
Received February 26, 2020, accepted March 30, 2020, date of publication April 3, 2020, date of current version April 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985367

REMaDD: Resource-Efficient Malicious Domains
Detector in Large-Scale Networks
OFIR ERETS KDOSHA 1, GILAD ROSENTHAL 1, KOBI COHEN 1, ALON FREUND 2,
AVISHAY BARTIK 2, AND AVIV RON 2
1School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
2IBM Cyber Security Center of Excellence, Beer Sheva 8489325, Israel

Corresponding author: Kobi Cohen (yakovsec@bgu.ac.il)

This work was supported in part by the IBM Cyber Security Center of Excellence, Gav-Yam Negev, and in part by the U.S.-Israel
Binational Science Foundation (BSF) under Grant 2017723.

ABSTRACT Detecting malicious activities in cyber systems is a major challenge of cybersecurity service
providers. Due to the large amount of network traffic, it is often likened to finding a needle in a haystack.
Domain name system (DNS) is one of the fundamental protocols of the internet, and therefore it can give a
broad view of those malicious activities, which abuse it and leave fingerprints as part of their attack vector.
In this collaborative research between Ben-Gurion University, and IBM, a significant performance improve-
ment was achieved in detecting malicious domains as compared to the state-of-the-art software solutions.
Specifically, we establish a novel algorithm to detect malicious domains in large-scale DNS traffic, named
Resource-Efficient Malicious Domain Detector (REMaDD), with the following desired properties. First,
the algorithm does not require prior knowledge on historical malicious activities in its real-time operations.
Second, the development used real live streaming data from The Inter-University Computation Center
(IUCC), and operated on real-time IBM system. The algorithm is highly computational efficient and satisfies
real-time requirements in terms of running time and computational complexity. REMaDD demonstrated
strong performance in terms of both detection accuracy and computational efficiency as compared to existing
algorithms. Specifically, experimental results on IBM production environment demonstrated that REMaDD
achieved 89.4% Precision score, and 82.9% Recall score. By contrast, the DomainObserver, and LSTM.MI
algorithms achieved only 76.7%, 67.2% Precision score, and 81.7%, 75.3% Recall score, respectively.

INDEX TERMS Cyber security, domain name system (DNS), detection algorithms, real-time algorithms.

I. INTRODUCTION
Nowadays, modern society relies on the internet in many
aspects of public services as well as private life. This reliance
increases the exposure to cyber threats and raises many
security challenges with respect to user privacy, integrity,
and availability. These challenges have triggered the need to
finding cyber security solutions to a variety of potential cyber
attacks to ensure safe internet environment.

The DNS protocol is one of the fundamental protocols of
the internet, as it allows users to conveniently identify the
IP of internet resources, such as computers, networks, and
services by their names [1]. TheDNS is often abused by cyber
criminals to launch different kinds of malicious activities.
Since purchasing a domain name is very easy and accessible,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Chi Chen .

cyber criminals often buy and operate them for malicious
purposes, such as phishing, botnets, ransomware, etc. [2], [3].
This common malicious usage of the DNS has triggered an
extensive research for detecting malicious domains. This is a
rather challenging task, since new malicious domains emerge
every day and the domain name space is ‘‘almost infinity’’.
Furthermore, since cybercrimes are very profitable for the
criminals, the crime industry grows increasingly sophisti-
cated. As a result, techniques of operating malicious domains
are constantly evolving and changing, making them harder to
detect [4].

Detecting malicious activities in large-scale networks is
even more challenging, as one cannot check every sin-
gle domain name query. Moreover, saving statistical data
on every queried domain is impractical, since the memory
requirement can easily grow to an enormous size. Computing
complicated models using machine learning algorithms on

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 66327

https://orcid.org/0000-0001-6028-6723
https://orcid.org/0000-0002-0933-1338
https://orcid.org/0000-0003-0532-009X
https://orcid.org/0000-0002-9768-7018
https://orcid.org/0000-0002-0454-4043
https://orcid.org/0000-0002-5936-973X
https://orcid.org/0000-0002-5577-0016


O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

such large databases can be very slow, and might lead to a
delayed detection that will not allow preventing the attack
effectively. For these reasons, it is important to judiciously
exploit patterns in the DNS traffic, which allows labeling
certain domain names as malicious quickly and reliably. Fur-
thermore, using passive traffic measurements (i.e., measure-
ments that were observed from the network traffic passively,
without creating or modifying any traffic on the network)
is advantageous in detection algorithms, since the network
remains in its true pattern state, and overloading the network
is avoided.

The objective of this research is to develop an algorithm for
detectingmalicious domains in large-scale networks based on
passive traffic measurements. The algorithm must have the
ability to operate effectively in real-time environments, which
contain a massive amount of DNS traffic data. Therefore,
it must be light weight in terms of computational resources
and memory usage, and still be able to achieve the state-of-
the-art performance in terms of detection accuracy.

A. MAIN RESULTS
Most of the existing studies on malicious domains detection
have tackled the problem by using offline machine learn-
ing algorithms or signature based techniques (see [5] and
related work in Section I-B). Signature-based techniques are
able to detect only known bots through signature match-
ing and are based on black lists such as DNS-based black-
list (DNSBL) [6]. Those methods have been successfully
applied in security software for detecting attacks with known
signatures. However, they tend to fail when it comes to
detecting new malicious domains in large-scale networks,
since it is generally impossible to maintain an updated
list of malicious domains when new ones emerge every
day. Moreover, most of those techniques were developed
on closed datasets, and sometimes even synthetic datasets.
Therefore, their performance on real data in real-time systems
is unclear.

In [7], the DomainObserver algorithm was developed, and
achieved the state-of-the-art performance in time series mali-
cious domain detection. DomainObserver shares similarities
with our approach in the sense that it applies passive traffic
measurements and time series data mining techniques to
detect malicious domains. The authors [7] gathered three
types of time series data for each domain: access, users,
and entropy, which are constructed from aggregated traf-
fic measurements for a certain time window. A K -Nearest
Neighbor (KNN) classifier was applied using Dynamic Time
Warping (DTW) as the distance metric on each domain’s
series. The dataset used in [7] was a closed dataset of verified
1296malicious and 373 benign domains activity for 94 hours,
gathered from real backbone network traffic measurements.
According to the verification results in [7], each one of the
three types of time series gave approximately the same clas-
sification results.

