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ABSTRACT The vibration-based analysis is an effective technique for planetary gearbox fault diagnosis,
but a difficult task is how to accurately identify fault features from noisy vibration signals. In this paper,
a nonconvex wavelet thresholding total variation (WATV) denoising method is proposed for planetary gear-
box fault diagnosis, which combines wavelet-domain sparsity and total variation (TV) regularization. The
TV regularization algorithm is employed to modify the retained wavelet coefficients so that the occurrence of
oscillations caused by wavelet thresholding is suppressed. To overcome the underestimation shortcoming of
L1-norm regularization, nonconvex penalty function regularization is used to strongly promote the sparsity
of estimation while guaranteeing that the global optimal solutions are obtained even though the objective
function is nonconvex. Then, the split augmented Lagrangian shrinkage (SALSA) method is developed
to solve the nonconvex WATV denoising problem. Two experimental studies are performed to verify the
performance and effectiveness of the proposed method. Comparisons with the soft thresholding and basis
pursuit denoising (BPD) methods show that the proposed method can accurately estimate the fault features
from vibration signals, whichmeans that the proposedmethod is an effective and promising tool for planetary
gearbox fault diagnosis.

INDEX TERMS Planetary gearbox, fault diagnosis, nonconvex regularization, total variation, wavelet
thresholding.

I. INTRODUCTION
Due to their small size, lightweight, large transmission ratio
and strong load capacity, planetary transmission gearboxes
are widely used in military aircraft, new armored vehicles,
self-propelled artillery and other military equipment and
civilian equipment. Due to the harsh operating conditions
and intensive impact load of planetary gearboxes, gear faults
such as cracks and missing teeth frequently occur [1], [2].
Failure of planetary gearbox seriously affects the safety and
reliability of the equipment. If the fault is not diagnosed in
time, it will cause secondary damage to the equipment and
result in major economic losses and even human casualties.
Thus, fault diagnosis [3] and fault trend forecasting [56] have
attracted considerable attention in the past decades.
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Vibration-based analysis is an effective method for
diagnosing mechanical faults [3]–[6], because the vibration
signals generated by mechanical faults indicate the machin-
ery operation condition. The information contained in the
vibration signal describes not only the machine health con-
dition but also the severity. However, in a planetary gear-
box, the transmission system is more complicated than a
fixed-axis gear, so the transmission paths from gear meshing
points to transducers are multiple and time-varying, which
may deteriorate or attenuate the vibration response of faulty
components [3], [7]. In addition, the vibration signals are
usually degraded by strong background noise from the work-
ing environment and other machine components. Thus, how
to accurately extract the fault features from a complex noisy
signal is a difficult task for planetary gearbox fault diagnosis.

Various signal processing techniques have been widely
applied to vibration signal analysis and fault diagnosis during
the past decades, such as time-frequency analysis [8]–[10],

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 78753

https://orcid.org/0000-0002-2696-5017
https://orcid.org/0000-0002-6534-6147
https://orcid.org/0000-0002-6896-3239
https://orcid.org/0000-0002-2629-8744
https://orcid.org/0000-0003-2143-2438


P. Jiang et al.: Nonconvex WATV Denoising Method for Planetary Gearbox Fault Diagnosis

the spectral kurtosis (SK) [11]–[13], the empirical mode
decomposition (EMD) [14]–[16], the local mean decomposi-
tion (LMD) [17] and the wavelet transform (WT) [18]–[20].
The multiresolution analysis ability of the WT makes it suit-
able for extracting fault features from nonstationary vibra-
tion signals. Wang et al. [21] proposed a method combining
the Morlet wavelet and correlation filtering to identify the
impulse response parameters and the cyclic period between
adjacent impulses, which is an effective way to extract fea-
tures of gearbox fault diagnosis. In [22], the wavelet-based
multiscale slope featureswere extracted from the slope of log-
arithmic variances calculated from the wavelet coefficients of
the discrete WT, and then the extraction features were used
to classify gearbox faults with high accuracy and stability.
He et al. [23] presented a wavelet packet base-selection
method that selected an optimal set of time-frequency sub-
spaces to produce discriminant features to enhance the accu-
racy of gearbox fault diagnosis. Wang et al. [24] constructed
a new multiwavelet via an adaptive lifting scheme to extract
fault features from vibration signals of a gearbox. To over-
come the disadvantage that the common threshold denoising
method misses important but weak features in gear fault
diagnosis, Yuan et al. [25] developed a novel method com-
bining customized multiwavelet lifting schemes with sliding
window denoising. In [26], a series of sets of wavelet packet
coefficients on various frequency bands were taken as an
input of the deep residual networks to improve the perfor-
mance of planetary gearbox fault diagnosis.

