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ABSTRACT The increasing importance of graph data in various fields requires large-scale graph data
to be processed efficiently. Furthermore, well-balanced graph partitioning is a vital component of paral-
lel/distributed graph processing. The goal of graph partitioning is to obtain a well-balanced graph topology,
where the size of each partition is balanced while the number of edge cuts is reduced. Moreover, a graph-
partitioning algorithm should achieve high performance and scalability. In this study, we present a novel
graph-partitioning algorithm that ensures a high edge cutting quality and excellent parallel processing
performance. We apply formulas based on the label propagation algorithm to improve the quality of edge
cuts and achieve fast convergence. In our approach, the necessity of applying the label propagation process
for all vertices is removed, and the process is applied only for candidate vertices based on a score metric.
Our proposed algorithm introduces a stabilization phase in which remote and highly connected vertices are
relocated to prevent the algorithm from becoming trapped in local optima. Comparison results show that a
prototype based on the proposed algorithm outperforms well-known parallel graph-partitioning frameworks
in terms of speed and balance.

INDEX TERMS Data processing, graph data, parallel processing, partitioning algorithms.

I. INTRODUCTION
Recently, graph data have become increasingly important
for applications in various fields, such as e-science, medical
information systems, and social data management systems
[1]. The structure of graph data is very effective for repre-
senting the relationships between data, a fact that is driv-
ing its rising significance. A popular example of large-scale
graph data is the index of the World Wide Web, which has a
size of approximately 50 billion [2]. Other examples include
Facebook’s social data, which comprise over 100 billion links
[3], and Alibaba’s graph data, which contain over one billion
users and two billion items [4].

Although a graphical representation is effective for repre-
senting the relationship between data objects, the process-
ing of large-scale graph data is challenging because of the
intense resource consumption it requires [5]. Traditionally,
graph algorithms are designed under the assumption that
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a single machine has sufficient system memory to store
all the input graph data to be processed [6], [7]. However,
physical limitations make it almost impossible for a single
machine to be equipped with sufficient memory to process
large-scale graph data. To address this issue, several par-
allel/distributed graph processing frameworks for handling
large-scale graph data effectively have been proposed. Note-
worthy frameworks include Pregel [8], PowerGraph [9], Trin-
ity [10], Apache Giraph [11], GPS [12], GraphLab [5] and
GraphX [13]. These parallel/distributed frameworks divide
large-scale graphs into multiple segments, which are then
processed in parallel on multiple computers. Each machine
then applies the graph algorithm to the vertices corresponding
to that specific machine. This approach is called vertex-
centric graph processing.

Balanced graph partitioning is an efficient data decom-
position operation that is essential for vertex-centric graph
processing of large-scale graph data. A poor execution of
the data decomposition not only results in an imbalance of
the workload distribution over parallel machines, but also
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FIGURE 1. An example of graph partitioning.

increases the communication overhead. Thus, the quality of
graph partitioning significantly affects the performance of
graph processing, as well as the scalability of large-scale
parallel/distributed graph processing.

The goal of graph partitioning, which can be considered
a key preprocessing phase in any graph processing task, is
to obtain a well-balanced graph topology. So that the graph
partitioning is well balanced, the size of each partition must
be balanced (for workloads) [14]–[16] and the edge cut
degree must be minimized to allow communication between
the partitions [17], [18]. Figure 1 shows an example of a
comparison of (a) ‘‘poor’’ and (b) ‘‘good’’ edge cut graph
partitioning results. Although the partitioning shown in both
Figure 1(a) and (b) satisfies the balance of the vertex, (b)
has fewer edge cuts than (a). Thus, the case in Figure 1(b)
shows a better overall performance for most graph processing
algorithms, because it requires less network communication.
The graph-partitioning algorithm is used in a preprocessing
phase to find the graph topology that can be processed effi-
ciently in a real distributed environment; the results are as
shown in Figure 1(b). Because real-world graph data show a
skewed power-law distribution, we also claim that the graph-
partitioning algorithm should consider not only vertex bal-
ance but also edge balance.

The balanced graph-partitioning problem is known to be
NP-complete [19]. For this reason, most approaches are
designed to solve the balanced graph-partitioning problem
by using heuristic methods, similarly to various other NP-
complete problems. Many previous approaches for graph
partitioning are based on a local search algorithm, such as
the Kernighan–Lin (KL) [20] and Fiduccia–Mattheyses (FM)
algorithms [21]. These algorithms require considerable com-
putation to obtain the optimal edge cut as the number of
vertices, i.e., nodes, and partitions increases. Hence, because
of the huge computational cost, these approaches are applied
only to small graphs [22].

To reduce the computational cost, some studies applied
multilevel methods [23]–[32] to reduce the computation time
by using the coarsening process, which splits the original
graph into smaller graphs by contracting the connectivity
information of vertices. The multilevel approach, when com-
bined with a heuristic approach such as KL, improves per-
formance and yields significantly better edge cuts than a
standalone heuristic approach. However, some graphs are
not effectively coarsened during the coarsening phase. The

TABLE 1. Characteristics of previous approaches.

overhead of the coarsening process when applied to these
graphs can be so large that the advantages of the multilevel
approach are effectively nullified. In addition, the multilevel
approach is very memory-intensive, which is a disadvantage
in terms of scalability.