The DomainObserver algorithm cannot operate effectively,
however, in a large-scale system environment considered in

this research due to several reasons. First, the users and
entropy time series require the client’s IP address which is
unavailable in many environments due to privacy and topol-
ogy issues. Second, a 94 hours long measurement renders the
algorithm unfit formany real-time scenarios since the defend-
ing enterprise wishes to detect threats much earlier to avoid
damage to the system. A more acceptable measurement time
in real-time domain detection is 12 hours, which is the delay
constraint considered in this research. Third, the amount of
DNS queries passing through a typical enterprise system
makes it extremely difficult to apply the DomainObserver due
to scaling issues on large datasets. In this paper we overcome
these issues.

Below, we summarize our main contributions:

1) REAL DATA ANALYSIS
We observe and study the access patterns of malicious and
benign domains, based on real live streaming passive traffic
measurements. Traffic spikes were observed in various forms
of cyber-attacks. Our observations confirm the conjecture
about the correlation between malicious domains and spikes
in their access patterns. Furthermore, we have observed that
a similar correlation applies to benign domains for Internet
of Things (IoT) product companies, when synchronizing or
sending update requests periodically. Fig. 4 in Section IV
illustrates the different access pattern of each domain group.
These important insights on access patterns were used in the
algorithm development.

2) ALGORITHM DEVELOPMENT
We establish a novel computational efficient real-time algo-
rithm, named Resource-EfficientMalicious Domain Detector
(REMaDD), for detecting malicious domains in large-scale
networks. The algorithm works as follows. First, the algo-
rithm implements a low-complexity filtering of the live
streaming data by judiciously detecting spikes online in
the DNS traffic measurements. Based on our data anal-
ysis, these traffic spikes are used as access patterns in
the filtering process. This detection phase declares sus-
pects quickly and significantly reduces the number of tested
domains for the next deeper inspection phase. It allows the
algorithm to run a deeper inspection phase with very low
computational consumption, run time, and memory usage.
In the next phase, we develop a real-time deep inspec-
tion domain classifier to label the domains as malicious or
benign. We develop real-time Random Forest classification
in this phase.

It is worth noting that real-time deployment of the Domain-
Observer algorithm remained open in [7] since it is much
more demanding in terms of computational resources. This
issue has been pointed out by the authors as a future research
direction (see the Future Work section in [7]). In this paper,
the development of REMaDD solves this issue. REMaDD is
highly efficient, and can be trained and deployed in real-world
enterprise scenarios as tested at IBM cyber security lab in this
research on the IUCC network.

66328 VOLUME 8, 2020



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

3) ACHIEVING STRONG PERFORMANCE IN
A REAL-TIME SYSTEM
It is well known that enterprises do not eager to share their real
data and real-time cyber security performance due to legal
risks, such as violating privacy, or due to economic incen-
tives, such as sharing information that will benefit their com-
petitors. Therefore, analyzing and validating cyber security
algorithms in real-time systems using up-to-date real data is a
main limitation of the academic cyber security research. This
collaborative research between Ben-Gurion University, and
IBM cyber security lab enabled us to analyze and validate
the algorithm performance in a real-time system using up-
to-date real live streaming data. To evaluate the algorithm
performance, we deployed it in a real working environment
(see Section II for details) and recorded the results for two
different periods of two weeks. Note that labeling domain
names as malicious or benign for performance evaluation is a
difficult task, since new and esoteric domain names appear
frequently. Therefore, researchers often rely on available
datasets, which might be irrelevant in a real-world environ-
ment. By contrast, in order to evaluate the most up-to-date
results in this research, two cyber security researchers have
invested 30 full-time days to label up-to-date real-data at IBM
cyber security lab (see more details in Section IV-A).

The real-time detection performance and resource con-
sumption achieved by REMaDD algorithm were satisfying
and highly compatible in both tests. Specifically, the detec-
tion performance obtained by REMaDD algorithm outper-
formed the state-of-the-art performance of time series detec-
tion obtained by the DomainObserver algorithm. Further-
more, REMaDD saves significant computational resources as
compared to theDomainObserver algorithm. The comparison
results are presented in details in Section IV.

B. RELATED WORK
As discussed in Section I-A, most of the malicious domain
detection techniques are based either on machine learn-
ing algorithms [7]–[22] or signature-based algorithms [6],
[23]–[25]. Signature-based algorithms rely on cyber secu-
rity expert insights obtained by measurement studies, which
explored the behavior of known malicious domains [26]. For
instance, in [24], the authors introduced the BotDet system
which is a real-time system for detecting traffic related to bot-
nets command and control servers. The systemwas composed
by four different detection modules and a correlation frame-
work that correlates between the module results. Three of the
modules were based on black lists and the last was based on
DNS query failures.

The family of machine learning based algorithms can be
divided into two groups. The first group is host-based algo-
rithms, where monitoring and analyzing processes are made
locally at each individual computer [8], [27]. The second
group is network-based algorithms, which monitor and ana-
lyze the network traffic to identify the existence of malicious
domains.

In past and recent years, various network-based techniques
have been proposed for malicious domains detection. In [9],
the authors developed an anomaly-based botnet detection
mechanism by monitoring network clients’ activities. The
algorithm detects a similar activity of a group of clients
querying for the same domain in subsequent time periods,
or for several different domains with approximately the same
number of clients in the same period. In [10], [11], the authors
introduced a system of DNS analysis that extracts 15 fea-
tures from passive DNS traffic measurements. This allows
to characterize different domain properties, and detect mali-
cious domains by decision tree approach. In [13], the authors
presented a four-stage filtering system to detect malicious
domains. The filters are based on domain name group activity,
the correlation between DNS response success, and failure
and similarity between a pair of domain names. In [14],
the authors introduced the BotGAD detector which is based
on monitoring group behaviors that appear in the DNS traf-
fic. This detector extracts features from the network traffic
measurements to distinguish between malicious and benign
DNS queries that might be part of botnet traffic if it appears
as a group of hosts showing the same behavior. In [7],
the authors applied passive traffic measurements and time
series data mining to detect malicious domains, as discussed
in Section I-A.

Another family of machine learning-based algorithms uses
deep neural networks, e.g., LSTMs and RNNs, for character-
based text classification (i.e., NLP). These algorithms clas-
sify a domain solely by its name. This method was shown
to be highly efficient for domains which were generated
by Domain Generation Algorithm (DGA) [19], [20], [22]
(i.e., type-specific methods). In this paper, we tested the
LSTM.MI algorithm suggested in [20] as a representative
algorithm of this method.

In Table 1 we present a qualitative comparison between
REMaDD and other related algorithms. In this paper,
we focus on detecting unlimited types (or type-free) of mali-
cious domains (where the term unlimited types of malicious
domains is borrowed from [7]), as opposed to type-specific
methods. Therefore, comparing REMaDD and DomainOb-
server algorithms that share this property is of a particular
interest.

