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ABSTRACT With the recent advances in quantum computing, code-based cryptography is foreseen to be
one of the few mathematical solutions to design quantum resistant public-key cryptosystems. The binary
polynomial multiplication dominates the computational time of the primitives in such cryptosystems, thus
the design of efficient multipliers is crucial to optimize the performance of post-quantum public-key crypto-
graphic solutions. This manuscript presents a flexible template architecture for the hardware implementation
of large binary polynomial multipliers. The architecture combines the iterative application of the Karatsuba
algorithm, to minimize the number of required partial products, with the Comba algorithm, used to optimize
the schedule of their computations. In particular, the proposed multiplier architecture supports operands in
the order of dozens of thousands of bits, and it offers a wide range of performance-resources trade-offs that
is made independent from the size of the input operands. To demonstrate the effectiveness of our solution,
we employed the nine configurations of the LEDAcrypt public-key cryptosystem as representative use cases
for large-degree binary polynomial multiplications. For each configuration we showed that our template
architecture can deliver a performance-optimized multiplier implementation for each FPGA of the Xilinx
Artix-7 mid-range family. The experimental validation performed by implementing our multiplier for all the
LEDAcrypt configurations on the Artix-7 12 and 200 FPGAs, i.e., the smallest and the largest devices of the
Artix-7 family, demonstrated an average performance gain of 3.6x and 33.3x with respect to an optimized
software implementation employing the gf2x C library.

INDEX TERMS Computer arithmetic, FPGA, hardware design, multiplication, GF2, applied cryptography,
post-quantum cryptography.

I. INTRODUCTION
Traditionally, the confidentiality provided by widely adopted
public-key cryptosystems relies on the hardness of factoring
large integers or computing discrete logarithms in a cyclic
group. However, the recent advances in quantum computing
pose a severe concern to the security of traditional public-key
cryptographic schemes, since the employed computationally
hard problems can be easily solved with a quantum computer.
As a consequence, the design of quantum-computing resis-
tant cryptographic primitives has gained importance lately,
especially thanks to the U.S. National Institute of Standards
and Technology (NIST) initiative, which aims at selecting
a portfolio of primitives for standardization. In particular,
the design of public-key cryptosystems that are resistant to
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attacks performedwith quantum computers imposes a change
in the underlying computationally hard problem.

Code-based cryptography emerged as one of the fewmath-
ematical post-quantum available techniques, together with
lattice-based and hash-based cryptography [1]. Code-based
cryptography leverages the hardness of decoding a syndrome
obtained with a random linear block code and that of finding
a fixed weight code word in the said code [2]. Such problems
belong to the NP-complete class and it is widely assumed that
they cannot have a polynomial time solution even on quantum
computers. McEliece proposed the first cryptosystem relying
on the hardness of the decoding problem [3], while several
following proposals aimed at finding code families with effi-
cient state-space representation to reduce the size of the cryp-
tographic key-pairs. Quasi-cyclic low-density parity-check
(QC-LDPC) [4] and quasi-cyclic moderate-density parity-
check (QC-MDPC) [5] codes, employ circulant generator and
parity check matrices for which all the rows are obtained by
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cyclically rotating the first one. The arithmetic of circulant
matrices with size p can be proven to be isomorphic to the
arithmetic of the polynomials modulo xp + 1 over the same
field as the coefficients of the circulant matrices. In particular,
in the case of binary linear block codes, the arithmetic of p×p
circulantmatrices overZ2 can be substituted by the arithmetic
of polynomials in Z2[x]/(xp+1), thus reducing significantly
the size of the keys and achieving faster arithmetic operations.

We note that the multiplication operation dominates the
computation for both McEliece, i.e., matrix multiplication,
and QC-LDPC codes, i.e., polynomial multiplication. It is
therefore crucial to provide an efficient multiplication prim-
itive for the performance of quantum-resistant public-key
cryptosystems. In particular, available software solutions for
different QC-LDPC codes involved in the NIST standardiza-
tion process, e.g., LEDAcrypt [6] and BIKE [7], demonstrate
the impossibility to copewith the required performance, espe-
cially given the stiff increase in the key-size of the encryption
schemes expected in the near future.

However, state-of-the-art hardware multipliers are meant
to support computationally hard problems of traditional
public-key cryptosystems, i.e., the factorization of large inte-
gers and the computation of discrete logarithms in a cyclic
group, thus they cannot be readily employed in code-based
cryptosystems for two reasons. First, several proposals tar-
get modular integer multiplication [8]–[10], while code-
based cryptography leverages the field of binary polynomials.
Second, the effectiveness of available binary polynomial mul-
tipliers is strongly limited to the key-size of traditional public-
key cryptosystems [11], i.e., few thousands of bits at most,
thus they are not meant to efficiently scale up to support
the key-size of code-based cryptoschemes, i.e., dozens of
thousands of bits.
Contributions - The manuscript presents an FPGA-

oriented hardware design methodology to implement multi-
pliers for large-degree binary polynomials. The possibility
of employing the proposed design in post-quantum code-
based cryptosystem implementations motivated its assess-
ment against the Xilinx Artix-7 FPGA family, that is the sug-
gested target technology for any hardware implementation
within the NIST post-quantum cryptography competition.
Our solution allows the designer to trade the resource utiliza-
tion with the obtained performance in terms of throughput
and latency, adding two relevant contributions with respect to
the state-of-the-art:
• Template architecture flexibility - our template multi-
plier architecture exposes three parameters to optimally
trade, at design-time, performance and resource utiliza-
tion on a wide range of FPGAs. First, the configurable
number of nested Karatsuba iterations allows to control
the reduction of the number of partial products to be
computed. Second, it is possible to configure the number
of partial products that are computed in parallel. Last,
the internal bandwidth of the multiplier architecture is a
design parameter as in state-of-the-art digit-serial multi-
pliers.