The label propagation (LP) algorithm [33] is a different
approach used to solve the graph clustering problem. This
algorithm typically runs in near-linear time over a single
iteration, but its iterative operations can be disadvantageous.
Although LP can reduce the volume of computation as com-
pared to KL and FM, it still requires many iterative opera-
tions [34]. In addition, the resulting edge cut performance
of this approach has been shown to be poorer than that of
the multilevel approach. We summarize the edge cut, scala-
bility, and performance characteristics of the aforementioned
approaches in Table 1.

In this paper, we propose a novel parallel graph-
partitioning algorithm that provides a low edge cut degree and
high performance processing capability for large-scale graph
data. In our proposed method, we consider scalability the
most important characteristic for achieving large-scale graph
data processing. Thus, the design of our algorithm is based
on the LP algorithm and is aimed to solve the problems of the
original LP algorithm, such as the edge cut quality.

To improve edge cut quality and achieve fast convergence,
we use an LP algorithmwith a score metric based on the basic
formula of the KL algorithm. In our approach, rather than
selecting random vertices from the partition and applying the
LP process for all vertices, we apply the LP process only for
candidate vertices with lower scores. We also use a process
that reduces the number of candidate vertices in every itera-
tion utilizing a defined ratio to improve the LP performance.
We named this process ‘‘quick-converging label propaga-
tion’’ (QCLP). To ensure that QCLP does not cause graph
topological convergence to some local optimum, we intro-
duce a stabilization phase. In the QCLP phase, we change the
graph topology based on the vertices in each partition that
are not required, whereas in the stabilization phase, the graph
topology is changed based on the vertices that are important
in each partition. In other words, our algorithm is processed
in two directions.

Our algorithm also considers the network communication
problem that naturally occurs in distributed parallel process-
ing. Distributed machines need to share the new position,
i.e., partition, or vertex score for the next iteration in LP.
In this process, a correlation exists between the overhead
of the data update frequency and the accuracy of the vertex
position. More frequent updating of the data results in the
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vertex position being more accurate, which in turn increases
the quality of the edge cut partitioning. However, an increase
in the data update frequency also incurs a higher communi-
cation overhead. Thus, considering both the network com-
munication overhead and vertex position accuracy, we apply
the bulk synchronous parallel (BSP) style [35] lazy updating
scheme to reduce the amount of network communication and
share changes only in the location information and the vertex
scores. In addition, when we execute the LP process, we
consider the possibility of vertex relocation to increase vertex
position accuracy. The details of our approach are presented
in Sections III and IV.

The primary contributions of this paper are as follows.

1) A novel two-way graph-partitioning algorithm based
on LP with a score metric to prevent the algorithm
becoming trapped around local optima is proposed.

2) Improvement in the edge cut results as a result of
considering the possibility of vertices being relocated
is shown.

The remainder of this paper is organized as follows.
We review and analyze previous balanced graph-partitioning
approaches in Section II. In Section III, we describe the
details of our proposed graph-partitioning algorithm. We
describe our proposed data structure in Section IV. In Section
V, we present and evaluate the results of experiments in which
our proposed method was applied and present a performance
comparison of our method with other major approaches.
Section VI presents concluding remarks.

II. RELATED WORK
As described in Section I, several researchers attempted
to achieve balanced graph partitioning by using heuris-
tic and multilevel approaches. Heuristic graph-partitioning
approaches can be categorized as score- or LP-based. In the
following, we analyze these two types of approaches and then
outline the multilevel algorithm.

A. SCORE-BASED APPROACHES
Most heuristic approaches are designed to solve the bal-
anced graph-partitioning problem by applying a local search,
and many local search algorithms are based on the KL
algorithm [3]. The primary concept of the KL algorithm is
that, by repeatedly swapping vertices between the partitions
in the direction of increasing the local score, the minimum
edge cut can be obtained. Figure 2 shows an example of
the KL algorithm. The graph in the upper left of Figure 2
shows the initial graph, which is randomly divided into two
partitions (A/B).

The algorithm proceeds in the following order. First, the
values of ‘‘external cost (E),’’ ‘‘internal cost (I),’’ and the
‘‘difference between external and internal costs (D)’’ are
calculated based on each partition, which indicates the num-
ber of remotely connected vertices, the number of locally
connected vertices, and the difference between the external
edge and internal edge costs, respectively. Subsequently, ‘‘G’’

FIGURE 2. An example of the Kernighan-Lin Algorithm.

is calculated using the values of ‘‘D’’ and ‘‘C(a,b),’’ which
indicate the vertex connectivity of A and B (1 if connected;
otherwise 0). Finally, the algorithm swaps the combination
of vertices that obtains the largest value of G. In the exam-
ple given in Figure 2, the highest value of G results from
swapping Vertices 4 and 7. This swapping process is repeated
iteratively, neglecting previously processed vertices, until no
positive gain scores are available, i.e., all the values of G5 0.
KL provides a balanced partition by swapping vertices, but
computation time increases exponentially with the number of
vertices. Additionally, it is not guaranteed that the final edge
cut is optimal when G 5 0.

Rather than swapping vertices, the FM [36] algorithm
moves vertices to improve the performance of the KL algo-
rithm algorithm [3]. The FM algorithm also differs from KL
in that it uses a data structure called a bucket queue. Using
this data structure, the FM algorithm can obtain the vertex
with the highest gain score, move that vertex, and update the
score of its neighbor vertices in constant time [37]. However,
the calculation of the relevant scores when the FM algorithm
is used is computationally expensive.