In this paper we focus on a real-time malicious domain
detection in large-scale networks. Pure machine learning

TABLE 1. Qualitative algorithm comparison.

VOLUME 8, 2020 66329



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

algorithms are not compatible in this setting. Specifically,
they require scanning all the domains queried by the network
and performing feature extraction on each of them, which is
too demanding in terms of complexity and time consumption.
Thus, those algorithms are not scalable for large networks.
NLP algorithms are not compatible as well, since they are
based on the domain name exclusively. They perform well
in terms of detecting domains which were generated by
DGA, but perform poorly in terms of detecting other types
of malicious domains. Signature-based algorithms, on the
other hand, are efficient and scalable. However, they tend
to fail when new malicious domains emerge. As opposed to
the techniques mentioned above, we introduce a novel, light
weight and computational efficient real-time algorithm for
detecting malicious domains which can be implemented in
large-scale networks under real-time constraints, as discussed
in Section I-A.

II. SYSTEM MODEL AND PROBLEM STATEMENT
In this section we present the DNSmodel, the packet analysis
of the live streaming dataset, and the research objectives.

A. THE DNS MODEL
Consider an Internet Service Provider (ISP)’s DNS recursive
resolvers architecture, as illustrated in Fig. 1. Each group of
clients is connected to a local DNS recursive resolver which
provides DNS services for that group. The DNS recursive
resolvers are connected to the World Wide Web (WWW),
so they could query authoritative DNS servers about the DNS
information for their clients. Typically, when a DNS client
needs to find the IP address of a host or service, known
by its Fully Qualified Domain Name (FQDN), it queries
its DNS recursive resolver for the IP Address. The recur-
sive resolver first looks for the IP address in its cache.
If it does not exist, it starts making a hierarchical recursive
resolution process, which starts with the root servers and
ends at an authoritative name server. The DNS system is
designed to be hierarchical in the form of a tree data struc-
ture. The root node contains the addresses of all Top Level
Domain (TLD) name servers, and these servers contain the
addresses of Second Level Domain (SLD) name servers, and
so on. Therefore, the search starts at the root node and con-
tinues with the next tree level, until an authoritative answer
is found which yields the answer to the requested query.
Additionally, in a case the FQDN is invalid or non existent
in the tree, the recursive resolver returns this information to
the client.

B. PACKET ANALYSIS OF THE LIVE STREAMING DATA
The data for this work is provided by the Inter-University
Computation Center (IUCC), the ISP of the academic insti-
tutes in Israel. The data is in the form of a real-time passive
DNS inspection. To gather the DNS records, a packet capture
mechanism (sniffer) was placed above the DNS recursive
resolver layer, as can be seen in Fig. 1. This sniffer gathers
every DNS query and its response, and streams those records

FIGURE 1. The IUCC DNS servers architecture.

in real-time to a database. Every record contains all the data
of the DNS query and its response excluding the client IP
address, due to privacy restrictions. The database used in
this research contains two data collections, one contains the
raw data and the other contains an hourly aggregation of
query counts per SLD. The hourly aggregation optimizes the
algorithm’s queries for data to make sure that the method
can cope with a real-world scenario. In addition, The DNS
traffic, which is captured and recorded in the IUCC network
has a massive volume. For example, on average, at each
hour, the system adds 9.8 million new records of 52, 000
unique domains, and every day, 320, 000 unique domains
DNS traffic pass through the system. Therefore, each collec-
tion has a retention policy (i.e. each record has a predefined
life expectancy). The raw collection retains its records for
three days, while the SLD collection retains its records for
two months.

Due to the massive volume of evolving real data, and
the requirement of detecting cyber threats in real-time and
with limited computational resources, the training process
of the detection algorithm was implemented using the real-
time streaming data. As a result, the entire development
of the algorithm was made using up-to-date data from the
database mentioned above. The use of real live streaming
data at each development stage guarantees that the algo-
rithm meets its resource restrictions, and performs strongly
(as will be demonstrated later) in a real-time working
environment.

C. THE OBJECTIVE
We next define the commonly used detection measures in the
cyber security literature. Let TP, FN, FP and TN denote the
number of True Positive (i.e., a malicious domain is classified
as malicious), False Negative (i.e., a malicious domain is
classified as benign), False Positive (i.e., a benign domain
is classified as malicious) and True Negative (i.e., a benign
domain is classified as benign) binary classification results,
respectively. Let

P ,
TP

TP+ FP
(1)

66330 VOLUME 8, 2020



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

denote the Precision score, and let

R ,
TP

TP+ FN
(2)

denote the Recall score.
Note that in cyber security systems, domains which are

declared as malicious are blocked, or assigned to a security
operations center (SOC) analyst to investigate and act for
each positive case. As a result, high precision implies that
among all domains which are declared as malicious, there
is a small number of benign domains. In order to minimize
false positives in an unbalanced data which is mostly benign,
it is often desired to maximize the precision under a target
constraint Rt on the recall.

The objective is thus to develop an algorithm that maxi-
mizes P under the constraint that R ≥ Rt .

In this research, we set the target recall rate to
Rt = 0.8, which is a typical recall constraint value in many
cyber security services. This means that the false negative rate
is smaller than one fourth the true positive rate. This false
negative rate is considered to be small, as dictated by IBM
security service requirements. Nevertheless, the algorithm is
general and applies to general values of Rt .

In addition, the algorithm is destined to run on IBM pro-
duction environment in real-time. Therefore, it must fulfill the
following design constraints:
Constraint C1: The computational complexity of the algo-

rithm must be of order O(N ), where N is the number of
domains.
Constraint C2: The memory usage of the algorithm must

be less than 500MB.
Constraint C3: The time complexity of the algorithm for

post-processing the collected data samples must be less than
one hour.

III. THE REMaDD ALGORITHM
To accomplish the objective defined in Section II-C, the algo-
rithm must be light weight. To achieve real-time perfor-
mance, we divide the detector into four main components,
as described in Fig. 2. First, a simple white/black list filter
is applied for all domains as an easy-to-implement, man-
ually configurable step that is meant to reduce the com-
putational effort by blacklisting detected domains. Then,
a crude classification made using a very fast peak detector
which is described in Section III-A. Afterwards, a simple
existence check is made, to check if the domain exists and
resolved to an IP address. This is another easy-to-implement
step that filters nonexistent domains which are highly corre-
lated with malicious activities. Additionally, blocking these
domains does not affect users. The final step is a real-time
deeper inspection via Random Forest Classification (RFC) as
described in Section III-B. The first three steps assure that
the deeper inspection step (including the feature extraction
procedure) is performed over a small number of suspicious
domains.