Unfortunately, most of the previous studies have chosen
standard and fixed wavelet basis functions independent of the
given signal. In practice, the vibration signals are the dynamic
integrated response of running systems, fault components,
transmission paths and so on. Even the same faults generate
various dynamic response signals in different transmission
paths. Thus, fixed wavelet basis functions independent of the
input dynamic response signals tend to reduce the accuracy of
fault diagnosis [27]. On the other hand, universal thresholds
are usually set in previous denoising methods, which are the
same for the decomposition coefficients in the same layer.
The universal thresholds often obscure the decomposition
coefficients and may lead to the loss of some critical but
relatively weak information in the fault feature detection,
possibly reducing the accuracy of fault diagnosis [28].

Recently, a new branch of signal processingmethod, sparse
representation has received considerable attentions in the
field of mechanical fault diagnosis. The application of sparse
representation in mechanical fault diagnosis was initially
studied in [29]. To extract fault features from gearbox vibra-
tion signals, Li et al. [30] proposed a novel multiple enhanced
sparse decomposition (MESD) method to address multiple
feature extraction for gearbox compound fault vibration sig-
nals. In [31], based on the oscillatory behavior of the vibration
signal, a sparsity-enabled signal decomposition method using
L1-norm regularization was proposed for fault feature extrac-
tion of gearboxes. For multi-fault diagnosis of gearboxes,
Zhang et al. [32] introduced a resonance-based sparse signal

decomposition method with a comb filter. Yu et al. [33]
proposed an improved morphological component analysis
method which is a sparsity-based decomposition method, to
diagnosis compound faults in a gearbox. The above sparse
representation methods have satisfactory results for feature
identification in gearbox fault diagnosis. In these studies,
the classical L1-norm regularization is used to regularize the
sparse representation problem, because the L1-norm induces
the sparsity of the estimation more effectively than other
convex penalties [34]. However, L1-norm solutions are not
ideal for planetary gearbox fault diagnosis, because L1-norm
regularization often underestimates the high-amplitude com-
ponents of interest, which may still make the weak fault
components obscured in noise and hard to be effectively
identified [34]–[36].

To overcome the underestimation characteristic and
enhance the sparsity of the estimation, many nonconvex
sparse regularization methods that replace the classical
L1-norm regularization with nonconvex sparsity-inducing
penalties have been developed and used in mechanical fault
diagnosis. To improve the decomposition accuracy for gear-
box fault diagnosis, Cai et al. [35] introduced an improved
sparsity- enabled signal decomposition method which used
the generalized minimax-concave penalty function as a non-
convex regularizer to enhance the sparsity in the sparse
approximation. In the STFT domain, Ding et al. [37] used
a nonconvex penalty function to promote the sparsity of
group STFT domain coefficients in an optimization problem,
allowing the periodically oscillatory fault features of rotating
machinery to be effectively extracted. In [36], to address the
fault feature enhancement for wind turbine gearbox vibra-
tion signals, Wang et al. proposed a dual-enhanced sparse
decomposition method in which the nonconvex generalized
minimax-concave penalty was used to construct the sparse
regularized cost function. He et al. [38] extended the overlap-
ping group sparsity to the nonconvex regularization problem,
the proposed method used a nonconvex penalty function
to model the periodicity of the sparse groups, making this
method suitable for feature extraction in machinery fault
diagnosis.

The sparse enhancement properties of the nonconvex
penalty function provide a new insight on how to accurately
extract fault features. In this paper, we propose a nonconvex
wavelet thresholding total variation denoising method for
planetary gearbox fault diagnosis, which combines wavelet-
domain sparsity and total variation (WATV) regularization.
The proposed method employs the TV regularization algo-
rithm to modify the retained wavelet coefficients so that the
restoration process does not degrade the information that
has been considered as significant in the denoising step.
Moreover, to strongly promote the sparsity of estimation,
a nonconvex penalty function is employed as the regular-
izer of the sparse representation, and this function is guar-
anteed to obtain the global optimal solution even though
the objective function is nonconvex. We present two exper-
imental studies to verify the effectiveness of the proposed
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method in the diagnosis of localized faults in a planetary
gearbox. Comparisons show that the proposed method can
significantly improve the accuracy of planetary gearbox fault
diagnosis compared with the results of the soft thresholding
denoising and basis pursuit denoising (BPD) method.

The paper is organized as follows. Section 2 illustrates
the basic preliminaries. Section 3 presents the non-convex
WATV denoising model, the nonconvex penalty functions
and convexity condition, and the split augmented Lagrangian
shrinkage (SALSA) method is derived to solve the non-
convex WATV denoising problem. In Section 4, two exper-
iment studies are performed to verify the effectiveness of
the proposed method. Finally, conclusions are summarized
in Section 5.

