsps (xi)

+

µ+σ∑
i=µ+1

FT︷ ︸︸ ︷
FT∑
s=1

gs∇nps (xi)

+

µ+σ+τ∑
i=µ+σ+1

HT︷ ︸︸ ︷
Q∑
s=1

gs1tps (xi)

C. IMPLEMENTATION
Based on the above analysis, given µ domain constraints,
σ gradient constraints and τ tangent constraints for the N
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sampling points, it is now possible to construct the following
interpolation equation

A B C P
BT D E F
CT ET G H
PT FT HT 0



a
b
c
g

 =

f
n
0
0


where a = {aj : 1 ≤ j ≤ µ}; b = {bk : 1 ≤ k ≤ σ }; c = {cl :
1 ≤ l ≤ τ }; g = {gs : 1 ≤ s ≤ Q}; f = {fj : 1 ≤ j ≤ µ};
n = {nk : 1 ≤ k ≤ σ }.
Considering the three components of differential operator,

the above linear system can be rewritten as

A Bx
BTx Dxx

By Bz
Dxy Dxz

C P
Ex Fx

BTy Dyx
BTz Dzx

Dyy Dyz
Dzy Dzz

Ey Fy
Ez Fz

CT ETx
PT FTx

ETy ETz
FTy FTz

G H
HT 0




a
bx
by
bz
c
g

 =


f
nx
ny
nz
0
0


The determination of interpolant weight coefficients from

constraint rules can be accomplished through the solutions
of large linear systems. The computational complexity of the
extended interpolation algorithm depends on the number of
interpolation constraints and the grid resolution for the sur-
face reconstruction. To accelerate the process of dynamical
modeling, both of the solution of the linear system and the
surface reconstruction must be improved.

The direct method of solving the linear system is the LU
decomposition technique, the time complexity of its solution
isO(N 3), and the spatial complexity isO(N 2). For N > 1000
or more data, it is difficult to address the problem of spatial
interpolation of large-scale scattered data. To solve the space
and time complexity of large-scale data, two approaches can
be used. One is to transform the global interpolation problem
into a local interpolation problem, using the compact support
radial basis function (CSRBF)method [31]. The interpolation
matrix constructed by the local interpolation method is a
sparse matrix, which can be solved by the sparse matrix
technique. The other is to solve the linear system by fast algo-
rithm. For example, the Krylov subspace iteration method
(e.g., GMRES with preconditioners [32]) and fast algorithm
(e.g., Fast Multipole Method (FMM) [33], especially kernel
independent FMM [34]) are suggested for implementation.
In the surface reconstruction of an implicit function, the
surface-following method [35], [36] based on the Marching
Cubes algorithm is implemented. The method tracks the iso-
surface using the voxel growing strategy.

III. CONTOURS INTERPOLATION
Given a set of sampling contours L1,L2 . . . Lk on some cut-
ting planes intersecting an unknown surface S, the goal is
to reconstruct an implicit function f (x) to approximate S
whose intersections with the cutting planes coincide with the
sampling contours. The implicit surface is defined by the zero
level set {x|f (x) = 0}.

FIGURE 1. Normal estimation based on the linear interpolation of exact
normals at intersections. The two contours are located in different cutting
planes.

A. NORMAL ESTIMATION
To interpolate the contours, we resample the contours to
obtain a set of sampling points p1, p2. . .pM . The sampling
interval can be determined according to the requirements of
reconstruction accuracy. Themain problem of contour resam-
pling is the estimation of surface normals at the sampling
points.

The spatial relationships between the tangent plane of the
contours and the model determine the different methods of
normal estimation. If the cutting plane of a contour orthogo-
nally intersects with the surface S, the normal vector of the
surface S at pi can be computed as

npi = Signpi ×
(tpi × cpi )
||tpi × cpi ||

(9)

where tpi is the tangent vector of the contour at pi, cpi is the
normal vector of the cutting plane, and Signpi is the sign of
the normal vector determined by the side of the contour.