FIGURE 2. The architecture of the REMaDD algorithm.

A. PEAK DETECTOR
The purpose of the peak detector is to detect domains with
a sudden abnormal raise in their access pattern and declare
them as suspicious domains (which will be passed through
deeper inspection in the second phase). The detector is
designed to favor false-positive errors over false-negatives,
to avoid missing malicious domains. The next phase will
perform deeper inspection for a finer classification.

The detector operation consists of two steps which are
described formally in (3), (4). The first step of the peak
detector is gathering information from the SLD collection and
constructing a time series with N + 1 data points per each
SLD. Each data point is an aggregated sum of the domain’s
queries over a constant period of time (i.e. the time window).
The second step is the detection of the sudden rise in the traf-
fic. This is implemented by computing the weighted average
of the first N data points, applying the quantization function
described in (5) over the computed weighted average and the
last data point, and subtracting between those values. If the
difference is bigger than the defined threshold, the domain
is considered as suspicious. Mathematically, for each spe-
cific second level domain name, denoted by dj, the peak
detector operation is given below:

watdj =

N∑
i=1

aiw
t−i·ts
dj

N∑
i=1

ai

, (3)

diftdj = Q(wtdj )− Q(wa
t
dj ), (4)

where ts is the aggregation period, t denotes the sample time
stamp, wtdj is the access counts aggregated for a time window
ts, i.e. from time t to t + ts, N is the number of past aggre-
gated time windows (which was set to 5 in our experiments),
ai, i = 1, . . . ,N are the average weights, where higher
weights are assigned to recent measurements. The term watdj
denotes the weighted average of past aggregated time win-
dows for time t . The term Q(y) denotes the quantization
function of y as described in Section III-A1, and the term diftdj
denotes the difference between the quantization levels of wtdj
and watdj for domain dj.

VOLUME 8, 2020 66331



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

1) THE QUANTIZATION FUNCTION
The quantization function of the DNS traffic count is used
to overcome scaling issues due to the high variance in trafic
volumes, as well as traffic changes among domains, which
were observed while analyzing the data.

On the one hand, since the algorithm tests domains with
high variance in their traffic volumes, it should judiciously
scale the traffic changes when computing (4). On the other
hand, it is likely that traffic changes of p percents in domains
with high volume are more significant and might indicate of
malicious activity than changes of p percents in domains with
low volume (which might occur due to sporadic queries by
benign domains for instance).

To solve these issues, we generated an Adaptive-Width
quantization method. The boundary values for the quantiza-
tion levels are given by:

qi = qi−1 + d ∗ mb
i
x c, (5)

where d denotes the linear difference between levels, m is
a difference multiplier, x is the multiplier cycle, b·c is the
known floor function, and qi denotes the quantization level
boundary of the ith level. Then, the quantization function
in (4) is set to Q(y) = i, if y ∈ [qi, qi+1), where q0 = 0,
and the last boundary value equals infinity.

B. SECOND DETECTION PHASE VIA RANDOM
FOREST CLASSIFICATION
The second detection phase runs deeper inspection. The goal
of this phase is to distinguish between the suspects raised by
the pre-filtering and peak detector steps, while meeting the
real-time system requirements described in Section II-C.

For this step, several classification methods were trained
and tested using features extracted from the DNS traffic
measurements and from Whois registration data. The classi-
fication method that obtained the best results is the Random
Forest method [29]. The Random Forest classification com-
prised of an ensemble of decision trees, where each tree is
constructed by applying algorithmA on the training set S with
an additional random vector θ , where θ is sampled i.i.d from
some distribution. A prediction of the algorithm is chosen
by a majority vote over the prediction of each independent
decision tree. The main advantage of developing real-time
Random Forest in our setting relies on the randomness it
provides. In addition to constructing each tree using different
bootstrap sample of the data, by using Random Forest, each
node is split using the best predictor among a subset of
randomly chosen predictors at the node. This randomness
decreases over-fitting and therefore, improving the accuracy
of the test set.

The data split of RandomForest can be done using different
criteria such as information gain or Gini impurity. In this
paper Gini impurity criterion was applied. Gini Impurity is
the probability of incorrectly classifying a randomly chosen
element in the dataset if it is randomly labeled according to
the class distribution in the dataset. To compute Gini impurity

for a set of items with J classes, let i ∈ {1, 2, . . . , J}, and pi
be the fraction of items labeled with class i in the set. The
Gini Impurity is given by:

IG(p) =
J∑
i=1

pi
∑
k 6=i

pk =
J∑
i=1

pi(1− pi)

=

J∑
i=1

pi −
J∑
i=1

p2i = 1−
J∑
i=1

p2i . (6)

When training a decision tree, the desired split is chosen by
maximizing the Gini Gain, which is calculated by subtracting
the weighted impurities of the branches from the original
impurity.

Developing real-time Random Forest in REMaDD is
highly computational-efficient. The output is computed by
decision trees, which has low complexity implementations
even when handling non-linear dependencies in data. To sup-
port our observation, we tested empirically different clas-
sification methods, such as SVM, naive-Bayes, KNN, and
Adaboost. We indeed found that Random Forest obtained the
best performance among all other tested algorithms.

The main features used in the deeper inspection phase are
listed below:
• Domain age in days.
• Domain expiration date in days (i.e., days left).
• Days passed from the last update of the domain record.
• Number of FQDN’s queried in the last time window.
• Rate of successful A type queries in the last time win-
dow.

• Rate of successful AAAA type queries in the last time
window.

• Dynamic Time Warping (DTW) distance between the
domain time series and the corresponding time series of
the previous day.

We started by selecting relevant features judiciously based
on extensive experimental analysis that we havemade, as well
as the system constraints on the feature extraction procedure.
Then, we ran the well-known scikit-learn feature importance
(i.e., the feature_importance_ function in ensemble) to obtain
an importance score for each feature, and chose high-ranked
features. The chosen features are easy to extract from the
raw data collection and the WhoIs service, which meets the
system constraint on the execution time.

C. PSEUDO CODE OF THE REMaDD ALGORITHM
The pseudo code below describes the algorithm operation at
time t . Each domain dj which is queried during the current
interval (wtdj > 0) is inspected. The domain is checked
using the white/black list filter. The time series TStdj is then
constructed for the domains that were not found in any list.
A weighted average watdj is then calculated according to (3).
The difference between the quantization levels of the cur-
rent sample and the weighted average is computed accord-
ing to (4) and compared to a threshold. Domains that pass
the threshold are checked for existence. Valid domains go

66332 VOLUME 8, 2020



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

through the classifier, whereas invalid domains are labeled
as malicious. The classifier first filters the data from the
Whois service Whodj , and the DNS raw data Rtdj . Afterward,
a feature extraction process is performed, resulting in F tdj
which are fed into the RFC to label the domain.