II. PRELIMINARIES
Vibration signals observed from a faulty planetary gearbox
can be modeled as

y (t) = x (t)+ w (t) (1)

where y (t) ∈ RN is the measured signal, which usually
contains noise and fault signals; x (t) ∈ RN is the fault signal,
which contains impulsive components with periodic charac-
teristics caused by localized gearbox faults; and w (t) ∈ RN

is white Gaussian noise. The challenging problem in the fault
diagnosis of a planetary gearbox is how to accurately restore
the fault signal x (t) from the noisy measured signal y (t).

A. WAVELET THRESHOLDING DENOISING
Generally, wavelet denoising contains three steps [38], [39]:
forward transformation of the noisy signal to an orthogonal
domain, reduction of the wavelet coefficients smaller than
a given threshold, and inverse transformation of the data to
the original domain. Let φj,k (t) be an orthogonal wavelet
basis function, so that the standard WT of signal y (t) can be
written as

y (Ea, t) =
∑
j,k

aj,kφj,k (t) (2)

where Ea =
{
aj,k

}
are the corresponding wavelet coefficients

defined as

aj,k =
∫
y (t) φj,k (t)dt (3)

Because of its simplicity, the wavelet thresholding tech-
nique has been widely used in engineering practice since the
beginning of wavelet use in signal processing. One way of
describing wavelet thresholding technology is to establish a
set M =

{
(j, k) ∈ K :

∣∣aj,k ∣∣ ≥ η} to record the indexes of
the wavelet coefficients, then preserve all coefficients whose
indexes belong toM and truncate the others to zero

τ
(
aj,k

)
=

{
aj,k if (j, k) ∈ M
0 otherwise

(4)

where τ (·) is a thresholding operator. For example, if τ is
a hard thresholding operator, M is defined as the set of all

coefficients whose values are larger than a given threshold.
If τ is a linear thresholding operator, then M is taken as the
index set of all low frequencies.

B. TOTAL VARIATION DENOISING
In signal denoising problems, estimation of a noise free sig-
nal x (t) from an observed noisy signal y (t) is an inverse
problem as well as a classical ill-posed problem [40]. A stan-
dard and efficient way to deal with inverse problems is to
define a suitable objective function F (x) consisting of a
data term (consistency with the measurements) and a reg-
ularization term (based on prior information), and then to
find the signal minimizing F (x) [41]. Good denoising results
should provide a balance between the regularization term and
the data term and can be achieved only with some form of
regularization penalizing undesirable solutions. Accordingly,
typical criteria have the form

x̂ = argmin
x

{
F (x) = ‖y− x‖22 + λφ (x)

}
(5)

where ‖y− x‖22 is a data fidelity term used to measure the
difference between y and x, φ (x) is a penalty function (or
regularization term) that should be chosen as to penalize
unwanted behavior in x, and λ > 0 is the regularization
parameter, used to balance the trade-off between two terms.
If the signal of interest is known to be sparse, this prior

information can be used to come up with a sparse regulariza-
tion method. In this case, the penalty function is defined to
measure the number of nonzero values in x, i.e., φ (x) = ‖x‖0
where ‖x‖0 is the l0-norm and defined as ‖x‖0 =

∑N
n=1 |xn|0.

Unfortunately, with φ (x) defined as such, the regularization
problem in (5) is an NP-hard problem for which the objective
function F (x) cannot readily to minimize [42], [43]. There-
fore, it is common to replace the l0-norm by the l1-norm as the
penalty function in practical applications, because it induces
sparsity most effectively and does not sacrifice the convexity
of the objective function. The l1-norm regularization problem
is given by

x̂ = argmin
x

{
F (x) = ‖y− x‖22 + λ ‖x‖1

}
(6)

where ‖x‖1 is the l1-norm defined as ‖x‖1 =
∑N

n=1 |xn|1.
The l1-norm regularization defined in (6) is also known as
BPD [41], and has been widely used in image denoising, fault
diagnosis, and ultrasonic signal processing.
Another widely used nonlinear filter method based on

sparse model is TV [44], [45], which operates under the
assumption that the derivative of the underlying signal is
sparse. It is defined as a convex optimization problem of
minimizing the cost function comprising a nondifferentiable
convex penalty term and a quadratic data fidelity term. The
TV in the signal x ∈ RN is defined as

TV (x) =
N∑
n=1

|xn − xn−1|1 = ‖Dx‖1 (7)
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where D is the (N − 1)× N first-order difference matrix

D =


−1 1

−1 1
. . .

. . .