B. LABEL PROPAGATION-BASED ALGORITHM
The LP algorithm [33] is an additional basis applied in
graph-partitioning algorithms to achieve balanced graph-
partitioning. Figure 3 shows an example of the LP algorithm.
The LP algorithm is simple and lightweight and runs each
iteration in near-linear time. In the LP algorithm, only the
specified vertex and its neighbors are processed. Thus, it takes
only O(E) time. The LP algorithm is therefore advantageous
in terms of performance and scalability for graph partitioning
[38].
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FIGURE 3. An example of the Label Propagation Algorithm.

Some issues still remain when the original LP algo-
rithm is used for balanced graph partitioning [39]. LP-based
algorithms require many iterations to achieve convergence,
because the algorithm is executed repeatedly until a specific
threshold iteration is reached. Although an increase in the
number of iterations increases the probability of obtaining
better edge cut quality, this process requires an excessive
amount of computation time for graph partitioning. In addi-
tion, it must be executed for all vertices in every itera-
tion, and it is difficult to predict the optimal threshold for
iteration.

The LP algorithm also cannot guarantee a balanced graph
topology, because it is a clustering rather than a partitioning
approach. Thus, it is likely that the original LP algorithm will
return a graph topology with partitions of various sizes rather
than with balanced partitioning [39].

Finally, when using a distributed LP algorithm, an increase
in the frequency of information updates comes at the cost
of an increase in network congestion. Network overhead is
an inevitable cost of communicating updates when vertex
positions change while the LP process is being executed in
distributed machines. Although edge cut results could be
improved by executing the update process per vertex, per-
formance is severely negatively affected if a network barrier
is encountered for every calculation. Conversely, executing
computation for all vertices independently while updating
information per iteration rather than per vertex enhances per-
formance; however, the quality of the resulting edge cut may
be diminished as a result of slower updating. To improve per-
formance, previous LP-based graph-partitioning approaches
[34], [40] used the latter approach. Accordingly, the edge
cut results were not optimal as compared to the results of
multilevel approaches that use contracted connectivity infor-
mation. Figure 4 shows an example of the graph-partitioning
algorithm based on LP.

C. MULTILEVEL APPROACH
The key idea of the multilevel approach is to reduce the
computational complexity and enhance the performance of
a graph by reducing its size (i.e., making it coarser). Figure 5
illustrates the multilevel approach. Although this approach
may appear to be independent, it uses heuristic approaches
in the uncoarsening phase.

The multilevel approach consists of three phases: coars-
ening, initial partitioning, and uncoarsening. First, the coars-
ening phase processes the original graph into smaller graphs

FIGURE 4. An example of the graph partitioning algorithm based on label
propagation algorithm.

FIGURE 5. Illustrate of the multilevel approach.

by contracting the connectivity information. In this pro-
cess, algorithms such as random matching (RM) and heavy
edge matching (HEM) can be used. RM randomly selects
a vertex from the entire graph, whereas HEM selects the
vertices with the highest connectivity among the visited
vertices.

Next, the initial partitioning phase divides the graph result-
ing from the coarsening phase into k partitions. In this
phase, algorithms such as random clustering and breadth-
first search are used. Finally, the uncoarsening phase obtains
the minimum edge cut while restoring the original graph.
In this phase, the process of moving or swapping vertices
is repeated by applying a local search approach, such as
the KL or FM algorithm. Many well-known software pack-
ages employ the multilevel approach, including Metis [24],
Chaco [27], Scotch [28], ParMetis [29] and Pt-Scotch [30].
As mentioned in Section I, the multilevel approach shows
considerable improvements in performance and edge cut as
compared to standalone heuristic algorithms. However, the
requirement for large amounts of system memory presents a
severe drawback in terms of scalability.

72804 VOLUME 8, 2020



M. Bae et al.: LP-Based Parallel Graph Partitioning for Large-Scale Graph Data

III. PROPOSED GRAPH-PARTITIONING ALGORITHM
We propose a novel parallel graph-partitioning algorithm that
utilizes the LP algorithm and a stabilization process with a
score metric. In the proposed algorithm, we use the score of
vertex position appropriateness as a critical factor, because it
is used to identify the vertices to be relocated. By calculating
only the vertices that should be relocated, the edge cut quality
and performance can be improved.

A. DEFINITION OF THE SCORE
First, we define the concepts and metrics used in the score
of our proposed approach. As a KL approach, our method
distinguishes between local edges and remote edges in cor-
responding lists of vertex edge information. Next, the vertex
partition score (VP Score) is defined to indicate the appropri-
ateness of a vertex in its current partition. Formula (1) is used
to calculate the score of Vi based on the partition to which it
belongs.

VP Score(Vi) = Vil − Vir , (1)

where :
Vil : is the number of connected edges to the same partition

as Vi (local edge)
Vir : is the number of connected edges to other partitions

as Vi (remote edge)
In this expression, the number of edges connected to other

partitions (remote edges) belonging to Vi is subtracted from
the number of edges connected to the same partitions (local
edges). This formula is almost identical to the ‘‘difference
between external and internal’’ of the KL algorithm [3] and
has been verified experimentally. However, the KL algorithm
uses these scores to obtain the gained score when this vertex is
swapped with all vertexes in other partitions, which requires
a considerable amount of computation. In our scheme, this
formula is used to reduce the LP process, which is applied
for all nodes in the previous graph-partitioning approach
based on LP. This formula expresses the appropriateness of a
vertex in the partition as the number of local edges in excess
of the remote edges; that is, the larger the score, the more
appropriate the vertex is to the current partition. Using this
characteristic, we advance to the LP process only vertices
with a lower VP score to benefit from the computation and
communication volume. This approach has the same effect as
the coarsening process in the multilevel approach; however,
we do not store additional information data, because there is
no uncoarsening process. Thus, we can obtain an advantage
in terms of memory consumption.