Algorithm 1 REMaDD Algorithm

1) for dj where wtdj > 0 do
2) if not dj in classified_list do
3) TStdj = get ([wt−tsdj , . . . ,wt−N ·tsdj ])
4) watdj =Weighted_Average (TSdj , a)
5) if Q(wtdj )− Q(wa

t
dj ) > threshold do

6) if dj is exists do
7) Whodj =Whois_Registration_data(dj)
8) Rtdj = DNS_Raw_data(dj, t)
9) F tdj = Extract_Features (Rdj ,Whodj )
10) Sdj = Random_Forest_Classifier (Fdj )
11) else
12) Sdj = 1
13) end if
14) else
15) Sdj = 0
16) end if
17) end if
18) append (Sdj , dj, t) to classified_list
19) end for

Finally, we point out that malwares that use command and
control communications, typically desire to operate over a
long period of time. During this period of time, DNS traf-
fic analysis can be done by REMaDD to detect the threat.
Clearly, the faster the detection algorithm detects the threat is
better. The experimental results in the next section demon-
strate that REMaDD achieves strong performance in this
respect as compared to existing algorithms.

IV. EVALUATION AND EXPERIMENTAL RESULTS
We start by describing the dataset labeling method used
for evaluation. Then, we present the algorithm settings, and
the experiments conducted on the real live streaming data.
We compared the REMaDD performance with the Domain-
Observer algorithm, which was shown to achieve the state-of-
the-art performance in time series malicious domain detec-
tion [7].

A. DOMAIN LABELING
We started by gathering labeled data for training and testing.
Labeling domain name as malicious or benign might depend
on a subjective perspective and can change in time, which
makes the labeling phase a tricky mission when it comes to
malicious domain detection in cyber security research. Fur-
thermore, new and esoteric domain names are sometimes
labeled as malicious or benign with very low confidence,
since the cyber security community have not yet examined
these domains rigorously. Particularly, in real-time environ-

ments with massive volume of domain names, as considered
in this research, new domain names appear frequently. As a
result, at each performance evaluation stage, new labeling
must be performed for all the domain names. Therefore, most
of the labeling in this research is performed automatically and
some performed manually by cyber security researchers.

Both methods, automatic and manual labeling, require
significant resources. Automatic labeling requires paying for
third-party services, while manual labeling requires investing
time by cyber security analysts. In addition, manual label-
ing typically takes a few minutes per domain and there-
fore, is much slower as compered to automatic labeling
that typically takes a few seconds. When labeling with high
confidence is required for a massive number of domains,
a good approach is to first perform automatic labeling for all
domains, and then perform manual labeling for those with
low confidence. It is worth noting that in some cases labeling
using bothmethods does not yield a conclusive result. In those
cases, the domain is considered as benign, since most of the
domains are benign.

In this research, automatic labeling is based on a combina-
tion of three third-party services and white/black lists created
by a manual inspection during the research period. The first
service is Alexa top 20, 000 global sites list (accessed on
September 7, 2018) [30] which is used as a white list. The sec-
ond is Whois registrant information, which provides us with
the domain age, the last record update date, the domain
current expiration date, etc. The third is Virus Total, a service
that uses a collaboration between leading companies in the
cyber security industry, researchers, and end users of all
kinds, to gather reports about suspicious contents of domain
names. The reports contain leading cyber security company
analyses of URLs and files, users reports, and domain cat-
egories according to other third party services. Once all the
information about a domain name is gathered, a statistical
analysis is performed and used to label the domain. The
automatic labeling produces three labels: malicious, benign
and unknown. Domains which were labeled as unknown have
not been used for training the algorithm.

In order to report the most up-to-date results, two cyber
security researchers have invested 30 full-time days to label
up-to-date real data at IBM cyber security lab. This period
of time allowed us to label roughly 300,000 domains. This
significant amount of domains allowed us to reliably validate
the algorithm performance, as well as meet the constraints
on human-resources in this collaborative project between
Ben-Gurion University and IBM. The manual labeling pro-
cess was made in a few main stages. The first is gather-
ing additional information about the domain from XForce
Exchange [31] and BrightCloud [32]. The second is an
analysis of this information combined with the informa-
tion gathered by the automatic labeling. The third is a web
search for malicious activities correlated with the domain and
inspection of the domain web site if it exists. These stages
produce enough information for the researchers to label
the domain.

VOLUME 8, 2020 66333



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

FIGURE 3. The histogram of an average hourly query count per domain in
log scale.

B. EXPERIMENTAL RESULTS
We started by examining the quantization division. We first
implemented the Equal-Width quantization to negate this
intuitive approach. In Equal-Width quantization, the level
ranges are uniformly distributed (i.e., 100 − 200 queries for
level 1, 200 − 300 for level 2, and so on). This setting was
not performed well for mainly two reasons. First, in terms
of DNS queries, the difference between 100 and 200 queries
is more meaningful than the difference between 100, 000 to
100, 100 queries, which is not reflected by using the Equal-
Width approach. Second, we observed that the nature of the
DNS data is unbalanced, i.e. a large number of the domains
have very few queries as can be seen in Fig. 3. Thus, using
Equal-Width quantization yields an unbalanced histogram,
where most of the domains are in the first few quantization
levels.

The second intuitive approach that we implemented is the
Equal-Frequency quantization. In this approach, each level
contains the same number of domains. This method was
not performed well due to the distribution of the dataset.
Specifically, low level ranges resulted in extremely small
values, whereas the high level ranges resulted in extremely
large values. Finally, we observed that the Adaptive-Width
quantization approach, as described in Section III-A1 per-
formed the best. The Adaptive-Width approach keeps the
range in the lower levels relatively small, and in the higher
levels relatively large, while keeping reasonable range values
which fit the DNS dataset.

We set the target recall rate to Rt = 80%, and set the
suspicious domain threshold to detect the spikes accordingly.
The threshold was calibrated over the training data until
satisfying the constraint. We calibrated the tuning parameters
of the DomainObserver algorithm using the same training
data as well. Finally, the Random Forest hyper-parameters
in REMaDD were chosen. The classifier contains 100 deci-
sion trees, where the tree depths are bounded to ten nodes.
We optimized it with the Gini impurity criteria and the desired
features, as described in Section III-B.