−1 1


Then, the TV denoising can be written as

x̂ = argmin
x

{
F (x) = ‖y− x‖22 + λ ‖Dx‖1

}
(8)

Instead of the sparsity of the solution of x̂, TV denois-
ing reduces the sparsity of the first-order difference of the
solution [46], [47]. TV denoising exploits the combination
of the l1-norm with a derivation operator, which allows TV
regularization to preserve the sharp edge information and
hence offers better approximation quality for the given sig-
nals. It has been shown that TV denoising can remove noise
while preserving edges, which is very important to image
processing [48]. To deal with more common types of signals,
TV denoising is also used in combination with other methods.

III. NONCONVEX TOTAL VARIATION WAVELET
THRESHOLDING DENOISING METHOD
A. SPARSE FAULT DIAGNOSIS MODEL
Although the TV denoising method can improve the approx-
imation signal, it cannot be directly applied to the fault sig-
nal of a planetary gearbox in practical engineering, because
the theoretical basis of the TV denoising method is based
on the sparse prior information of the signal, while the
fault signal of the planetary gearbox is also with nonsparse
components. Recent studies have demonstrated that fault
signals can be sparsely represented in an appropriate WT
framework [34], [49], i.e.

a = Wx and x = W T a (9)

where W and W t are WT and inverse WT, respectively,
and a represents the wavelet coefficients with sparse structure

Under this sparse prior, the sparse theoretical model for
fault signal extraction of a planetary gearbox can be obtained
by combining the regularization theory shown in (6) and the
TV noise reduction method shown in (8).

â = argmin
a

F (a) = ‖Wy− a‖22 +
∑
j,k
λjφ

(
aj,k , bj

)
+β

∥∥DW T a
∥∥
1


(10)

where λj and β are regularization parameters that express the
same meaning as λ. Then, the estimation of the fault signal x
can be obtained by the inverse WT, i.e., x̂ = W T â.

B. NONCONVEX PENALTY FUNCTION
It is common to use the l1-norm for the penalty function φ in
the sparse fault diagnosis model (shown in (10)), because the
l1-norm can effectively promote the sparsity of the estimation
while ensuring that the objective function F is a convex func-
tion [50]. Convex functions are attractive because a wealth

of convex optimization theory can be used to guarantee the
solution is the global optimal solution. However, the l1-norm
is not the tightest convex envelope of sparsity, which leads
to the nonzero values of the underlying signal are underesti-
mated [51], [52], but in most cases these values constitute the
signal of interest. Thus, the l1-norm solutions are not ideal for
planetary gearbox diagnosis.

To more accurately estimate the nonzero values, noncon-
vex regularizers are often favored over the l1-norm, because
nonconvex penalty functions can lead to sparser solutions
than l1-norm. However, the use of nonconvex regularizers
leads to the objective function F being nonconvex, and the
signal recovery problem becoming a nonconvex optimization
problem. Consequently, spurious local minima exist in which
optimization algorithms may be trapped, and convergence
only to a local minimum is guaranteed. In addition, solutions
to the nonconvex problem are highly sensitive to perturbation
of the input signal: a small perturbation in the input may
lead to a large change in the output [50]–[52]. Fortunately,
Nikolova [54] proposed an idea of specifying a nonconvex
penalty in the formulation of convex optimization to over-
come the fundamental limitation of nonconvex penalties. By
restricting the nonconvex degree parameter of the nonconvex
penalties to control the nonconvexity of the regularizer, the
objective function can be guaranteed to be strictly convex.
This idea has been applied to image processing and fault
diagnosis.

In this paper, the nonconvex sparsity-inducing penalty
function is used as the penalty function in (10). We use the
notation φ (x; b) to denote the nonconvex penalty function,
and b is a scalar parameter that controls the degree of noncon-
vexity of φ (x; b), with b ≥ 0. Under the assumption that such
penalty function satisfies the following conditions [51], [53]:

1. φ is continuous, increasing and concave on R
2. φ is twice differentiable on R/ {0}
3. φ is symmetric, i.e., φ (−x; b) = φ (x; b)
4. φ (0; b) = b and φ (x; 0) = |x|
5. φ′

(
0+; b

)
= 1

6. φ′′ (x; b) ≥ −b for all x 6= 0.