For each of the polynomial configurations of the
LEDAcrypt post-quantum public-key cryptosystem,
performance results are collected considering the imple-
mentation of the proposed template multiplier on differ-
ent FPGAs.
Compared to an optimized software implementation, our
solution showed an average performance speedup of
3.6x and 33.3x, by using the smallest (Artix-7 12) and
the largest (Artix-7 200) FPGAs of the Xilinx Artix-7
family, respectively.

• Operand size scalability - The proposed template multi-
plier architecture allows to optimally select the resource-
performance trade-off regardless of the size of the input
operands. Such property is achieved by means of two
design choices. First, the use of the FPGA block RAMs
(BRAMs) instead of flip-flops, to store the operands,
the result, and the intermediate values, allows to man-
age operands ranging from few bits up to dozens of
thousands of bits without altering the required memory
storage. Second, the internal multiplier datapath and its
primary input-output interface can be configured to use
different bandwidths.
Our exhaustive design space exploration demon-
strates the possibility of implementing a performance-
optimized multiplier, for each configuration of the
LEDAcrypt cryptosystem, over the entire Xilinx Artix-7
family of mid-range FPGAs.

The rest of the manuscript is organized in four parts.
Section II discusses the background on multiplication algo-
rithms in the finite field of binary polynomials and summa-
rizes the state-of-the-art. The proposed multiplier design is
discussed in Section III. Section IV presents the experimental
results. Conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORKS
To support cryptographic computations, the state-of-the-art
proposes several designs of efficient multipliers implemented
either in software or in hardware. The rest of this section is
organized in two parts. Section II-A presents the theoretical
background on the finite field of binary polynomials used
in code-based cryptosystems, as well as the multiplication
methods adopted in the design of the proposed multiplier.
Section II-B presents the state-of-the-art in terms of hardware
and software implementations of the multipliers in such finite
fields.

A. BACKGROUND ON BINARY POLYNOMIAL
MULTIPLICATION
A finite field, also called Galois field, is a set that contains a
finite number of elements on which the addition, subtraction,
multiplication and division operations are defined. Z2, or
GF(2), is the Galois field of two elements, i.e., the smallest
Galois field. The two elements of Z2 are usually referred
to as 0 and 1, and they are respectively the additive and
the multiplicative identities. The field’s addition operation
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FIGURE 1. Two multiplication methods implementing the long multiplication algorithm on digital systems.
The number of partial products and additions grows up quadratically for both schoolbook and Comba
algorithms. Comba offers a more efficient representation of intermediate results, and for this reason is able
to optimize the memory write access pattern.

corresponds to the logical XOR operation, while the multipli-
cation operation corresponds to the logical AND operation.

Polynomials with coefficients in Z2, i.e., 0 and 1, form
a Galois field, which is commonly referred to as Z2[x]
or GF(2)[x]. The addition of two elements of such field
corresponds to a bitwise XOR. The multiplication, instead,
consists in the multiplication of the two binary polynomials,
followed by a reduction with respect to an irreducible poly-
nomial, which is taken from the construction of the field. For
example, Z2[x]/(xp + 1) is the Galois field of polynomials
with coefficients in Z2 for which the irreducible polynomial
is xp + 1, thus polynomials which belong to such field have
degree at most equal to p− 1.
Multiplication in Z2[x] conceptually works like long mul-

tiplication between integer numbers, except for the fact that
the carry is always discarded instead of added to the more
significant position. This property derives from the fact that
the addition in Z2 corresponds to the logical XOR. For this
reason, the multiplication operation in Z2[x] is also com-
monly referred to as carry-less multiplication.

Considering the quasi-cyclic codes employed in many pro-
posals for post-quantum code-based cryptosystems, the arith-
metic of p × p circulant matrices over Z2 can be substituted
with the arithmetic of polynomials inZ2[x]/(xp+1). In code-
based cryptosystems, matrix multiplication is the most com-
putationally intensive operation of the encryption primitives.
Since matrix multiplication corresponds to polynomial mul-
tiplication when considering quasi-cyclic codes, it is crucial
for the performance of these post-quantum cryptosystems to
implement the latter operation in an effective way.

We will now discuss a few state-of-the-art algorithms to
perform polynomial multiplication, i.e., the ones used in the
proposed implementation. It is important to note that the
multiplication algorithms have been selected to provide top-
notch performance at reasonable complexity cost, according

to the range of sizes employed in quantum-resistant code-
based cryptography. The use of more complex algorithms
provides no extra performance but a non-negligible resource
overhead, since they are expected to perform better when the
operand sizes are orders of magnitude higher than what is
needed to support code-based cryptography.

1) SCHOOLBOOK MULTIPLICATION
The schoolbook multiplication method implements the long
multiplication for the execution on a digital system. Starting
from the binary representation of theZ2[x] polynomials, each
factor is split in digits according to the actual operand size
of the digital system, e.g., 32- or 64-bits on current general
purpose computers. The long multiplication algorithm is then
implemented considering the digits as elementary units in the
multiplication algorithm. Figure 1a depicts the schoolbook
multiplication between two polynomials A and B. Each poly-
nomial has been split in three digits, where their size is not
explicitly reported since the method works for any possible
size. We note that the bigger the digit size, the smaller the
number of digits for each polynomial and the number of
corresponding partial products to be computed. In particular,
the number of the partial products and of the additions grows
up quadratically with the number of digits. The larger is the
digit size, the faster is the multiplication.