We tested the algorithm on real-time system at IBM cyber
security lab using real live streaming data, as described in
Section II. For performance evaluations, at the beginning
of each test we cleared the B/W lists, such that no prior

TABLE 2. Representative SLD count database.

knowledge from previous tests is used. In Table 2 we present
a representative illustration of the SLD data collection. The
streaming data was first filtered using the white and black
lists. The relevant domains were then passed into the peak
detector. In Fig. 4 we present a representative illustration of
the peak effect as explained in Section I-A. The suspicious
domains were checked for record existence. Non-existent
domains were considered as malicious, and existent domains
were fed into the deeper inspection using the Random Forest
classification method. The deeper inspection performed a
feature extraction process, which used additional raw data
from the DNS queries database, as can be seen in Table 3.
The classification process by the deeper inspection phase is
the final classification step, after which a domain was either
considered malicious or benign.

We ran the algorithm over two intervals of two weeks
duration each. The first experiment was conducted between
December 22, 2018 and January 6, 2019. During this period
of time, 74, 345 unique domains (72, 583 benign, and 1, 762
malicious) passed through our detection system. The second
experiment was conducted between February 18, 2019 and
March 3, 2019. In this test, 76, 461 unique domains (74, 603
benign, and 1, 858 malicious) passed through our detection
system. The data for training was taken from past measure-
ments offline. We used 70/30 data splitting for training and
testing. We split the tests to validate the results in completely
different time frames. During the experiments, the data from
IUCC was collected and analyzed every one hour. The results
of both intervals were very similar. Thus, we present the aver-
age over the two time intervals. The resource consumption
was monitored during the run-time to confirm the validation

66334 VOLUME 8, 2020



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

FIGURE 4. A representative illustration of the peak effect of the domain
access patterns, in benign, benign IOT companies, and malicious domains.

TABLE 3. Representative DNS raw data.

of the constraints as described in Section II-C. The measure-
ments showed that REMaDD used up to 100MB memory
at all times. The scanning time was less than one hour as
required, where usually it was 35 minutes. The average pro-
cessing time was 0.5 minute for the W/B list, 6 minutes for
the peak detector, 2.5 minutes for the existence check, and
26 minutes for the RFC. The computational complexity was
indeed O(N ) since the calculations per domain is constant.

Table 4 presents a detailed comparison between the fol-
lowing algorithms: (i) The proposed REMaDD algorithm;
(ii) experimental results of REMaDD with Naive Bayes, 5
Nearest Neighbors (5NN) Classifier [33], and AdaBoost,
instead of the Random Forest classification in the deeper
inspection phase, dubbed REMaDD-NB, REMaDD-5NN,
REMaDD-AdaBoost, respectively; (iii) the DomainObserver

TABLE 4. Performance evaluation.

algorithm [7] (with a one-hour window size to meet the
system constraint); and (iv) the LSTM.MI algorithm [20].

The boldfaced row presents the results obtained by the
proposed REMaDD algorithm. The second column presents
the precision rate, the third presents the recall rate, and
the seventh presents the average running time per domain.
We presented three more common statistical measures in the
fourth, fifth, and sixth columns, namely the accuracy: A =
(TP+ TN )/(TP+FP+ TN +FN ), F1 score: F1 = 2 ·P ·R/
(P + R), and true negative rate: PTN = TN/(TN + FP).
It should be noted that the dataset used in our real-time
system is different from the closed datasets used in [7]. In our
experiments, the time windows were significantly larger and
the number of inspected domains was significantly larger,
as was forced by the real-time system.

Note that REMaDD controls the false positive and false
negative rates via the peak detector and RFC. Decreasing
the lower threshold for the peak detector decreases the false
negative rate, and increases the false positive rate, as typically
done in threshold-based detectors. Another way of control-
ling the trade-off between these errors is by changing the RFC
threshold. Setting the RFC in favor of the malicious domain
detection improves the true positive rate with the price of
decreasing the true negative rate.

As can be seen in Table 4, the proposed REMaDD algo-
rithm that uses the Random Forest classifier in the deeper
inspection phase outperformed all other algorithms. The
recall met the recall target rate, and the precision was signifi-
cantly higher than the precision achieved by the DomainOb-
server and LSTM.MI algorithms. Another interesting result
is that the DomainObserver achieved a low detection rate of
benign domains as compared to REMaDD performance. The
difference between the benign detection rate in [7] and in
our setting is due to the percentage of the benign domains
in the dataset. While in our dataset the benign/malicious
distribution represented real live data, the dataset used in [7]
was mostly malicious, which does not represent typical real-
world scenarios.

It can be seen in Table 4 that LSTM.MI achieved the
worst score in all detection evaluation metrics. These poor
results are expected, since LSTM.MI is type-specific and
was designed to detect only DGA domain names. Despite its
poor performance in these experiments, it achieved the best
running time.

Another parameter that we examined was the prediction
time per domain, i.e., the time it takes the algorithm to label

VOLUME 8, 2020 66335



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

the domain given all the required data. It can be seen that
REMaDD is much faster than DomainObserver (3 seconds
under REMaDD as compared to 92 seconds under Domain-
Observer). This result is achieved due to the REMaDD design
of passing the domains through the pre-filtering black/white
list and then through the peak detector phase. Furthermore,
a Random Forest classifier with 100 decision trees with a
maximum of 10 nodes each is lighter then the DTW used by
the DomainObserver.

Finally, we present the number of unique domains that
passed through each stage of REMaDD, and the average
performance achieved by the peak detector, and the existence
check and RFC. A total number of 150, 806 unique domains
passed through the W/B list and the peak detector. The peak
detector achieved the following average scores: P = 0.38,
R = 0.89, F1 = 0.53, A = 0.96. These results show that the
peak detector performs the crude classification well. The high
recall score ensures that most of the domains in the malicious
group continue to the next stage. The high accuracy score
ensures that most of the domains in the benign group are
filtered before the next stage. The low precision and F1 scores
are expected, since the main purpose of the peak detector
is to filter out benign domains rather than detect malicious
domains. The existence check phase and the RFC have clas-
sified 8, 573, and 5, 927 unique domains, respectively. This
stage achieved the following average scores: P = 0.89,
R = 0.92, F1 = 0.90, A = 0.93. These results show that
this stage provides a good classifier for domains with a peak
in their access count time series.

V. CONCLUSION
DNS is one of the backbones of the internet, as it maintains
a mapping between IP addresses of Internet resources to
their corresponding domain names. For this reason, DNS
has become an obvious and elementary service in every
benign internet related software. On the negative side, it has
commonly been abused by criminals for executing malicious
activities.