The following formula gives the Total Score (T Score),
which is the sum of the VP Score for all vertices in the entire
graph.

T Score =
∑

VP Score(∀V ) (2)

The edge cut indicates the sum of the remote edges for all
vertices in the entire graph, and thus, the edge cut of the entire
graph decreases as the T Score increases, and vice versa.

FIGURE 6. An example of graph topology.

In other words, it indicates the appropriateness of the current
graph topology status.

Figure 6 shows an example of a graph partition in which
the number of partitions is set to three. The red lines indicate
remote edges connecting two vertices in different partitions,
and the black lines indicate local edges between two vertices
in the same partition. In this example, the VP Score of V1 is
2 (i.e., 4 minus 2) and the T Score is 22 (i.e., 34 minus 12).

B. PROPOSED GRAPH-PARTITIONING ALGORITHM
In this section, our proposed LP algorithm is described in
detail and the stabilization process is presented. In the pro-
posed algorithm, we apply the novel QCLP algorithm. Then,
the result of the QCLP algorithm from the given partitioning
stage yields the total number of remote edges reduced by
the next iteration, which increases the T Score. Our QCLP
algorithm is aimed to improve edge cuts and accelerate
convergence. It is known that the LP algorithm changes
the partition (label) of a vertex according to the maximum
number of partitions within its neighbor vertices; its perfor-
mance is good in terms of graph clustering. However, the
conventional approach applies LP for all vertices without
considering their current positions, and therefore, all vertices
are recalculated regardless of whether they are located in the
most suitable partition. Thus, the algorithm may suffer from
serious performance degradation in terms of accuracy and
processing.

To address this issue, we apply the LP process only for
vertices with a lower VP Score, instead of for all vertices.
Furthermore, we gradually reduce the number of candidate
vertices in every iteration of the LP process. This process is
discussed in more detail in Section IV.A. In this phase, we
refer to the candidate vertices with lower scores as the local
lower score vertices (LLSV). The definition of LLSV is as
follows.
Definition 1:

LLSV(Pi) = {list of vertices with low score in partition Pi,

Pi ∈ P}

In summary, the QCLP phase identifies and relocates the
LLSV using LP. Figure 7 shows an overview of the QCLP
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FIGURE 7. Overview of Quick Convergence Label Propagation.

algorithm. In this figure, the QCLP phase identifies the LLSV
and relocates these vertices to another partition that can obtain
the highest score. For every iteration, the number of LLSV is
gradually decreased.

We also propose a stabilization process to prevent the algo-
rithm becoming trapped in the local optima. If we use only the
LP algorithm for graph partitioning, we may overlook ver-
tices that would otherwise have gained a score improvement
by being relocated to other partitions. That is, T Score can be
increased by relocating certain vertices with a high VP Score
to other partitions; some vertices may have been trapped in
the partition because the VP Score is a local rather than a
global score. As the proposed QCLP algorithm processes
vertices based only on the VP Score, it is difficult to process
vertices that are missed. To resolve this problem, we add a
stabilization process to our graph-partitioning algorithm. This
stabilization process changes the graph topology based on
the most-required vertices in each partition rather than on
their lower VP Score. In this phase, we refer to candidate
vertices connected to remote partitions as higher connectiv-
ity to remote vertices (HCRV). The HCRV are defined as
follows.
Definition 2:

HCRV(Pi) = {list of vertices that have many remote

connections in partition Pi, Pi ∈ P}

In summary, the stabilization phase identifies and relocates
the HCRV. Figure 8 shows an overview of the stabilization
process. In this figure, ‘‘Before relocating HCRV’’ shows the
identification of the HCRV (black vertices) in partition 2 (P2
in Figure 8) based on the remotely connected edges. ‘‘After
relocating HCRV’’ shows the process of relocating vertices
(red) that will increase the T Score when migrated to partition
2. We describe the details of our approach in Section IV.

FIGURE 8. Overview of Stabilization process.

FIGURE 9. Overview of Data Structure.

IV. PARALLEL GRAPH-PARTITIONING PROCESS
For use in parallel processing, our proposed algorithm
requires an appropriate data structure. We describe our graph
data distribution scheme with the data structure for multiple
workers (machines) in Section IV.A. In Section IV.B, we
describe the parallel processing mechanism of our graph-
partitioning algorithm.

A. DATA STRUCTURE
The proposed algorithm requires two types of data: locally
stored data (Local Data) that each worker processes, and
shared data (Shared Data) that all workers process.

First, we distribute the graph data randomly and evenly
among the workers using a random hash function. These
distributed graph data are stored in each worker as the Local
Data (i.e., edge information). Each worker is responsible
for updating its own vertices, and the Local Data stored
in each worker remains unchanged over the entire parti-
tioning process. In other words, each worker conducts an
LP process, updating VP Score and identifying the LLSV,
as well as the HCRV, based on the local edge information
of vertices (Local Data). Next, the values that should be
shared to all workers through BSP communication on each
iteration (e.g., LLSV, HCRV, updated vertex position, and
VP Score) are stored in Shared Data. Figure 9 illustrates the
data structure of the proposed algorithm. Additionally, the
initial partition position of each vertex is determined using
a random hash function, which is similar to the initial graph
distribution.
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B. PARALLEL GRAPH-PARTITIONING ALGORITHM
In this section, we describe the parallel processing of our
graph-partitioning algorithm consisting of QCLP, as well as
the stabilization phase. We designed our proposed graph-
partitioning algorithm using three principles to maintain a
user-specified imbalance ratio, e.g., vertex: 1.03 and edge:
1.30, because constraining both the vertex and edge size
results in partitioning that is too complex, i.e., has too many
constraints, to allow decisions in the LP process. For example,
the LP process used to increase edge quality is tightly coupled
to the balancing process. Thus, we designed the algorithm
to focus on different factors in each step to decouple the
balancing process and the LP process. We also describe
the principles for achieving balanced partitions in each
step.