2) COMBA MULTIPLICATION
The Comba multiplication method [12] minimizes the num-
ber of memory writes required by the schoolbook method
by optimizing the order of computation of the partial prod-
ucts (see Figure 1b). We note that the Comba algorithm
requires exactly the same number of partial products and cor-
responding additions as the schoolbook approach. However,
the Comba algorithm minimizes the number of bits required
to maintain in memory the sum of the partial products.
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FIGURE 2. Multiplication of two-digit polynomials considering schoolbook and Karatsuba
algorithms. Karatsuba optimizes the computation by leveraging the intuition for which
multiplications are more computationally expensive than additions in Z2[x]. In particular,
schoolbook requires four multiplications and three additions, while Karatsuba performs the same
computation using three multiplications and six additions.

For example, the final value for the R0 digit is written in
memory when the A0B0 partial product is ready. Moreover,
the Comba method operates a right shift of digit size to
trash the lower part of the A0B0 partial product, since it is
not necessary anymore. In a similar manner, the final value
for the R1 digit is written in memory when the subsequent
A0B1 and A1B0 have been computed. Again, the lower part
of the intermediate result is trashed out since it is no longer
useful. To this extent, the Comba method ensures a maximum
of 2 × size(digit) bits for the intermediate result, while the
schoolbook algorithm requires at least N × size(digit) bits,
where N is the number of digits of each operand. In general,
the optimized memory access pattern of the Comba solution,
provides better performance than the schoolbook approach,
even if the number of required multiplications and additions
remains the same.

3) KARATSUBA MULTIPLICATION
The Karatsuba algorithm [13] optimizes the performance
of the polynomial multiplication by reducing the number
of partial products computations. The method leverages the
intuition for which the multiplication is far more computa-
tionally expensive than the addition inZ2[x]. Figure 2 depicts
the multiplication of two operands, each of them split in
two digits, using either the schoolbook (see Figure 2a) or
the Karatsuba (see Figure 2b) approaches. The schoolbook
solution requires four multiplications and three additions
to perform the polynomial multiplication. In contrast, the
Karatsuba approach requires three multiplications and six
additions.

B. RELATED WORKS ON BINARY POLYNOMIAL
MULTIPLIERS
The state-of-the-art contains several proposals implement-
ing multipliers for the Galois field of binary polynomi-
als, either in the form of software libraries, hardware
accelerators or custom extensions to the Instruction Set
Architecture (ISA).

1) SOFTWARE LIBRARIES AND INSTRUCTION SET
ARCHITECTURE (ISA) SPECIAL INSTRUCTIONS
The gf2x [14] software library is the de-facto reference for
fast multiplication of polynomials over Z2, implementing
several multiplication algorithms to optimize the computa-
tion for different operand sizes. In contrast, the NTL [15]
library either implements only the Karatsuba multiplication
algorithm, or it can act as an overlay to the gf2x library, while
the MPFQ [16] library is specifically tailored to deliver top-
notch performance for finite-fields of moderate size, when
the modulus size is known in advance.

From the Instruction Set Architecture (ISA) point of
view, Intel introduced the PCLMULQDQ instruction and the
corresponding hardware support in its Westmere architec-
ture, to accelerate the computation of the AES in Galois
Counter mode (AES-GCM) algorithm for authenticated
encryption [17]. The PCLMULQDQ instruction performs
the carry-less multiplication of two 64-bit operands, and the
same operation is performed by the VMULL.P64 instruc-
tion on ARM targets [18]. The work in [19] leverages the
VPCLMULQDQ instruction that will be supported in future
Intel Ice Lake solutions, and which is the vectorized exten-
sion of PCLMULQDQ. In addition to its main intended
use to further accelerate AES-GCM, the authors exploit it
to compute large-degree binary polynomial multiplications,
i.e., polynomials with degree greater than 511. In particular,
results considering polynomials of degree up to 216 predict a
2x speed-up compared to current computing platforms.

2) HARDWARE ACCELERATORS
The state-of-the-art contains several architectures implement-
ing ad-hoc hardware accelerators for theGalois field of binary
polynomials, either in the form of bit-serial, digit-serial, or
bit-parallel multipliers. The bit-serial architectures have a
low hardware complexity, thus they are well-suited for low-
power and resource-constrained implementations. In particu-
lar, such hardware accelerators output the M -bit result after
M clock cycles, thus their latency strictly depends on the size
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of the input. Reference [20] presents a low-power bit-serial
multiplier architecture for binary polynomials for which an
M -bit multiplier implementation requires 28×M gates. The
limited performance and flexibility in trading performance
and area utilization of bit-serial architectures, prevents their
use to design large multipliers, i.e., with operands of size in
the order of dozens of thousands of bits.

In contrast, bit-parallel architectures are intended for
performance-oriented implementations, since they perform
the M -bit multiplication in one clock cycle. However, they
are characterized by a high critical path delay and a high area
consumption, which grows upmore than linearly with the size
of the operands [11]. To this end, the bit-parallel multipliers
in the state-of-the-art are limited to relatively small operand
sizes, i.e., one or two thousands of bits at the most. Reference
[21] details the realization of the optimal bit-parallel design
given the structure of the target binary polynomial Galois
field, i.e., the size of the polynomials of the field and its
associated irreducible polynomial.

We note that all bit-parallel solutions leverage the size of
the operands to deliver efficient ad-hoc architectures. To this
end, each architecture is customized for a specific Galois
field and it is therefore not reusable. The limited flexibility
and the hardware complexity that grows with the size of
the operands make the bit-parallel architectures unsuitable to
design large binary multipliers intended to be implemented
on a large variety of FPGA devices, regardless of the size of
the operands.