In this paper, we introduced the REMaDD Algorithm,
a light weight and computational-efficient real-time algo-
rithm for detecting malicious domains in large-scale net-
works. We showed a correlation between malicious domains
and spikes in their access patterns. Our experimental results
showed that our approach works well on the production envi-
ronment. We compared REMaDD with the DomainObserver
algorithm, which was claimed to achieve the state-of-the-
art performance in time-series malicious domain detection.
We showed that REMaDD outperformed DomainObserver
in all tested metrics, particularly in the precision, benign
detection rate, and prediction time.

Despite its strong performance, REMaDD has a number
of limitations as well. First, it requires a large amount of
network traffic data to perform well, which makes it efficient
for mainly large-scale networks. Second, REMaDD cannot
effectively detect sophisticated domain hijacking attacks,
which use benign domains to disguise the malicious activity.

These attacks use legitimate domains, and must be treated by
detection algorithms for domain hijacking.

As a future work, additional features based on geographic
location, TTL, and domain name should be examined to
improve REMaDD performance under restrictions on the
computational complexity of the feature extraction and data
processing in real-time. In addition, in [22] the authors pro-
posed a new labeling method based on heuristics, which
provides an easy and fast way for weak (i.e., low confidence)
domain labeling. The authors showed that adding this weak
labeled data set to the training set improves the classification
performance. Adding weakly labeled domains to the training
set in REMaDD’s RFC module should be investigated for
future developments.

REFERENCES
[1] P. Mockapetris and K. J. Dunlap, ‘‘Development of the domain name

system,’’ in Proc. Symp. Commun. Archit. Protocols, vol. 18, 1988,
pp. 123–133.

[2] M. Stevanovic, K. Revsbech, J. M. Pedersen, R. Sharp, and C. D. Jensen,
‘‘A collaborative approach to botnet protection,’’ in Proc. Int. Conf. Avail-
ability, Rel., Secur. Berlin, Germany: Springer, 2012, pp. 624–638.

[3] S. Torabi, A. Boukhtouta, C. Assi, and M. Debbabi, ‘‘Detecting Internet
abuse by analyzing passive DNS traffic: A survey of implemented sys-
tems,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3389–3415, 2018.

[4] McAfee. (Feb. 2018). Economic Impact of Cybercrime. [Online]. Avail-
able: https://www.mcafee.com/enterprise/en-us/solutions/lp/economics-
cybercrime.html

[5] H. R. Zeidanloo, M. J. Z. Shooshtari, P. V. Amoli, M. Safari, and
M. Zamani, ‘‘A taxonomy of botnet detection techniques,’’ in Proc. 3rd
Int. Conf. Comput. Sci. Inf. Technol., vol. 2, Jul. 2010, pp. 158–162.

[6] A. Ramachandran, N. Feamster, and D. Dagon, ‘‘Revealing botnet mem-
bership using DNSBL counter-intelligence,’’ in Proc. SRUTI, vol. 6, 2006,
pp. 49–54.

[7] G. Tan, P. Zhang, Q. Liu, X. Liu, and C. Zhu, ‘‘Domainobserver:
A lightweight solution for detecting malicious domains based on
dynamic time warping,’’ in Proc. Int. Conf. Comput. Sci. (ICCS). Cham,
Switzerland: Springer, 2018, pp. 208–220.

[8] E. Stinson and J. C. Mitchell, ‘‘Characterizing bots’ remote control
behavior,’’ in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability
Assessment. Berlin, Germany: Springer, 2007, pp. 89–108.

[9] H. Choi, H. Lee, H. Lee, and H. Kim, ‘‘Botnet detection by monitoring
group activities in DNS traffic,’’ in Proc. 7th IEEE Int. Conf. Comput. Inf.
Technol. (CIT), Oct. 2007, pp. 715–720.

[10] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, ‘‘Exposure: Finding
malicious domains using passive DNS analysis,’’ in Proc. NDSS, 2011,
pp. 1–17.

[11] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, ‘‘Exposure:
A passive DNS analysis service to detect and report malicious domains,’’
ACM Trans. Inf. Syst. Secur., vol. 16, no. 4, p. 14, 2014.

[12] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, ‘‘Phoenix: DGA-
based botnet tracking and intelligence,’’ in Proc. Int. Conf. Detection
Intrusions Malware, Vulnerability Assessment, 2014, pp. 192–211.

[13] S. Yadav and A. N. Reddy, ‘‘Winning with DNS failures: Strategies for
faster botnet detection,’’ in Proc. Int. Conf. Secur. Privacy Commun. Syst.
Berlin, Germany: Springer, 2011, pp. 446–459.

[14] H. Choi, H. Lee, and H. Kim, ‘‘BotGAD: Detecting botnets by capturing
group activities in network traffic,’’ in Proc. 4th Int. ICST Conf. Commun.
Syst. Softw. Middleware, 2009, p. 2.

[15] N. Jiang, J. Cao, Y. Jin, L. E. Li, and Z.-L. Zhang, ‘‘Identifying suspicious
activities through DNS failure graph analysis,’’ in Proc. 18th IEEE Int.
Conf. Netw. Protocols, Oct. 2010, pp. 144–153.

[16] R. Doshi, N. Apthorpe, and N. Feamster, ‘‘Machine learning DDoS detec-
tion for consumer Internet of Things devices,’’ in Proc. IEEE Secur.
Privacy Workshops (SPW), May 2018, pp. 29–35.

[17] B. Rahbarinia, R. Perdisci, and M. Antonakakis, ‘‘Segugio: Efficient
behavior-based tracking of malware-control domains in large ISP net-
works,’’ in Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Jun. 2015, pp. 403–414.

66336 VOLUME 8, 2020



O. E. Kdosha et al.: REMaDD: REMaDD in Large-Scale Networks

[18] X.-D. Zang, J. Gong, S.-H. Mo, A. Jakalan, and D.-L. Ding, ‘‘Identifying
fast-flux botnet with AGD names at the upper DNS hierarchy,’’ IEEE
Access, vol. 6, pp. 69713–69727, 2018.

[19] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, ‘‘Pre-
dicting domain generation algorithms with long short-term memory
networks,’’ 2016, arXiv:1611.00791. [Online]. Available: http://arxiv.
org/abs/1611.00791

[20] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, ‘‘A LSTM based
framework for handling multiclass imbalance in DGA botnet detection,’’
Neurocomputing, vol. 275, pp. 2401–2413, Jan. 2018.

[21] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, ‘‘FANCI: Feature-
based automated NXDomain classification and intelligence,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Secur.), 2018, pp. 1165–1181.