1) QUICK-CONVERGING LABEL Propagation(QCLP)
Our QCLP algorithm is designed to reduce computation and
to increase the quality of the edge cut by implementing the
LP process only for limited vertices based on the VP Score.

For efficient implementation of the LP, we consider two
overhead issues and provide a solution for each. The recal-
culation of the VP Score of all vertices incurs too large a
computational overhead and is therefore ineffective. When
P[VLLSV ], i.e., the partition position of LLSV, is changed
during the QCLP process, only the VP Score of VLLSV and
VLLSV ’s neighbor vertices, i.e., the edges connected to LLSV,
are changed. Thus, we recalculate the VP Score only for
VLLSV and their neighbor vertices, rather than for all vertices.
Additionally, we designed our algorithm such that the calcu-
lation of the VP Score and the determination of new P[VLLSV ]
are overlapped in the LP process to reduce computational
overhead.

We also considered the relationship between the accuracy
of the LP result and the frequency of network communication.
If network requests are not sent to other workers, no means
exists of informing a worker whether the P[VLLSV ] computed
by other workers has changed. Thus, each worker conducts
the LP process using outdated vertex information from the
previous LP step. Conversely, an increase in network com-
munication provides more recent vertex information, which
enables a better LP result to be achieved.

To resolve this issue, we propose the lazy-update BSP
communication paradigm. In our lazy-update BSP scheme,
we designed a network communication scheme that is more
effective, because it is iteration- rather than vertex-based.
However, to compensate for lazy updates, the vertex informa-
tion is updated only when vertices on the same machine are
changed.We also consider the possibility of vertex relocation.
We ignore the VLLSV ’s neighbor vertices belonging to the
LLSV during the LP processing of P[VLLSV ], because it is
very likely that these vertices will move to another partition.
If we include such vertices when we perform the LP process,
the new P[VLLSV ] will be inaccurate.

The QCLP algorithm is illustrated in Algorithm 1. It con-
sists of three steps: 1) LLSV identification, 2) LP and updat-

ing of the VP Score, and 3) reupdating of the VP Score in
LLSV.

Algorithm 1 Quick Converging Label Propagation
Description : The QCLP algorithm is performed for at least
α iterations and it is finalized when the T Score has not
increased by more than k% for β iterations. (α, β, and k are
user-defined values.)

LLSV : array of LLSV
V[] : array of vertex’s edge information
P[] : array of vertex’s partition position
VP[] : array of vertex’s VP Score
U : updated data, L : Local Data in each machine
P : previous, N : neighbor vertex

1: Iter← 0, T_Score← 0
2: while Iter < α || count < β do
3: N← 100 - EXP(Iter / 10)
4: for i = l . . . p do
5: LLSVL ← SortingandExtract(VL[],N%)
6: LLSV← AllGather(LLSVL)
7: for all V ∈ LLSVL do
8: VP[V], PU [V], VPU [VN ]← LPandUpdate(V)
9: P[V]← AllGather(PU [])

10: VP[]← ISendRecv(VPU [])
11: for all V ∈ LLSVL do
12: VP[V]← ReUpdate(V)
13: Update T_ScoreL
14: T_Score← AllReduce(T_ScoreL)
15: if (T_Score / T_ScoreP < k) then
16: Count← Count+1
17: Iter← Iter +1

All three steps are processed independently for each
machine based on its Local Data. As mentioned above, we
gradually and iteratively reduce the number of candidate ver-
tices. To achieve this, we use the natural exponential function
as the criterion to determine the extent to which the VP Score
should be reduced, i.e., N%. The processes achieve the same
effect as the coarsening process in the multilevel approach,
but without storing contracting connectivity information data,
and thereby provide an advantage in terms of memory usage.
The algorithm also provides a better performance in terms
of edge cut quality than the original LP algorithm, because
the QCLP calculates the location of vertices by their need to
be relocated. In Algorithm 1, this process is pseudo-coded
in lines 3–5. Next, we share the local LLSV to all machines
(line 6) using collective network communication, i.e., the
BSP scheme.

Next, we conduct the LP process to determine a new
P[VLLSV ] and update the VP Score. We update the VP Score
only for VLLSV and neighbors of VLLSV . We also enable the
VP Score updating and LP processes to be overlapped to
achieve a higher performance through the modification of the
original LP algorithm.
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FIGURE 10. Illustrate of the LP and updating VP_Score.

The principle of theQCLP process is to prioritize the vertex
balance. In the QCLP phase, the more vertices a partition has,
the greater the number of additional external vertices that are
likely to be relocated to the partition in the LP process. This
causesmost vertices to be gathered in a particular partition. To
avoid this issue, we relocate vertices in an order that provides
each partition with almost the same number of vertices. In
addition, to prevent the number of edges in a particular par-
tition from becoming too large, the criterion for identifying
the LLSV is changed to the number of edges rather than the
VP Score when the number of edges in a particular partition
exceeds a specific ratio (we set this ratio twice as much as the
user-configured edge imbalance ratio, empirically).