Several typical examples satisfying the above-listed condi-
tions are the rational penalty function, the logarithmic penalty
function and the arctangent function, and these examples
are shown in Fig. 1. Obviously, for the same parameter
b = 0.4, the arctangent function shows the most concavity,
which means the arctangent function reduces the sparsity
most strongly among the three given nonconvex functions.
Thus, we use the arctangent function as the sparsity-inducing
penalty function φ (x; b)

φ (x; b) =
2

b
√
3

(
tan−1

(
1+ 2b |x|
√
3

)
−
π

6

)
(11)

C. CONVEXITY CONDITION
In this section, we try to find a suitable condition on
the parameter to ensure that the objective function is
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FIGURE 1. Example of penalty functions.

strictly convex. The objective function in (10) can be
written as

F (a) = F1 (a)+ F2 (a) (12)

where

F1 (a) =
∑
j,k

{
1
2

[
(Wy)j,k − aj,k

]2
+ λjφ

(
aj,k ; bj

)}
(13)

F2 (a) = β
∥∥∥DW T a

∥∥∥
1

(14)

Note that if F1 and F2 are strictly convex, then F is strictly
convex.F2 is defined as the l1-norm, so it is a convex function.
Hence, it suffices to find the parameter b such that F1 is
strictly convex.

Combining the propositions 1 and 2 in [53], we note the
following proposition.
Proposition 1: Let φ (x; b) be a nonconvex penalty that

satisfies the above-listed properties, with b ≥ 0. The function
G (x) defined as

G (x) =
1
2
(y− x)2 + λφ (x; b) (15)

is strictly convex if

0 < b <
1
λ

(16)

Proof: By the Lemma A in [53], to ensure that G (x)
is strictly convex, the second derivative of G (x) must be
positive on R/ {0} andG′

(
0−
)
< G′

(
0+
)
. The first derivative

of G (x) is

G′ (x) = x − y+ λφ′ (x; b) (17)

By the property 5 in the part B of the part III,
G
(
0+
)
= −y+ λ; by symmetry G′

(
0−
)
= −y − λ and

λ > 0, G′
(
0−
)
< G′

(
0+
)
. To ensure that G′′ (x) is positive

on R/ {0}, we have the following condition:

G′′ (x) = 1+ λφ′′ (x; b) > 0 for x > 0 (18)

or

φ′′ (x; b) > −
1
λ

(19)

By the property 6 in the part B of the part III, we have
b > 1/λ. Hence, F1 is strictly convex if and only if

0 < b <
1
λ

(20)

Then, F1 being a sum of strictly convex G is strictly convex.
It follows that the objective function F in (10), being the sum
of F1 (strictly convex) and F2 (convex), is strictly convex,
with the condition

0 < bj <
1
λj

(21)

D. SALSA ALGORITHM FOR NONCONVEX WATV
With the convexity condition (21), we can reliably obtain
via convex optimization the global minimum of (10) as long
as the parameter b is chosen to satisfy (21). In this paper,
the split augmented Lagrangian shrinkage (SALSA) [55]
method is used to solve the nonconvex WATV denoising
problem. The good convergence of SALSA has been proven
in practice [42], [55].

With variable splitting, problem (10) can be transformed
into the constrained optimization problem

min
a,c

f1 (a)+ f2 (c)

subject to a = c (22)

where

f1 (a) = ‖Wy− a‖22 +
∑
j,k

λjφ
(
aj,k , bj

)
(23)

f2 (c) = β
∥∥∥DW T c

∥∥∥
1

(24)

Using the augmented Lagrangian method to represent the
problem (24), we have

L (a, c, µ) = f1 (a)+ f2 (c)+
µ

2
‖a− c− d‖22 (25)

where d is a multiplier vector to constraint a = c. The
solution of (25) can be obtained by iteratively minimizing
with respect to each variable alternately, as proven in [55].
Each iteration step of the SALSA algorithm is given by

ak+1 = argmin
a
f1 (a)+

µ

2
‖a− c− d‖22 (26)

ck+1 = argmin
c
f2 (c)+

µ

2
‖a− c− d‖22 (27)

Substituting f1(a) and f2(c) into (26) and (27) respectively,
the explicit form of the SALSA algorithm can be obtained as
follows:

ak+1 = argmin
c
‖Wy− a‖22 +

∑
j,k

λjφ
(
aj,k , bj

)
+
µ

2
‖a− c− d‖22 (28)

ck+1 = argmin
c
β

∥∥∥DW T c
∥∥∥
1
+
µ

2
‖a− c− d‖22 (29)

dk+1 = dk − (ak+1 − ck+1) (30)

Table 1 summarizes the whole algorithm for solving
problem (10), which is guaranteed to converge to the unique

VOLUME 8, 2020 78757



P. Jiang et al.: Nonconvex WATV Denoising Method for Planetary Gearbox Fault Diagnosis

TABLE 1. Salsa algorithm for the nonconvex WATV denoising problem.

global minimizer. Both minimization problems, namely, iter-
atively thresholding and TV denoising, can be solved exactly.
By running SALSA until the stopping criterion (the relative
variation of the objection function falls below 10−5) is sat-
isfied, the global optimal solution of the nonconvex WATV
denoising problem can be found, as shown in Fig. 2.