[22] B. Yu, J. Pan, D. Gray, J. Hu, C. Choudhary, A. C. A. Nascimento,
and M. De Cock, ‘‘Weakly supervised deep learning for the detection of
domain generation algorithms,’’ IEEE Access, vol. 7, pp. 51542–51556,
2019.

[23] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, ‘‘Build-
ing a dynamic reputation system for DNS,’’ in Proc. USENIX Secur. Symp.,
2010, pp. 273–290.

[24] I. Ghafir, V. Prenosil, M. Hammoudeh, T. Baker, S. Jabbar, S. Khalid, and
S. Jaf, ‘‘BotDet: A system for real time botnet command and control traffic
detection,’’ IEEE Access, vol. 6, pp. 38947–38958, 2018.

[25] B. Sun, M. Akiyama, T. Yagi, M. Hatada, and T. Mori, ‘‘AutoBLG: Auto-
matic URL blacklist generator using search space expansion and filters,’’
in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2015, pp. 625–631.

[26] Y. Zhauniarovich, I. Khalil, T. Yu, and M. Dacier, ‘‘A survey on malicious
domains detection through DNS data analysis,’’ ACM Comput. Surveys,
vol. 51, no. 4, pp. 1–36, Jul. 2018.

[27] S. Shin, Z. Xu, and G. Gu, ‘‘EFFORT: Efficient and effective bot malware
detection,’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 2846–2850.

[28] K. Alieyan, A. Almomani, A. Manasrah, and M. M. Kadhum, ‘‘A survey
of botnet detection based on DNS,’’ Neural Comput. Appl., vol. 28, no. 7,
pp. 1541–1558, Jul. 2017.

[29] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[30] Amazon Web Services. Alexa Top 1M Sites. Accessed: Sep. 7,‘2018.
[Online]. Available: https://aws.amazon.com/alexa-top-sites/

[31] IBM X-Force Exchange. Accessed: 2019. [Online]. Available: https://
exchange.xforce.ibmcloud.com

[32] Webroot BrightCloud. Accessed: 2019. [Online]. Available: https://
www.brightcloud.com/

[33] T. Cover and P. Hart, ‘‘Nearest neighbor pattern classification,’’ IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

OFIR ERETS KDOSHA received the B.Sc. degree
in electrical and computer engineering from Ben-
Gurion University, Israel, in 2011, where he is
currently pursuing the M.Sc. degree in electrical
and computer engineering, under the supervision
of Dr. K. Cohen. He has been working as a Data
Scientist with the IBM’s Cybersecurity Centre of
Excellence (CCoE), Beer-Sheva, Israel, for the last
two years. His current research interests include
cyber-security, machine leaning, and data science.

GILAD ROSENTHAL received the B.Sc. degree
in electrical engineering from Ben-Gurion Univer-
sity, Israel, in 2017, where he is currently pursuing
the M.Sc. degree in electrical and computer engi-
neering, under the supervision of Dr. K. Cohen.
He has worked as a Data Scientist at both start-
ups and corporates. His current research interests
include machine learning, artificial intelligence,
deep learning, anomaly detection, and data science
in cybersecurity domain.

KOBI COHEN received the B.Sc. and Ph.D.
degrees in electrical engineering from Bar-Ilan
University, Ramat Gan, Israel, in 2007 and 2013,
respectively. In October 2015, he joined the
Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev (BGU),
Beer Sheva, Israel, as a Senior Lecturer (also
known as Assistant Professor in USA). He is also
a member of the Cyber Security Research Cen-
ter and the Data Science Research Center, BGU.

Before joining BGU, he was as a Postdoctoral Research Associate with
the Coordinated Science Laboratory, University of Illinois at Urbana–
Champaign, from August 2014 to July 2015, and the Department of Elec-
trical and Computer Engineering, University of California at Davis, Davis,
from November 2012 to July 2014. His main research interests include
decision theory, stochastic optimization, and statistical inference and learn-
ing, with applications in large-scale systems, cyber systems, wireless, and
wireline networks. He received several awards, including the Best Paper
Award in the International Symposium on Modeling and Optimization in
Mobile, Ad hoc and Wireless Networks (WiOpt) 2015, the Feder Family
Award (second prize), granted by the Advanced Communication Center at
Tel Aviv University, in 2011, the President Fellowship, from 2008 to 2012,
and top honor list’s prizes from Bar-Ilan University, in 2006, 2010, and 2011.

ALON FREUND received the B.Sc. degree from
the Communication Systems Engineering Depart-
ment, Ben-Gurion University. He is currently pur-
suing the M.Sc. degree with the Software and
Information Systems Engineering Department,
Ben-Gurion University. He is currently work-
ing with the Cyber Security Center of Excel-
lence (CCoE), Beer Sheva, Israel. His main fields
of interests include network security and data
science.

AVISHAY BARTIK received the B.Sc. degree in
mathematics and computer science from the Open
University of Israel, in 2010. He is currently a
Security Researcher with the IBM’s Cyber Secu-
rity Center of Excellence, Beer-Sheva, working on
various aspects of networks and system security.
Prior to joining IBM, he has served as a Security
Software Engineer with PMO.

AVIV RON received the B.Sc. degree in com-
puter science from Ben-Gurion University, Israel,
in 2007. He has been working as a Software Engi-
neer with Intel for five years, a Security Researcher
and an Architect with Intel for four years, and
a Senior Security Researcher with IBM for five
years. He also served as an External Lecturer on
the topic of cyber security with Ben Gurion Uni-
versity, for four years. He has 17 patents. His
current research interest includes detecting cyber

threats by applying artificial intelligence.

VOLUME 8, 2020 66337


	INTRODUCTION
	MAIN RESULTS
	REAL DATA ANALYSIS
	ALGORITHM DEVELOPMENT
	ACHIEVING STRONG PERFORMANCE IN A REAL-TIME SYSTEM

	RELATED WORK

	SYSTEM MODEL AND PROBLEM STATEMENT
	THE DNS MODEL
	PACKET ANALYSIS OF THE LIVE STREAMING DATA
	THE OBJECTIVE

	THE REMaDD ALGORITHM
	PEAK DETECTOR
	THE QUANTIZATION FUNCTION

	SECOND DETECTION PHASE VIA RANDOM FOREST CLASSIFICATION
	PSEUDO CODE OF THE REMaDD ALGORITHM

	EVALUATION AND EXPERIMENTAL RESULTS
	DOMAIN LABELING
	EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	OFIR ERETS KDOSHA
	GILAD ROSENTHAL
	KOBI COHEN
	ALON FREUND
	AVISHAY BARTIK
	AVIV RON