Then, BSP communication is used to share only the par-
tition positions of the changed vertex (line 9) and the VP
Score of only the changed vertex’s neighbor (line 10). Finally,
we update the VP Score for VLLSV a second time using the
updated partition position (lines 10 and 11).

Figure 10 illustrates an example of lines 7–12 of Algorithm
1. In this example, Vertices 1, 2, 3, 5, and 6 are connected to
Vertex 0 of Machine zero. As mentioned above, to improve
accuracy, we consider only the nodes that are not included
in the LLSV (dotted circle). Thus, we consider the partition
position only for Vertices 2, 5, and 6 (solid circles). To deter-
mine the new P[VLLSV ], we obtain the previous P[V] with
the Shared Data updated in every iteration. For Machine zero,
P[V5 and V6] is 3 (blue background) and P[V2] is 1 (yellow
background). Therefore, the highest T Score is obtained when
P[V0] is moved to 3. Meanwhile, we update the VP Score of
VLLSV and VLLSV ’s neighbor vertices. Then, VP Score[V2] is
decreased by two, because Vertex 0 (P[V0] : P1→ P3) is no
longer considered local (i.e., in the same partition) and VP
Score[V5 and V6] is increased by two, because V0 becomes
local. Finally, we calculate VP Score[V0].
After V0 is relocated, there are two locally connected

vertices (V5 and V6), one remotely connected node (V2),

and two unknown connected nodes (V1 and V3). Because
we do not know the information of P[V1 and V3], which
may be changed, we calculate only the locally connected and
remotely connected vertices. Thus, VP Score[V0] is 1 (locally
connected – remotely connected). Then, we share the updated
information through network communication.

Next, as we know the information of V1 and V3 (unknown
connected vertices in the previous phase) from the updated
information, we can reupdate VP Score[V0]. If P[V1 and V3]
are the same as P[V0], we either increase VP Score[V0] by 1
or decrease VP Score[V0] by 1. In this example, because both
V1 and V3 have different partitions from V0, we decrease the
score of V0 by 2. Thus, the final VP Score[V0] is negative
(−1), where VP Score[V0] is 1 before reupdating.

2) STABILIZATION PROCESS
In this phase, we conduct graph stabilization to resolve
the local optima problem. We stabilize the graph partitions
by relocating the HCRV and relocate VHCRV to increase
the T Score. The stabilization algorithm of the HCRV is
described in Algorithm 2. Because QCLP and HCRV are
similar but use different flows, we describe only those parts
that differ from the QCLP phase.

Algorithm 2 Stabilization Process
Description : The stabilization process is performed for α
iterations. (α is a user-defined value.)

HCRV : array of HCRV
V[] : array of vertex’s edge information
P[] : array of vertex’s partition position
VP[] : array of vertex’s VP Score
U : updated data, L : Local Data in each machine
C : candidate vertex, N : neighbor vertex

1: Iter← 0, T_Score← 0
2: while Iter < α do
3: for all V ∈ LLSVL do
4: if (VP_Score[V] < 0) then
5: HCRVC ← LP(V)
6: for all V ∈ HCRVC do
7: VP[V], PU [V], VPU [VN ]← DecideandUpdate(V)
8: P[V]← AllGather(PU [V])
9: VP[V]← ISendRecv(VPU [])
10: Update T ScoreL
11: T Score← AllReduce(T ScoreL)
12: Iter← Iter +1

To extract the candidate vertices of HCRV, each node
conducts LP on the local vertices where VP Score is less than
0 (lines 3–5 in Algorithm 2). If VP Score is greater than 0,
more than half of the neighbor vertices already exist in the
current partition, and there is no partition that is more suitable
than the current partition.

After the LP process, we select vertices that satisfy the
size-constrained conditions of partitions among the HCRV
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candidates. For the stabilization process, we select the ver-
tices for which the relocated partition does not exceed the
edge/vertex imbalance ratio. Then, we decide on the final
HCRV in descending order of the number of edges among
the vertices to ensure that the edge balance is not excessive.

Next, we update the partition position and VP Score of
those vertices (lines 6 and 7). Finally, as in the QCLP process,
the updated values are shared via network communication
(lines 8 and 9).

3) EDGE-BALANCED PARTITIONING PROCESS
During QCLP and the stabilization process, we focus on
vertex balance more than on edge balance. We advance these
processes while maintaining the near-perfect vertex balance,
but, in the case of edges, only to ensure that the edge balance
is not excessive. After QCLP and the stabilization process,
to maintain the near-perfect edge balance, we prioritize edge
balance without considering edge cut quality as the principle.
Therefore, it could serve to degrade the overall edge cut
quality.

In this process, a partition with many edges identifies as
many vertices as possible while satisfying the imbalance
ratio in descending order of edge quantity. Then, identified
vertices are relocated randomly to another partition that does
not exceed the edge/vertex imbalance ratio. We repeat this
process until the number of edges is balanced.

V. EXPERIMENT
In this section, we describe our experiment and analyze the
results by comparing the execution time, edge cuts, and
balance ratio of our proposed method against those of con-
ventional graph-partitioning frameworks such as Metis [24]
(version 5.1.0), ParMetis [29] (version 4.0.3) and XtraPuLP
[34] (version 0.2).

Metis is a widely used graph-partitioning algorithm based
on the multilevel approach. Although it provides only a single
machine execution, it yields a good edge cut result and a
balanced ratio. Therefore, we compare the edge cut result and
the balance ratio of our proposed method with those of Metis.