FIGURE 2. Flow chart of the nonconvex WATV denoising method.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
To verify the effectiveness of the proposed nonconvexWATV
denoising method in the fault diagnosis of a planetary gear-
box, a gearbox test rig is established and experiments on
it are carried out. The experimental object is a three-shaft,
clutch-shifting and three-degree-of-freedom planetary gear-
box. It has three fixed-shaft gear trains and three planetary
gear trains, and the main shaft gear and the intermediate shaft
gear are fixed-axis gears. There are three planetary rows on
the main shaft: K1, K2 and K3. K1 is an external meshing
double planetary row, and the other two are simple planetary
rows. According to the structure characteristics and working
principle of planetary gearbox, a fault simulation test rig for
the planetary gearbox is designed as shown in Fig. 3. The test
rig is composed mainly of a driving motor, transmission box,
clutch, planetary gearbox, loading motor, hydraulic station,
and speed and torque instrument and test system.

FIGURE 3. A planetary gearbox test rig.

The driving motor transmits power to the planetary gear-
box through the gearbox and clutch, and then the power
is transferred to the load generator through the gearbox.
The driving motor provides power for the planetary gear-
box, and the speed of the motor is controlled by a speed
controller, which accommodates adjustment in the range of
0-1500 r/min. The load is provided by the loading motor
connected to the output shaft of the planetary gearbox, and
the load torque can be adjusted by controlling the platform in
the range of 0-900 N•m. The hydraulic station is responsible
for providing lubricant oil pressure and shift pressure for the
planetary gearbox.

B. EXPERIMENTAL SCHEME
In a planetary gearbox, sun gear teeth are the most vulnerable
part to fail, since their multiplicity of meshes with the planet
gear increases the possibility of damage to the sun gear. In this
paper, faults of broken teeth and crack on the sun gear in the
K3 row are considered because broken teeth and cracks are
common fault types in gearboxes. In practice, cracks usually
begin at the maximum stress point of the gear teeth and then
develops along the normal line of the root curve. Thus, the
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cracks are processed along the normal line of the tooth’s root
curve by machine tools in our experiments. In addition, the
surface wear fault is simulated by cutting a part of the tooth
along the axis direction of the tooth. Pictures of the damaged
sun gears are shown in Fig. 4.

FIGURE 4. Sun gear damage: (a) crack and (b) wear.

It is well known that vibration-based analysis is an effective
method for diagnosing mechanical system faults, the vibra-
tion signals are collected by tri-axial accelerometer sensors
in our experiments, and the sampling rate is 20000 Hz. The
sensors are mounted on the outer case of the planetary gear-
box, as shown in Fig. 5. To simulate the general planetary
gearbox operating conditions, two experiments are performed
under the same loading conditions and two different motor
speeds. Case 1 is the fault of a crack under a motor speed of
1500 r/min and a 900 N•m loading condition. Case 2 is the
fault broken teeth under a motor speed of 1200 r/min and a
900N•m loading condition. The corresponding characteristic
frequencies of the planetary gearbox under two different
motor speeds are summarized in Table 2.

FIGURE 5. Layout of the sensor points.

TABLE 2. Motor speed and characteristics frequencies of the planetary
gearbox.

C. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we apply the proposed nonconvex WATV
denoising method to diagnosis the faults of the planetary

gearbox as introduced in the part B. To further demonstrate
the effectiveness of the proposed method, the analysis results
are compared with those of the soft thresholding denoising
method and the BPD method. Compared with the vibration
signals of the vertical direction, the signals of the horizontal
direction are more sensitive to the damage. Because the ver-
tical vibrations are constrained by the gravity of the test rig
and the basement, their vibration amplitudes are not as large
as the horizontal ones. Therefore, the vibration signals of the
horizontal direction are considered in this paper. Moreover,
the faults are located on the sun gear in the K3 row, so the
vibration signal of the measuring point 3 closest to the fault
source is selected for analysis.

In this work, the wavelet threshold is

tl = σl
√
2 ln (Nl) (31)

where Nl is the length of the level l detail signal of wavelet
analysis, σl is the noise standard deviation of level l detail
signal. And the regularization parameter is suggested using

λj = 2.5ησ/2j/2, β = (1− η)
√
Nσ/4 (32)

where j is the wavelet scale, η is the relative weight control
parameter with a nominal value of η = 0.95.