The above method is limited to the orthogonal posi-
tion of the cutting plane. A new approach proposed by
Sharma et al. [19] can be used to estimate the normal by the
orientation of the tangent plane at the intersection, as shown
in Figure 1. The normal vector at the intersections between
two cross contours can be approximated as

n′pi = ±
(t l × tm)
||t l × tm||

(10)

where t l and tm are tangent vectors of the two cross contours
at pi. The sign of n

′

pi can be determined by the sign of npi ·n
′

pi .
The normals at other points of the corresponding contours
can be interpolated linearly by the exactly computed and
manually specified normals. Therefore, the real normal vector
of the boundary surface at other points can be computed
as

nqi = Signqi ×
(tqi × c

′
qi )

||tqi × c′qi ||
(11)

where c′qi is the normal vector of the local cutting plane of
the contour at qi. As tqi is known, we only need to interpolate
c′qi at qi. Simply, we can use a linear interpolation algorithm
to linearly interpolate the approximate normal vector compo-
nents of the local cutting plane.

58756 VOLUME 8, 2020



D. Zhong et al.: Extended Hermite Radial Basis Functions for Sparse Contours Interpolation

FIGURE 2. Signed distance field analysis of a sampling contour. the geometry domain is sampled by different
function values to form a signed distance field representing the distribution of the geometry domain, where
red (positive value) represents the exterior of the domain and blue (negative value) represents the interior of
the domain.

B. SIGNED DISTANCE FIELD
To construct domain constraints, the function values should
be estimated. The distance values can be computed from a set
of on-surface and off-surface domain constraints constructed
from the signed distance field.

The signed distance value of a point generally uses the
Euclidean distance formula to measure the distance to the
closest point on the surface. If the point is inside the sur-
face, the distance value is negative, and the distance value
is positive if the point is outside the surface. In view of this
point, the implicit function of EHRBF can be regarded as a
signed distance field function, and the relationship between
the implicit function value and the implicit surface (f (x) = 0)
can be expressed as

x|f (x) = 0, x ∈ R3, on the surface
x|f (x) = +dist

(
x, x′

)
> 0, x ∈ R3, exterior

x|f (x) = −dist
(
x, x′

)
< 0, x ∈ R3, interior

where x = (x, y, z) is a three dimensional sampling point,
and dist

(
x, x′

)
is the nearest distance from x to the closest

point x′ on the surface.
Taking the domain constraints as an example, the recon-

struction of the signed distance field is shown in Figure 2.
Because the normals of M sampling points have been esti-
mated, we can obtain M on-surface domain constraints and
2M off-surface domain constraints by offsetting sampling
points along their normal directions. Note that the additional
off-surface constraints may cause ambiguity problems when
there are thin contours or sharp corners, resulting in incon-
sistent distance values. To ensure the consistency of the data,
an available approach [37] is to validate the distance value
at the off-surface point based on the value of its closest
point. After solving the EHRBF interpolant, the geometry
domain interpolated by constraints is formed, and the level
set extracted by the zero function value is the surface of the
reconstructed model.

C. INTERACTIVE CONSTRAINTS
In many cases, the spacing between the sparse contours is
greater than the spacing between points on a contour. The
lack of data support in the sparse domain makes it difficult
to reconstruct the continuous trend between contours. Sim-

FIGURE 3. Interactive constraints constructed by the interpolation
constraints, including (a) constraint line without gradient constraints,
(b) constraint line with gradient constraints and (c) trend line.

ilar to the GRBF interpolant [5], besides constructing the
constraints automatically, some interactive constraints can
be appended to change the interpolation trend manually, as
shown in Figure 3. These user inputs guide the interpolant
toward more satisfactory results in different applications.

1) CONSTRAINT LINE
The constraint line refers to the constraint on the boundary
surface, which can be used to maintain the local boundary
morphological features at the sparse locations with incom-
plete data.

It can be broken down into two types: orthogonal and
non-orthogonal. If the cutting plane of the constraint line
orthogonally intersects with the cutting boundary surface of
the model, the normal direction of the constraint line can be
determined using Equation 10. The constraint line is sampled
at a certain point sampling interval to construct domain con-
straints and sampled at a certain normal sampling interval
to construct gradient constraints. If editing a surface with
constraint line results in a distorted surface, we can reverse the
orientation of the sampling normals to reconstruct the desired
surface.