ParMetis (a parallel version of Metis) and XtraPuLP are
parallel graph-partitioning algorithms. ParMetis divides the
graph over the number of machines used, and the subsequent
partitioning is accomplished in a manner similar to that of
Metis. XtraPuLP is a parallel version of PuLP [41] that uses
the LP algorithm instead of the multilevel approach for graph
partitioning. We compared these two algorithms with the
proposed approach in terms of performance, edge cut results,
and balance ratio.

A. EXPERIMENTAL ENVIRONMENT
We used two different Amazon Web Service (AWS) [42]
clusters for the experiment. In the small cluster, we focused
on demonstrating a scalability and performance compari-
son with a limited amount of memory. The large cluster
was configured to have a large amount of memory for the
large graph data experiment. In addition, to show the graph

TABLE 2. Specifications of clusters used in the experiment.

TABLE 3. Graph Information used in the experiment.

partition results when the number of machines is increased,
we configured the large cluster with a larger number of
machines than the small cluster. The configurations are sum-
marized in Table 2.

We used graph data from the Stanford Network Analysis
Platform (SNAP) [43] and the Koblenz Network Collection
(KONECT) [44]. Table 3 lists information about the graph
data used in the experiment. All seven graphs listed in the
table, except ‘‘Twitter,’’ were tested on the small cluster, and
the three large graphs in our datasets, i.e., Twitter, Wikipedia-
link, and DBpedia-link, were tested on the large cluster.

In the experiment, we measured the performance, edge
cut results, and balance ratio of the proposed algorithms and
compared them with those of ParMetis, Metis, and XtraPuLP
using the dataset in Table 2. For an experimental parameter
value, the vertex-imbalance ratio and edge-imbalance ratio
were set at 1.03 (3%) and 1.30 (30%), respectively.

For the QCLP process of our proposed method, we need
to reduce the number of candidate vertices gradually (the
LP process is applied only to candidate vertices) in every
iteration to reduce the amount of computation. In this process,
the Top-N% vertices with the lowest score are selected as
candidate vertices. We used the natural exponent function to
determine N%. N% was obtained by ‘‘100 - value of natural
exponent function having input value of 1/p of the current
iteration count’’; i.e., when p = 10, the value of n in the
first iteration is ‘‘100 - natural exponent function (1/10) =
98.89’’. In the experiments, we selected p = 10, empirically.
Additionally, the number of iterations in the QCLP phase
was configured to be at least 40. After 40 iterations, the
algorithm continued until the T Score did not increase by
more than 0.01% for 10 iterations. These settings gave us the
best performance in terms of edge cut and execution time.
We implemented our algorithm using MPI and OpenMP. For
efficient memory usage, we perform the label propagation,
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FIGURE 11. Result of performance, edge-cut, vertex-balance and edge-balance on small-cluster.

sorting and extracting vertex process throughOpenMPwithin
multi-core parallel processing. In addition, we used MPI for
network communication among distributed nodes.

B. COMPARISON WITH OTHER SYSTEMS ON SMALL
CLUSTER
We conducted the partitioning experiment using seven graphs
for measuring the performance, edge cut results, and balance
ratio on the small cluster. The number of partitions was con-
figured as 32. The experimental results on the small cluster
are shown in Figure 11.

First, as shown in Figure 11(a), we compared and ana-
lyzed the performance results in terms of execution time. Our
proposed method is the fastest for every set of graph data.
ParMetis, which is a distributed version of Metis, shows a
poorer performance than Metis in some cases. We specu-
late that this is a result of the dataset exhibiting a skewed
power-law distribution and that the data may not efficiently
be reduced in the coarsening process of ParMetis. ParMetis
is also significantly affected by the initial graph distribu-
tion and may require considerable communication with other
machines depending on the quality of the initial partitioning.
A comparison of the performance with that of the LP-based
XtraPuLP shows that its convergence time is greater than
that of the proposed algorithm, because all of the vertices
undergo the LP process. Furthermore, for larger datasets, the
proposed algorithm performed considerably better in terms
of execution time than the other algorithms. For example, in
the ‘‘Orkut’’ graph, the proposed algorithmwas 4.98 and 1.93
times faster than Metis and XtraPuLP, respectively.

Using the same performance results, we could also analyze
the scalability of the different algorithms. Only the proposed
algorithm and XtraPuLP were able to handle the ‘‘DBpedia-
link’’ and ‘‘Wikipedia-link’’ graph data in the small cluster
environment. As mentioned above, graph algorithms based
on the multi-level approach require a large memory footprint.
For example, they required almost 20 GB memory when
partitioning the ‘‘Wikipedia-link’’ graph data (12 M vertices
and 378 M edges). Thus, graph algorithms based on the
multi-level approach are not able to process large-scale graph
data in a small-cluster environment. In addition, although
not shown in Figure 11, only the proposed algorithm is able
to process the ‘‘Twitter’’ data, which contain one billion
edges, in the small-cluster environment. Thus, the proposed
algorithm shows the best scalability.