Differently from bit-parallel solutions, digit-serial polyno-
mial basis multipliers offer a superior design flexibility. In
particular, the operands are organized in digits, i.e., chunks
with a fixed number of bits, and the multiplication pro-
ceeds on a digit-by-digit basis. The possibility to config-
ure the size of the digit allows to trade the performance
with the resource utilization. Reference [22] presents a low-
area and scalable digit-serial architecture to perform poly-
nomial basis multiplications over Z2[x]. Two digit-serial
architectures for multiplication over Galois fields employing
the normal basis representation are presented in [23], [24].
By rewriting the multiplication equations in a normal basis
form, the design in [23] can reduce both the hardware com-
plexity and the combinational critical path. In contrast, the
digit-serial multiplier presented in [24] aims to speedup the
exponentiation and the point multiplication, in any case a
double multiplication is required and traditional schemes are
performance-limited due to data dependences.

We note that the scalability offered by digit-serial solu-
tions is limited to the possibility of configuring the size
of the digit, i.e., the number of bits that are processed in
parallel. Normally, state-of-the-art solutions are validated
on limited operand sizes, less than few thousands of bits,
thus the scalability issues of such solutions have not been
fully highlighted. Differently, the implementation of large
binary multipliers requires to extend the flexibility of current
digit-serial architectures with the use of fast multiplication
algorithms to aggressively reduce the number of computed

partial products, without increasing the design complexity. In
particular, several works in the state-of-the-art demonstrate
the possibility of implementing the Karatsuba algorithm into
the multiplier to minimize the number of computed partial
product and, thus, to improve the overall multiplication per-
formance. Reference [25] proposes a hardware multiplier
employing an ad-hoc implementation of the Karatsuba algo-
rithm for 240-bit polynomials. The design takes 30 clock
cycles to perform a single multiplication, but the ad-hoc
combinational logic structure severely thwarts the scalability
of the multiplier. [26] presents a hardware multiplier relying
on a Karatsuba-like approach. Depending on the operand
size, the solution optimizes the performance by allowing to
split the operands either into 4, 5, 6 or 7 blocks. However,
the fixed architecture limits the scalability of the solution in
the exploitation of the resources available in large FPGAs.
Moreover, the design has been validated against polynomials
of degree up to 99. Reference [27] compares two imple-
mentations of binary polynomial multipliers targeting the
encryption function of LEDAcrypt. Depending on the actual
number of coefficients set to 1 in one of the two polyno-
mials, the paper discusses the possibility of using dense-to-
sparse binary polynomial multipliers rather than traditional
Karatsuba-like dense-to-dense architectures. In particular, the
dense-to-dense multiplier implements a single iteration of the
Karatsuba algorithm and either one serial or three parallel
Comba multipliers to compute the three partial products.
Such multiplier works at 100 MHz and the parallel and serial
versions are provided as two separate implementations. In
contrast, the template multiplier presented in this manuscript
operates at 143 MHz, can recursively apply the Karatsuba
algorithm a configurable number of times, and the architec-
ture is parametric in the use of either serial or parallel Comba
multipliers.

III. METHODOLOGY
This section describes the microarchitecture proposed to
implement a scalable and flexible multiplier for large-degree
binary polynomials. The design is meant to scale across a
wide range of FPGAs rather than being hard-coded to a
specific FPGA. Moreover, its peculiar flexibility permits to
trade the performance with the utilization of the resources,
depending on the actually selected FPGA. In particular, it is
possible to implement multipliers for large binary polyno-
mials even on resource constrained FPGA targets. Figure 3
depicts the architectural top view of the proposed multi-
plier (MultiplierTop). The MultiplierTop module
receives in input two operands, A and B, and outputs the result
of the multiplication, R.

To ease the integration of the proposed component in real
designs, the input and output interfaces offer a configurable
bandwidth, BWext , as well as input and output memory layers
to store the inputs and the produced output, respectively. Such
design completely decouples the bandwidth of the internal
multiplier datapath (BW ) from the available external band-
width (BWext ). In particular, the former has no externally
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FIGURE 3. Top view of the proposed multiplier template.

imposed constraints, while the latter can be constrained by
the pin count or the data channel width of the System-on-
Chip that integrates the multiplier. We note that the input
and output memory layers are crucial components to oper-
ate on large polynomials, since no physical interface can
accommodate a datapath width of dozens of thousands of
bits.

The architecture of the MultiplierTop module allows
to implement a configurable number of iterations of the
Karatsuba algorithm, aggressively reducing the number of
required partial products (see the MultIter blocks in Fig-
ure 3). At the end of the recursive application of the Karatsuba
algorithm, the Comba multiplication algorithm performs the
actual computation of the partial products (see Comba in
Figure 3). We note that the use of the Comba multiplication
algorithm at the end of the Karatsuba iterations allows to
optimally schedule the computation of each partial product,
also considering that the size of the operands after the recur-
sive application of the Karatsuba iterations is still too large
to fit into the combinational BW × BW multiplier, which
performs the carry-less multiplication between two BW-bit
digits.

The rest of this section is organized in two parts.
Section III-A details the architecture that allows to recursively
apply the Karatsuba algorithm for a predefined number
of times. Such structure is meant to minimize the num-
ber of required partial products and to maximize the level
of parallelism to compute the remaining partial products.
Section III-B discusses the architecture to actually compute
the partial products. Depending on the required performance-
resources trade-off, such configurable computing architec-
ture can implement either a single Comba multiplier, which
computes the partial products in a serial way, i.e., one at a
time, or a set of parallel Comba multipliers, which compute
multiple partial products simultaneously.

A. KARATSUBA MULTIPLIER ARCHITECTURE
The proposed architecture is based on a hybrid approach
which leverages the recursive application of the Karatsuba
algorithm, to minimize the number of partial products, and of
the Comba algorithm, used as the leaf node of the recursion,
to optimally schedule the operations to compute each partial
product. Such design approach allows to separately optimize
the modules implementing the Karatsuba and Comba algo-
rithms.