2) TREND LINE
The trend line refers to the constraint that the local connec-
tivity of the model extends in the orientation of the trend line,
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FIGURE 4. An example of specifying constraint lines (b) to maintain the connectivity of the reconstruction (c). Parallel sections tend to
create disconnections (a) in sparse data regions. The constraint lines are useful to edit the disconnections.

FIGURE 5. Reconstruction from input parallel and non-parallel cross-sections. These data sets are gland1 (parallel)
(a), gland2 (non-parallel) (b), mug (c) and triceratops (d).

for which the orientation of the trend line is the tangent vector
of the geometry domain.

Given a trend line, it is easy to determine the tangential
orientation of the domain at the corresponding location, but
it is difficult to determine the gradient orientation. Therefore,
we can discretize the trend line into tangent constraints. The
trend line can be used as an orientation constraint to guide
the model extension trend of nearby domains. Taking the
direction of the trend line as the tangential direction, the trend
line is sampled at a certain sampling interval to construct tan-
gent constraints. Compared to the normal constraints, tangent
constraints do not care about the positive or negative orien-
tations. Therefore, they are very suitable for trend analysis.
By specifying trend lines in sparse regions, the reconstruction
has a tendency to extend along the trend line.

IV. NUMERICAL RESULTS
We tested the EHRBF interpolant for contours interpola-
tion and the implemented tool on several non-trivial geo-
logical and biomedical examples, for which the contours
were obtained from the Digital Mine National Lab and
Zou et al. [22]. These examples contain series of parallel and
cross sections in sparse data environments. To validate the
performance of this method, we compared the results with
existing methods and alternative algorithmic choices.

The extended method can be directly applied to parallel
(a) or non-parallel (b) cross sections, as in the gland example
shown in Figure 5. The surface reconstruction method, like
most other methods, generates model boundary that pass
through all contours as it is an exact interpolation method.
The mug in Figure 5(c) shows that the exact normal esti-
mation of contours is able to recover the correct topology
without any constraints even when the original objects have
complex topologies. Finally, we demonstrate the algorithm on
a triceratops data set Figure 5(d) made up of 26 non-parallel
cross sections.

As shown in Figure 6, compared to the explicit modeling
method, the algorithm proposed in this paper could not only
reconstruct a smoother surface and high-qualitymeshwithout
post-processing, but also has a better robustness and could
update the model dynamically.

In the hip example in Figure 7, reconstruction without any
geometry constraints leads to topological errors (see arrows
in (b) and (c)) using the method of RBF and the method
of Liu et al. [20] (b). The method of Zou et al. [22] can
control the topology by incremental sampling; while the
quality of the mesh is dependent on the post-processing of
refinement and fairing. The EHRBF method does not require
post-processing of refinement and fairing, and we can con-
trol the degree of model extrapolation by constraint rules.
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FIGURE 6. Comparison reconstructions from input dense sections (a) using the EHRBF method (d) with the method
of explicit modeling (b) and harmonic functions (c). (e) is a comparison of (d) and (c) with post-processing of
refinement and fairing.

FIGURE 7. Comparison of reconstructions from sparse sections (a) using the method of Lu et al. (b), the method
of RBF (c), the method of Zou et al. [22] (e), and the EHRBF method (f) with constraints of trend lines (in red)
and constraint lines (in cyan) (d). Arrows point to unexpected errors, for which the results do not recover the
original shape.

TABLE 1. Running time of the solution and reconstruction of the EHRBF method on several examples. The number of constraints, number of vertices,
number of polygons, and size of resolution are included in the table.

In addition, there are many different constraints on sparse
data that can achieve the same trend effect using the improved
method. As shown in Figure 7 (d), we used constraint lines to
control the topological relationships and trend lines to change
the disconnections between contours.