1) CASE 1
The testing result of case 1 is shown in Fig. 6 the time-domain
waveform of the vibration signal with a duration of 2 s is illus-
trated in Fig. 6 (a). The fault signature cannot be identified
because the useful periodic pulses are buried in the strong
background noise. The frequency spectrum and themagnified
spectrum of the signal are shown in Fig. 6 (b) and (d), respec-
tively. The rotating frequency of the motor f0 and the meshing
frequency of the fixed-shaft gear fm, as well as their multiples
are predominant.Moreover, there aremany sidebands equally
spaced around the meshing frequency fm and its multiples,
and the sideband spacing is the rotating frequency f0. The
main frequency components in the Hilbert envelope spectrum
(shown in Fig. 6 (c)) are the rotating frequency f0 and its
double frequency. Meanwhile, the meshing frequency fm and
its sidebands are also prominent in Fig. 6 (c). However, the
fault features of the planetary gearbox cannot be identified

FIGURE 6. Original vibration signals of case 1: (a) the time-domain
waveform; (b) frequency spectrum; (c) Hilbert envelope spectrum;
(d) magnified spectrum.
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from Fig. 6, because the useful information is buried in the
strong background noise.

The meshing frequency of the main pump fm1 and the
return pump fm2 cannot be identified in the spectrum. Because
the measuring point 3 is the farthest point from the hydraulic
station, so the vibration signals cannot be effectively col-
lected by the vibration sensor of measuring point 3. Even the
vibration signal can be collected, considering the complexity
of the transmission path, those vibration characteristics are
relatively weak in the collected signal, which cannot be iden-
tified. The meshing frequency of the K3 row fmK3 is also not
identified because of the weak vibration characteristics.

FIGURE 7. Analysis results of nonconvex WATV denoising in case 1:
(a) the time-domain waveform; (b) frequency spectrum; (c) Hilbert
envelope spectrum; (d) magnified spectrum.

To extract the useful fault information, the proposed
method is utilized to process the vibration signals. The
results are shown in Fig. 7. From the time domain wave-
form of Fig. 7 (a), many irrelevant interference components
and noises have been removed and strong periodic impulses
are clearly revealed. From the frequency and the magnified
spectrum of Fig. 7 (b) and (d), respectively, it is obvious that
except for the meshing frequency fm and its multiples, as
well as the sidebands with an equal interval of the rotating
frequency f0, the gear fault characteristic frequency fs3 and its
double frequency are successfully extracted in the spectrums.
The fault characteristic frequency fs3 is also clearly revealed
in the Hilbert envelope spectrum, as shown in Fig. 7 (c).
Thus, the proposed nonconvex WATV method successfully
detects the crack fault of the planetary gearbox. More specif-
ically, the fault features of the planetary gearbox are success-
fully extracted utilizing the proposed method.

For comparison, we also use the soft threshold denoising
method to process the same vibration signal, and the results
are shown in Fig. 8. Although periodic pulses exist in the
time-domain waveform as shown in Fig. 8 (a), they are not
as obvious as those in the time-domain waveform as shown
in Fig. 7 (a), which indicates that many noise and irrelevant
interference components still exist in the analysis results.
In both frequency spectrum and the Hilbert envelope spec-
trum, only the meshing frequency fm, rotating frequency f0
and their multiples can be obtained; the fault characteristic
frequency used to monitor the health status of the gearbox
cannot be observed from Fig. 8 (b), (c), or (d).

FIGURE 8. Analysis results of soft thresholding denoising in case 1:
(a) the time-domain waveform; (b) frequency spectrum; (c) Hilbert
envelope spectrum; (d) magnified spectrum.

FIGURE 9. Analysis results of BPD in case 1: (a) the time-domain
waveform; (b) frequency spectrum; (c) Hilbert envelope spectrum;
(d) magnified spectrum.

For further comparison, the BPD denoising method is
sequentially applied to the same vibration signals, with the
same parameters as those used in the proposed method. The
results are shown in Fig. 9. From the time domain wave-
form of Fig. 9 (a), the estimated periodic transient compo-
nents are not as accurate as those estimated by the proposed
method, because the amplitudes of the transients are underes-
timated. Moreover, the analysis results are not sparse enough
and there are still many interference components, which
effect the fault diagnosis. Thus, no useful fault characteristic
frequency can be extracted from the spectrums, as shown
in Fig. 9 (b), (c), and (d).

According to the mathematical principle, the analysis
results of the soft threshold and the BPD method should be
the same. However, compared Fig. 8 and Fig. 9, we find that
the results are not the same. This is mainly because the soft
threshold method is employed to deal with the decomposition
coefficient after wavelet decomposition, and then reconstruct
the signal using the estimated wavelet coefficients, so as to
realize the noise reduction of the measured signal. The BPD
method is directly to analyze the original measured signal.
In addition, the parameter settings of the two methods are
different. In soft threshold denoising, the threshold is set by
equation (31), while in BPD algorithm, the regularization
parameter is determined by equation (32). Therefore, the
results of the two methods are different.