Figure 4 depicts the architecture of two nested Karatsuba
iterations, ith and (i + 1)th, which is at the core of the iter-
ative application of the Karatsuba algorithm. In particular,
the inner Karatsuba iteration can implement either the serial
(see Figure 4a) or the parallel (see Figure 4b) computation
of the three partial products, thus allowing an additional
level of flexibility to trade the performance with the resource
utilization.

Regardless of the serial or parallel implementation, each
Karatsuba iteration (MultIter) receives two polynomials
in input and it outputs the result of their carry-less multipli-
cation. The input interface splits each one of the two poly-
nomials in two halves, according to the Karatsuba algorithm.
Each half of each polynomial, i.e., A1, A0, B1 and B0, is stored
in a separate memory element. In a similar manner, the output
interface delivers the final multiplication result by composing
the computed partial products according to the Karatsuba
algorithm. We note that the proposed multiplier is parametric
with respect to the implemented channel width, i.e., BW ,
that is used as an additional configuration option to trade
performance with resource utilization. The compute stage
receives the operands from the input interface and delivers the
computed partial products to the output interface. The com-
pute stage implements the logic to perform the computation
of the three partial products required by the current Karatsuba
iteration. We note that, instead of directly computing the
three partial products by means of either one (serial) or three
(parallel) Comba multipliers (see Comba in Figure 4a and
Figure 4b), a nested application of the Karatsuba algorithm
can be performed. In this scenario, the MultIter block
represents the key element to implement the recursive appli-
cation of the Karatsuba algorithm. In contrast, the Comba
module represents the leaf node at the end of the recursive
application of the Karatsuba algorithm.

From the architectural viewpoint, the use of either a par-
allel or serial implementation of the compute stage repre-
sents a configuration parameter of the proposed template
multiplier. The parallel implementation of the compute stage
only requires a proper connection of the input and the out-
put signals to the nested MultIter/Comba modules (see
Figure 4b). The serial implementation of the compute stage
must orchestrate the computation of the three partial prod-
ucts by leveraging the single, i.e., shared, computing block
(MultIter/Comba) (see Figure 4a). To this purpose, a
simple finite-state-machine drives the multiplexing infras-
tructures to forward the correct part of the operands from the
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FIGURE 4. The proposed architecture implements a configurable number of nested Karatsuba algorithm iterations. Each iteration can be
implemented as either serial, i.e., with one module that executes sequentially all the three Karatsuba partial products (see Figure 4a), or
parallel, i.e., with three parallel submodules (see Figure 4b). The final iteration implements the Comba multiplication, as depicted in
Figure 5. Ai , Bi and Pjk

are memories with a BW -bit bandwidth.

storage elements of the ith MultIter module to the single
compute unit, i.e., (i+ 1)th MultIter/Comba.
In summary, the proposed template multiplier architecture

allows to flexibly configure i) the number of Karatsuba iter-
ations to be implemented, ii) either the parallel or the serial
computation for each of them, and iii) the internal channel
width BW. The MultIter module implements an iteration
of the Karatsuba algorithm, also offering the possibility to
iterate the procedure by nesting parallel or serial instances of
the same module.

B. COMBA MULTIPLIER ARCHITECTURE
Considering the proposed template multiplier architecture,
the Combamultiplier (see Comba in Figure 4a and Figure 4b)
is required to actually compute each partial product. To this
end, the Comba Multiplier module represents the terminal
block, i.e., the leaf node, of the recursive application of the
Karatsuba algorithm.

Figure 5 depicts the architecture of the Comba module,
which performs the multiplication of the input operands
according to the schedule of the Comba algorithm [12]. We
note that the iterative application of the Karatsuba algo-
rithm minimizes the number of required partial products,
while also halving the size of the operands at each iteration.
However, the size of the operands in input to the Comba
multiplier module is still in the order of thousands of bits,

FIGURE 5. The architecture of the proposed Comba multiplier. A and B
are memories with a BW -bit bandwidth, regi are BW -bit registers.

thus far too large to perform a single combinational mul-
tiplication. In contrast, the Comba multiplier assumes that
each operand is made of a set of BW -bit digits and performs
the multiplication, according to the Comba algorithm, in a
digit-by-digit processing fashion. At the core of the Comba
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Algorithm 1 Bit-Level Combinational Multiplication. A and
BAre BW -Bit Digits, R Is (2BW−1)-Bit Long. A[i], B[i] and
R[i] Indicate Single Bits
1: function [R] CombinationalMul(A,B)
2: for i ∈ 0 : BW − 1 do
3: for j ∈ 0 : BW − 1 do
4: R[i+ j] = R[i+ j]⊕ (A[i] · B[j]);
5: end for
6: end for
7: end function

module, the Combinational BW x BW Multiplier
performs themultiplication between two digits (see Figure 5).
In particular, Algorithm 1 details the steps to perform the bit-
level combinational multiplication of the two BW -bit digits
according to the schoolbook multiplication algorithm.

The Comba multiplier schedules the BW × BW multipli-
cations according to the strategy proposed by Comba, i.e.,
producing a single BW -bit digit of the result at a time, by
computing all the partial products contributing to it. This
approach minimizes the number of bits required to maintain
in memory the sum of the partial products. To implement this
strategy, two BW -bit registers, reg1 and reg0, are employed to
store the sum of all the contributions to the said portion of the
result. reg1 and reg0 store respectively the BW most and least
significant bits of the XOR of partial products computed by
the combinational multiplier. When the computation of the
sum is completed, the least significant BW bits, i.e., the BW
bits stored in reg0, are committed to the output of the Comba
Multiplier, while the most significant ones, i.e., the BW bits
stored in reg1, are copied over in reg0.