Some more complex examples are shown on geologi-
cal data in Figure 8. Due to the sparsity in the sections,
the reconstructions without tangent constraints using the

HRBF interpolant produce excessive extrapolation and unde-
sirable trend in some areas. Based on prior knowledge,
the geologists typically construct a large number of additional
trend constraints based on supplemental sampling data to
guide the local trend of shape. This requires the interpolant
to interpolate the trends. For the EHRBF interpolant, we can
simply convert these additional constraints as trend lines and
dynamically update the model, as shown in Figure 8(c).
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FIGURE 8. The inputs (a) of geological data set and reconstructions without constraints (b) and with constraints (c).
The constraints added in (c) are trend lines (in blue).

FIGURE 9. Comparison of running time on several examples.

Given µ domain constraints, σ gradient constraints and
τ tangent constraints for the N = µ + σ + τ sampling
points, the EHRBF interpolant results in a (µ + 3σ + τ ) ×
(µ+ 3σ + τ ) linear system. The solution method and surface
reconstruction method were implemented in C++. We tested
the algorithm on aWindows 64-bit PCwith 3.20GHz Intel(R)
Core(TM) i5-3470 and 4GB RAM, as shown in Table 1.
The linear system of interpolation constraints was solved
using the LU decomposition method directly. The isosur-
face was extracted using the Marching Cubes (MC) method,
the parallel Marching Cubes (PMC) method and the surface
following (SF) method.

V. CONCLUSION AND DISCUSSIONS
In this paper, we consider the interpolation or approximation
problem that recovers an implicit function from a set of sam-
pling points. Based on the theory of generalized interpola-
tion, the improved interpolant is applied to reconstruct sparse

contours that allow the user to manually specify the geometry
constraints. It can handle both parallel and non-parallel cross
sections flexibly. We extend the RBF interpolant based on
the theory of generalized interpolation. The ERBF interpolant
has a rich variety of constraint rules which can be converted
into general constraints. Combined with the interactive tools
of constraint rules, the method gives the user the option
to specify various desired model trends. The reconstructed
result is a geometrically valid model meeting the require-
ments of the specified interpolation trend. The method also
has extraordinary extrapolation capabilities, even when large
gaps occur in the sections.

A. LIMITATIONS
The method has several limitations that await further inves-
tigation and improvement. Similar to the HRBF interpolant,
the main limitation of the method is its relatively high com-
putational cost. As mentioned earlier, the performance can be
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improved by using the compactly-supported RBFs. However,
it changes the global interpolation effect of the interpolant,
which was investigated by Macedo et al. [1]. It is necessary
to develop a fast global method for the EHRBF interpolant.
In contrast, the solution time of the gradient constraints is nine
times that of the domain constraints or the tangent constraints.
It is recommended to use less gradient constraints.

The result of surface reconstruction from sparse sections
depends to a large extent on the accuracy of the contour
normal estimation. The method of normal estimation does
not consider the shape trend and the topological relationship
between the contours. This problem could be solved if an
underlying image volume is available in specific applications.
As in (Ijiri et al., 2013 [24]), the direction of the normals
can be oriented along the image intensity gradient. However,
it only works well around image areas with high-contrast
edges. Without priori contour information, although a variety
of normal estimation methods have been proposed, it is still
difficult to accurately estimate the true normal due to the
sparsity of the contours. The method of normal estimation
should be optimized in future works to avoid undesirable
artifacts.

B. EXTENSIONS
As the implicit function has the advantage of easily deter-
mining the internal and external relationships of the model,
we can extend the method to the computational modeling of
multi-labeled domains by defining the rules of multi-labeled
material interfaces. The complex multi-domains can be
reconstructed using the Boolean operations such as union,
intersection, and subtraction, according to the modeling
sequence.

Another direction for future extension is to construct the
constraint rules automatically according to the data properties
and features. For example, according to the sparseness of the
model, the local varying anisotropy constraints that reflect
the trend of the continuity of the model can be automatically
constructed. In addition, we have already started to explore
other constraint rules by converting into general constraints.
In particular, the constraint rules for topological controls are
useful to fix the undesired topological errors. We will con-
tinue to explore ways in which the approach can be extended
to offer more extensive and flexible trend controls over the
geometry domain.
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