2) CASE 2
The waveform of the vibration signal for case 2 and its
corresponding spectrums are shown in Fig. 10. As seen from
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FIGURE 10. Original vibration signals of case 2: (a) the time-domain
waveform; (b) frequency spectrum; (c) Hilbert envelope spectrum;
(d) magnified spectrum.

Fig. 10 (b), (c), and (d), the main frequency components in
the frequency spectrum and the Hilbert envelope spectrum
are the meshing frequency and the rotating frequency, as well
as their multiples. Neither the fault characteristic frequency
nor its multiples can be identified in Fig. 10.

FIGURE 11. Analysis results of nonconvex WATV denoising in case 2:
(a) the time-domain waveform; (b) frequency spectrum; (c) Hilbert
envelope spectrum; (d) magnified spectrum.

Then, the proposed nonconvex WATV denoising method
is used to process the vibration signal in Fig. 10 (a), and
the results are shown in Fig. 11. In the time-domain wave-
form in Fig. 11 (a), the transients in the analysis results are
apparent, and the period of the transients is obvious. From
the spectrums of Fig. 11 (b), (c), and (d), it is noted that the
dominant frequencies are not only the meshing frequency fm
and the rotating frequency f0, but also their multiples and
sidebands; the fault characteristic frequency fs3 and its mul-
tiple also clearly appear in the Hilbert envelope spectrum
(shown in Fig. 11 (c)) and the magnified spectrum (shown
in Fig. 11 (d)). Based on the above-mentioned analysis, we
can conclude that there is a localized fault on the sun gear.

For further comparison, both the soft thresholding denois-
ing method and the BPD method are employed to ana-
lyze the vibration signals, and the results are shown
in Fig. 12 and Fig. 13, respectively. Obviously, there are
still many noise and interference components in the time-
domain waveform of the results of the two methods, which
results in the periodic characteristics of the estimated tran-
sient components in Fig. 12 (a) and Fig. 13 (a) being less
prominent than those in Fig. 11 (a). In the spectrums shown
in Fig. 12, in addition to the main frequency components

FIGURE 12. Analysis results of soft thresholding denoising in case 2:
(a) the time-domain waveform; (b) frequency spectrum; (c) Hilbert
envelope spectrum; (d) magnified spectrum.

FIGURE 13. Analysis results of BPD in case 2: (a) the time-domain
waveform; (b) frequency spectrum; (c) Hilbert envelope spectrum;
(d) magnified spectrum.

as shown in Fig. 10, there is also a harmonic component of
the fault characteristic frequency 2fs3 in the Hilbert enve-
lope spectrum shown in Fig. 12 (c). Despite the existence
of the harmonic frequency, other evidence is necessary for
the definite diagnosis of a sun gear fault. However, no other
useful features related to the sun gear can be extracted from
the analysis results. Similarly, in the results of the BPD
method, only the second-harmonic component of the fault
characteristic frequency 2fs3 exists in the Hilbert envelope
spectrum shown in Fig. 12 (c), and again, no more useful
features related to the fault can be extracted. Compared with
the results of the proposed method shown in Fig. 11, neither
the soft thresholding denoising method nor the BPD method
provide satisfactory performance in the fault diagnosis of the
planetary gearbox.

V. CONCLUSION
This paper proposes a nonconvex WATV denoising method
for the purpose of detecting faults in a planetary gearbox. The
propose method formulates wavelet thresholding and TV as
a unified problem. We use a TV minimization algorithm to
reconstruct the retained wavelet coefficients, so the pseudo-
Gibbs oscillations phenomena caused by pure wavelet thresh-
olding are removed. In order to strongly induce the wavelet
sparsity, we consider a modification of the TV optimization
problem where the L1 norm regularizer is replaced by a
nonconvex penalty function. However, the use of a non-
convex regularizer converts the denoising problem into a
nonconvex optimization problem. Thus, the conditions on
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the nonconvex degree parameter of the nonconvex penalties
are addressed to ensure that the total objective function is
strictly convex. Then, the convex optimization solver SALSA
is introduced to find the global optimal solution.

A planetary gearbox test rig is established and two modes
of faults are simulated. The vibration signals obtained under
two different motor speeds are used to verify the effectiveness
of the proposed method in the diagnosis of localized faults in
a sun gear. Comparisons to the soft thresholding denoising
and BPD methods demonstrate that the proposed method
can better preserve feature components of interest and can
significantly improve the estimation accuracy, thus providing
improved fault detection accuracy. The proposed nonconvex
WATV denoising method is concluded to be an effective tool
for fault diagnosis of a planetary gearbox.
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