IV. EXPERIMENTAL EVALUATION
This section discusses the results of the proposed hardware
multiplier in terms of area, timing and performance (execu-
tion time)with the final goal of highlighting the flexibility and
the scalability of our solution. To demonstrate the flexibility,
we employed the LEDAcrypt public-key cryptosystem as our
representative use case for large-degree binary polynomial
multiplications.

To demonstrate the scalability, the proposed multiplier has
been implemented on all the FPGAs of the mid-range Xilinx
Artix-7 family, while results are only reported for the smallest
and the largest FPGA in the family. We note that the Xilinx
Artix-7 family offers the best performance per dollar and it
has been suggested as the reference FPGA family target by
NIST for its post-quantum cryptography competition. Perfor-
mance results are compared with a state-of-the-art software
implementation running on an Intel i7 processor.

The rest of this section is organized in three parts.
Section IV-A overviews the LEDAcrypt cryptosystem, with
emphasis on both the operand size and the computa-
tional impact of the polynomial multiplication. Section IV-B
details the experimental settings encompassing both hard-
ware and software. Last, the experimental results in terms

of resource utilization and performance are discussed in
Section IV-C.

A. LEDAcrypt CRYPTOSYSTEM
We consider the Public-Key Cryptosystem (PKC) from the
LEDAcrypt post-quantum cryptography suite [28] as a repre-
sentative use case for a large-degree binary polynomial mul-
tiplier. The LEDAcrypt PKC is a code-based cryptosystem
that relies on the McEliece [3] cryptoscheme and employs
a QC-LDPC code. LEDAcrypt is one of the finalists in the
National Institute of Standards and Technology (NIST) ini-
tiative for the standardization of quantum-resistant public-key
cryptosystems.

The code underlying the PKC has code word length pn0
and information word length p(n0 − 1), where n0∈{2, 3, 4}
and p is a large prime number. The LEDAcrypt PKC provides
three security levels (equivalent respectively to AES-128,
AES-192 and AES-256) and for each security level three
different code rates, i.e., three different values of n0. To each
of these nine configurations corresponds a polynomial degree
p (see Table 1).

The encryption function of the LEDAcrypt PKC takes as its
inputs a plaintext message composed as a 1×p(n0−1) binary
vector u, an error vector composed as a 1×pn0 binary vector e
and a public keyG structured as (n0−1)×n0 circulant blocks
with size p×p.

The ciphertext c is then computed as:

c = u · G+ e

Because of the systematic form and the quasi-cyclic nature
of G, the u · G matrix multiplication corresponds to n0 − 1
polynomial multiplications in Z2[x]/(xp + 1). These n0 − 1
multiplications are the most computationally expensive parts
of the encryption algorithm, since the other operation is a
computationally far simpler bitwise XOR.

The experimental results detailed in this section have
been obtained for binary polynomials corresponding
to each of the nine configurations of the LEDAcrypt
PKC, i.e., binary polynomial multiplications have been
evaluated for polynomials of degree p for each config-
uration [29]. LEDAcrypt configurations and their corre-
sponding polynomial degrees are shown in more detail
in Table 1.

TABLE 1. Polynomial degrees of LEDAcrypt PKC configurations.
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TABLE 2. Available resources on Artix-7 12 and Artix-7 200 FPGAs.

B. EXPERIMENTAL SETUP
1) HARDWARE SETUP
The architecture for binary polynomial multiplication dis-
cussed in Section III has been described in SystemVerilog
and it has been implemented using the Xilinx Vivado 2018.2
hardware design suite. The experimental evaluation has been
carried out on two FPGAs from the mid-range Xilinx Artix-7
family. The Artix-7 12 (xc7a12tcsg325-1) and the Artix-7
200 (xc7a200tsbg484-1) are respectively the lowest-end and
the highest-end FPGAs of the Xilinx Artix-7 family (see
details in Table 2). Each design has been implemented con-
sidering a 143 MHz operating frequency, i.e., a 7 ns clock
period. It is worth noticing that for each considered FPGA
we only reported the best multiplier configuration, i.e., the
feasible one providing the best performance in terms of the
time to compute the entire multiplication. Such configura-
tions have been identified after an extensive design space
exploration which considered three parameters: i) the number
of iterations of the Karatsuba algorithm, ii) the parallel or
serial implementation of the compute stage for each iteration,
and iii) the internal bandwidth of the multiplier. We note that
the internal bandwidth, i.e., BW, has been fixed at 64 bits, to
match the bandwidth of the BRAM memories implemented
in Xilinx Artix-7 FPGAs, thus delivering the optimal data
transfer.

2) SOFTWARE SETUP
We used the gf2xC library [30] (version 1.3.0) as the software
reference to compare the performance of the implemented
hardware multipliers. The gf2x C library implements the
Karatsuba, Toom-Cook and, for very large polynomials, FFT
multiplication algorithms; it represents the state-of-the-art for
software-implemented large binary polynomial multiplica-
tions. To provide a representative comparison, we tuned the
library according trough its automatic tuning procedure to
select the most appropriate multiplication algorithm depend-
ing on the underlying hardware and polynomial degree. The
experimental evaluation of the software-implemented multi-
plication has been carried out on an Intel Core i7-6700HQ
processor forcing a fixed operating frequency of 3.5 GHz to
avoid performance variability due to the power management
controller. For each value of p as defined in the LEDAcrypt
PKC use case, the execution time of the software reference
was obtained by averaging 10000 execution times for a single
multiplication. For each polynomial degree, measurements
were taken only after a warm-up run of 1000 multiplications.