Second, we analyzed the results in terms of edge cut perfor-
mance. The proposed algorithm produced an edge cut perfor-
mance almost identical to that of Metis, the edge cut qual-
ity of which has been shown to be best. Except for in the
‘‘LiveJournal’’ graph, our algorithm shows a slightly better
edge cut performance than Metis. In comparison with the
distributed processing framework, ParMetis and XtraPuLP
seem to provide better edge cut quality than our approach in
some cases. However, XtraPuLP and ParMetis fail to meet the
edge or vertex balance requirement. For example, XtraPuLP
shows 3% fewer edge cuts than the proposed algorithm in
the ‘‘Orkut’’ graph, but its edge balance ratio exceeds the
maximum edge-imbalance ratio by 1.44 times. However,
our proposed algorithm produces 16% fewer edge cuts than
XtraPuLP while also satisfying the balance when it processed
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FIGURE 12. Result of performance, edge-cut, vertex-balance and edge-balance on large-cluster.

‘‘DBpedia-link’’ and produced 11% fewer edge cuts than
ParMetis in the ‘‘Orkut’’ graph. This experiment showed that
the proposed algorithm can proceed to graph partitioningwith
higher edge cut quality than the original LP approach.

Finally, we analyzed both the vertex balance and edge
balance. As shown in Figure 11(c) and (d), the proposed algo-
rithm and Metis do not exceed either the maximum vertex-
imbalance value (1.03) or the maximum edge- imbalance
ratio (1.30). However, ParMetis does not fulfill the maximum
vertex-imbalance ratio, and XtraPuLP does not fulfill the
maximum edge-imbalance ratio. In the worst case, the vertex-
imbalance ratio of ParMetis is 1.09 in the ‘‘Enwiki-2013’’
graph and the edge-imbalance ratio of XtraPuLP is 2.10 in
the ‘‘LiveJournal’’ graph. We speculate that these distributed
graph-partitioning algorithms focus more on edge cut quality
than on balance, because the balancing process lowers the
edge cut quality. In contrast, our proposed algorithm provides
comparable edge cut quality to Metis while satisfying both
the vertex balance and edge balance.

C. COMPARISON WITH OTHER SYSTEMS
ON LARGE CLUSTER
In a large cluster experiment, we conducted the partitioning
experiment on three large graphs in our datasets. In addition,
we increased the number of partitions to 32 and 128 to
investigate the edge cut quality according to the number of
partitions. The experimental results on the large cluster are
shown in Figure 12.

Each node in a large cluster is equipped with 244 GB
memory. Metis and ParMetis are able to process the graph
partitioning in the ‘‘DBpedia-link’’ and ‘‘Wikipedia-link’’

graphs in the large cluster, but they cannot process the ‘‘Twit-
ter’’ graph data even on a large cluster. Although we did
find a reference [30] that contains a Metis partition result
for the ‘‘Twitter’’ graph, it used 1024 GB of memory. The
execution time in Figure 12(a) shows that our algorithm
performs better than others on all the graphs. For Metis and
ParMetis, the larger the data size, the more severe the per-
formance degradation. However, the proposed algorithm and
XtraPuLP produced faster execution times, demonstrating
that the results for the same data improve as the number of
machines increases.

The proposed algorithm also produced an edge cut perfor-
mance almost identical to that of Metis on the large cluster.
XtraPuLP showed 10% and 16% fewer edge cuts than the
proposed algorithm in the ‘‘Twitter/32’’ and ‘‘Twitter/128’’
graphs, respectively. However, the edge-imbalance ratio of
XtraPuLP became more severe on a large cluster. In partic-
ular, its edge-imbalance ratio (5.99) exceeded the maximum
edge-imbalance ratio (1.30) by 4.6 times on ‘‘Twitter/32.’’
In addition, their edge-imbalance ratio became more severe
on a large cluster than on the small cluster, even for the
same graph. However, the proposed algorithm can produce
a balanced graph topology, regardless of the data size and the
number of machines.

We also analyzed the edge cut performance according
to the number of partitions. In terms of edge cut and bal-
ance, the proposed algorithm showed a performance simi-
lar to that of Metis, regardless of the number of partitions.
Meanwhile, the vertex-imbalance ratio and edge-imbalance
ratio tended to become more severe as the number of par-
titions increased in ParMetis and XtraPuLP, respectively.
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For example, the vertex-imbalance ratio of ParMetis is
increased 1.04 times in ‘‘Wikipedia-link/128’’ as compared
with ‘‘Wikipedia-link/32.’’ Meanwhile, the edge-imbalance
ratio of XtraPuLP increased by 1.61 times on ‘‘Twitter/128’’
as compared with ‘‘Twitter/32.’’

VI. CONCLUSION
In this study, we developed a novel graph-partitioning algo-
rithm that provides a high edge cut quality and excellent
performance processing capability for parallel processing
while sustaining the user-configured partitioning balance.
Our novel two-way graph-partitioning algorithm consists of
LP and stabilization phases to avoid the local optima problem.
The edge cut quality and performance are improved with
effective LP based on a score metric and the effectiveness of
BSP-style lazy updating.

To verify the effectiveness of the proposed algorithm,
we conducted experiments and compared the results with
those of several well-known approaches, Metis, ParMetis,
and XtraPuLP. The results show that Metis and ParMetis
perform well and yield high edge cut quality, but scale poorly
because of their significant amount of memory usage. In
contrast, XtraPuLP showed high memory utilization and a
good performance as compared to Metis and ParMetis but
produced deficient edge cut and balance ratio results as com-
pared to the other approaches.

Our proposed algorithm outperformed the other approaches
in terms of processing speed. In addition, it showed a
better edge cut quality and balance ratio than the paral-
lel graph-partitioning frameworks XtraPuLP and ParMetis.
Because the proposed algorithm shows an improved graph-
partitioning process in terms of scalability and performance,
we expect to improve the performance of large-scale graph
processing in distributed environments.
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