3) FUNCTIONAL VALIDATION
The functional validation is meant to check the correctness
of the multiplication results obtained from the hardware

FIGURE 6. Hardware setup for the functional assessment of the proposed
binary multiplier. The hardware setup is made of three parts. The UART
module allows the communication between the host computer and the
Functional Validation Architecture. The FPGA controller
(FPGACtrl) coordinates the communication with the host computer and
the hardware execution of the binary multiplication. The multiplier
(MultiplierTop) implements the version of the proposed binary
multiplier architecture optimized for the underlying FPGA .

implementation of our multiplier template architecture. We
employed the gf2x C library [30] (version 1.3.0) as the ref-
erence for our functional validation. In particular, for each
polynomial degree defined in the LEDAcrypt public-key
cryptosystem, i.e. the 9 configurations reported in Table 1, we
collected the results of the software execution of 10000multi-
plications where the input binary polynomials were randomly
generated. The same multiplications have been computed
through both the post-implementation (timing) simulation
and the board prototype execution of different implementa-
tions of our multiplier template architecture. For the post-
implementation (timing) simulation, we implemented our
multiplier targeting the Xilinx Artix-7 12 (xc7a12tcsg325-1)
and the Xilinx Artix-7 200 (xc7a200tsbg484-1) FPGAs. For
the board prototype execution, we implemented our multi-
plier targeting the Digilent Nexys 4 DDR FPGA board, which
features a Xilinx Artix-7 100 (xc7a100tcsg324-1) FPGA.
In particular, we implemented a performance-optimized
instance of our multiplier for each combination of the
nine LEDAcrypt configurations and the three considered
FPGAs, i.e., Xilinx Artix-7 12, Xilinx Artix-7 100 and Xil-
inx Artix7 200. Each one of the 27 implemented multipliers
executes the 10000 multiplications and the output results are
compared with the output of the corresponding software-
executed multiplication.

A functional validation architecture (FVA) is employed
to provide a unified validation infrastructure for both the
post-implementation (timing) simulations and the board pro-
totype executions (see Figure 6). The FVA is made of
three parts. The FPGA controller (FPGACtrl) communi-
cates with the host computer to collect the input polynomials
and to return the multiplication results. The UART mod-
ule (UART) ensures a simple yet effective communication
channel between the FPGA controller and the host computer.
The MultiplierTop block represents the performance-
optimized implementation of our binary multiplier template
architecture that is specifically tailored for each combination
of FPGA and LEDAcrypt configuration.
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FIGURE 7. Resource utilization of the proposed multiplier implemented on the Xilinx Artix-7 12 and Xilinx Artix-7 200 FPGAs. Look-Up Table (LUT),
Flip-Flop (FF) and Block-RAM (BRAM) resource types are considered. For each resource type, its utilization is expressed as the percentage of the
available resources on the target FPGA.

To perform amultiplication, theFPGACtrlmodule drives
the cmdM2S and the weM2S signals to collect the input
polynomials from the UART interface. We implemented a
blocking communication protocol between the FPGA con-
troller and the UART, thus the FPGA controller waits until
the UART has sent the required data before closing the com-
munication.

Once the input polynomials have been collected, the
cmd2Mul signal is used to load the operands into the mul-
tiplier and to start the multiplication. For each clock cycle,
BWext bits of each input polynomial are fed to the multiplier
through the A and B signals.

Themultiplier signals the end of the multiplication through
the mulDone signal, while, for each clock cycle, BWext bits
of the multiplication result are fed to the FPGA controller
through the R signal. The cmd2Mul and the ack2Host
signals are used to implement the acknowledged protocol to
feed the inputs and retrieve the output from the multiplier.
Last, the FPGA controller sends the multiplication result
to the host computer through the UART by means of the
dataM2S data signal. We note that the cmdM2S and the
ack2Host signals are used to implement the acknowledged
protocol to to exchange themultiplication operands and result
between the FPGA controller and the UART module.

C. AREA AND PERFORMANCE RESULTS
This section discusses the area and the performance of the
proposed multiplier, to demonstrate the scalability and the
flexibility of our solution over the software implementations.

1) AREA RESULTS
The proposedmultiplier exploits a massive BRAMutilization
to store partial products and the final result with two positive
side-effects. First, the multiplier can be implemented on tiny
FPGAs even for the multiplication of large operands. In
particular, the maximum allowed dimension of the operand

in bits is not function of the available amount of flip-flops,
that easily become the scarcest resources on small FPGAs,
but it is function of the available BRAM storage capacity. We
note that a single BRAM can store up to 36kbit and that the
smallest considered FPGA features 20 BRAMs. Second, the
use of a nested structure to implement the multiplier where
storage elements surround the compute stage, optimizes the
critical path by construction. In particular, the critical path,
which remains independent from the number of implemented
Karatsuba iterations, depends on the width (BW) of the com-
binational multiplier. This, in turn, determines the critical
path of the proposed multiplier, that, however, cannot be
improved by a reduction of the value of BW. In fact, any
reduction of the value of BW aiming to optimize the critical
path of the combinational multiplier generates a much more
severe overall performance degradation due to the underuti-
lization of the BRAM data-transfer bandwidth.

Figure 7 reports the normalized resource utilization for
each polynomial size of the LEDAcrypt cryptosystem con-
sidering the Xilinx Artix-7 12 and the Xilinx Artix-7 200
FPGAs. In particular, for each polynomial size, the percent-
age utilization of LUT, flip-flops and BRAM elements is
reported. We note that the massive use of BRAM resources
minimizes the use of flip-flops, which are therefore never
the scarcest resource, while LUT and BRAM utilization
are almost aligned even if the reported utilization greatly
differs between the two considered FPGAs. For each of
the 9 LEDAcrypt configurations, both the Artix-7 12 and
200 FPGAs have the internal bandwidth of the multiplier
set to 64 bits, which corresponds to the bandwidth of the
BRAM memories available on the Artix-7 family, making it
an optimal choice. For Xilinx Artix-7 12, all the 9 considered
polynomials have their optimal hardware configuration with
1 Karatsuba recursion and 3 Comba multipliers, i.e., 3 partial
products are computed in parallel. All configurations almost
saturate the FPGA resources in terms of LUT and BRAM,
while the low FF utilization, i.e., 8% on average, is due to the
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FIGURE 8. Performance speedup with respect to the hardware
multiplication performed with 1 parallel Karatsuba iteration. Results are
shown for hardware multipliers with a number of parallel Karatsuba
iterations varying between 2 and 5.

massive use of BRAM to store intermediate values. We note
that the unused flip-flops cannot be efficiently employed,
since even all together they cannot contain the information
stored in a single BRAM.

For Xilinx Artix-7 200, all the 9 considered polynomials
have their optimal hardware configuration with 3 Karatsuba
recursion and 27 Comba multipliers. However, the resource
utilization for both the LUT and the BRAM is limited to 50%.
To better understand this supposedly low resource utilization,
we need to analyze the Karatsuba algorithm. In particular,
such algorithm allows to substitute a partial product com-
putation with a few binary additions in Z2[x]. Considering
the proposed architecture, a new set of BRAM is used at
each iteration of the Karatsuba and additional LUTs are used
to perform the additional operations and to compose the
intermediate results into the final partial product. Moreover,
the use of too many nested Karatsuba iterations can nega-
tively affect the performance since the time spent to split
the operands becomes bigger than the time spent to actually
perform the Comba multiplication, i.e., Comba operands are
too small. To this extent, only the use of a parallel Karatsuba
iteration offers a significant performance speedup with, how-
ever, a non-negligible cost in terms of resource utilization.
For each LEDAcrypt configuration, the performance speedup
due to the nesting of a parallel Karatsuba iteration is reported
in Figure 8. The performance speedup is defined as the ratio
between the execution times on a hardware multiplier with
only 1 parallel Karatsuba iteration and on hardware multipli-
ers with a number of parallel Karatsuba iterations comprised
between 2 and 5.We note that its value is always significantly
positive, while the number of required BRAMs and LUTs
grows 3x for each parallel Karatsuba iteration. To this extent,
the resource utilization on the Xilinx Artix-7 200 is motivated
by the impossibility to add another Karatsuba iteration due to
resource limitation, while by using a larger FPGA, such as
those of the Xilinx Virtex-7 family, the proposed multiplier
can further improve its offered performance.

FIGURE 9. Execution time (in microseconds) of a multiplication. Results
are shown for software multiplication on the Intel i7 core and hardware
multiplication on the Artix-7 12 and Artix-7 200 FPGAs.

FIGURE 10. Performance improvement with respect to the software
multiplication executed on the Intel i7 processor. Results are shown for
hardware multiplication on the Artix-7 12 and Artix-7 200 FPGAs.

2) PERFORMANCE RESULTS
Figure 9 reports the performance, i.e., the execution time,
for all the 9 considered polynomial degrees, thus covering
all the LEDAcrypt cryptoscheme configurations. For each
polynomial degree, results are reported for the hardware
implementations targeting the Artix-7 12 and 200 FPGAs and
for the software reference. Considering the LEDAcrypt PKC
use case, a multiplication executed with the gf2x library takes
between 124 and 1510 microseconds, while our hardware
multipliers implemented on the Artix-7 12 and 200 FPGAs
take respectively between 27 and 597 and between 4 and
50 microseconds. We define the performance improvement
metric as the ratio between the execution times of a single
multiplication on the software reference implementation and
on our hardware multipliers.

As shown in Figure 10, the Artix-7 200 implementation
of the proposed multiplier offers a performance speedup
between 28.3 and 41.5 times (33.3 times faster on aver-
age) compared to the software implementation. Similarly, the
Artix-7 12 implementation of the proposed multiplier offers
a performance speedup between 2.5 and 6.4 times (3.6 times
faster on average) compared to the software implementation.
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It is worth noticing that, despite the ad-hoc hardware microar-
chitecture, the FPGA implementation works at 143 MHz
while the software multiplication executed on an Intel i7
processor clocked at 3.5 GHz.

V. CONCLUSION
This work presented a flexible and scalable template architec-
ture for the hardware implementation of large binary poly-
nomial multipliers. The architecture combines the iterative
application of the Karatsuba algorithm, to minimize the num-
ber of required partial products, with the Comba algorithm,
employed to optimize the schedule of their computations.

The design flexibility is offered by means of three design-
time parameters, that are used to optimally trade performance
and resource utilization on a wide range of FPGAs. First, the
configurable number of nested Karatsuba iterations allows to
control the reduction of the number of partial products to
be computed. Second, the architecture allows to configure
the number of partial products that are computed in parallel.
Last, the internal bandwidth of the multiplier architecture is a
design parameter as in state-of-the-art digit-serial multipliers.

Moreover, the operand-size scalability is guaranteed in two
ways. First, the proposed solution leverages the FPGA block
RAMs (BRAMs) to store large operands, the result and the
intermediate values. Second, the use of different data widths
for the internal multiplier datapath and the primary input-
output interface allows to select the optimal performance-
resource trade-off point regardless of the size of the input
operands.

To demonstrate the effectiveness of our solution, we
employed the nine configurations of the LEDAcrypt public-
key cryptosystem as representative use cases for large-degree
binary polynomial multiplications. Compared to an opti-
mized software implementation employing the gf2x C library,
our solution demonstrated an average performance speedup
of 3.6x and 33.3x, by using the smallest (Artix-7 12) and
the largest (Artix-7 200) FPGAs of the Xilinx Artix-7 family,
respectively. Moreover, a complete design space exploration
demonstrates the possibility of implementing a multiplier for
each configuration of the LEDAcrypt on the entire Xilinx
Artix-7 family of mid-range FPGAs.
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