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ABSTRACT Many countries are challenged by the medical resources required for COVID-19 detection
which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for
a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by
the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19
causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes
with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly
from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19.
This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators
algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy
is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works
on finding the particles that couldn’t find better solutions within a consecutive number of iterations, and
then moving those particles towards the best solutions so far. The performance of IMPA has been validated
on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art
algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA),
Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate
that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition,
the performance of our proposed model was convergent on all numbers of thresholds level in the Structured
Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.

INDEX TERMS COVID-19 detection, marine predators algorithm, ranking-based reduction diversity,
Kapur’s entropy, image segmentation.

I. INTRODUCTION
Due to the limited diagnosis tools available, many coun-
tries are only able to apply the COVID-19 [1], [2] test for
a limited number of citizens. Despite the great efforts to
find an effective way for COVID-19 detection, the required
medical resources in many countries represent a big chal-
lenge. Accordingly, there is an urgent need to identify a
low-cost and rapid tool to detect and diagnose COVID-19
effectively.

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Hugo Albuquerque .

Many attempts have been conducted to find a suitable
and fast way to detect infected patients in an early stage.
After making chest CT scans of 21 patients infected with
COVID-19 in China, Guan et al. [2] found that CT scan
analysis included bilateral pulmonary parenchymal ground-
glass and consolidative pulmonary opacities, sometimes with
a rounded morphology and a peripheral lung distribution.
Consequently, COVID-19 diagnosis can be represented as
an image segmentation problem to extract the main features
of the disease. This segmentation problem can be solved by
developing an algorithm that has the ability to extract the
smaller similar regions that can indicate infection with the
COVID-19 virus.
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Segmentation of an image, separating image regions from
each other, is an essential step in image processing [3] and
computer vision [4] to focus on a specific region thereby
increasing the accuracy of image analysis techniques. The
image segmentation problem (ISP) is present in many fields
such as: medical diagnosis [5], [6], object recognition [7],
satellite image processing [8], remote sensing [9], historical
documents [10], and historical newspapers [11], [12].

Several techniques have been proposed to provide an
effective image segmentation tool, such as region-based seg-
mentation [13], edge-based detection [14], feature selection-
based clustering [15], and threshold-based segmentation [16].
Due to its simplicity, speed, and accuracy, threshold-
based segmentation is widely used for image segmentation
[3], [17], [18] using either a bi-level threshold or a multi-
level threshold. In bi-level thresholding, the image is seg-
mented into two regions: object and background. Although
the bi-level threshold is very useful in subdividing the image
into only two parts, many applications are interested in more
than two regions. In that case, another threshold technique
called multi-level threshold has been used to segment the
image into more than two regions. Although increasing the
number of regions extracted from the image, the time needed
to segment the image increases exponentially with the num-
ber of regions of interest.

Threshold techniques are based on two approaches: para-
metric and non-parametric [19]. In a parametric approach,
some parameters for each class in the image need to be com-
puted using a probability density function. However, in a non-
parametric approach, the technique searches for the optimal
threshold values based on maximizing an appropriate func-
tion (such as Kapur’s entropy [20], fuzzy entropy [21], and
Otsu function [22]) without needing to calculate parameters
at the outset.

Since processing time increases exponentially with
increasing numbers of thresholds, traditional techniques will
take considerable time to search for the optimal threshold.
Consequently, meta-heuristic algorithms have been used as
excellent stochastic meta-heuristic techniques to overcome
the high processing time and accuracy problems [23]–[25].
Recently, many meta-heuristic algorithms have been pro-
posed for image segmentation, such as genetic algorithm
(GA) [26], particle swarm optimization (PSO) [27]–[29],
ant-colony optimization algorithm [30], whale optimization
algorithm (WOA) [31], honey bee mating (HBM) opti-
mization [32], multi-verse optimizer [33], cuckoo search
(CS) [34], symbiotic organisms search (SOS) [35], Harris
hawks optimization algorithm (HHA) [36], and moth-
flame optimization algorithm (MFA) [31], flower pollina-
tion algorithm (FPA) [37], crow search algorithm [38], grey
wolf optimizer [39], bee colony algorithm (BCA) [40],
locust search algorithm (LSA) [41] and firefly optimization
algorithm (FFA) [42].

Singla and Patra [43] investigated the bounds and the
potential thresholds that contain the optimal threshold values
by using the cluster validity measure, and then used the

GA algorithm to search for the optimal thresholds from the
discovered bounds. GA has also been proposed [44] for image
segmentation based on a simulated binary crossover to max-
imize Kapur’s entropy for the medical image. Among swarm
algorithms, PSO [45] has been proposed for image segmen-
tation, in addition to improving its performance by cooper-
ative and comprehensive learning to face the dimensionality
curse and to reduce the premature convergence of the swarm,
respectively. Amodified PSO [46] has also been developed to
improve its performance for solving ISP using adaptive iner-
tia and the adaptive population. Ghamisi et al. [47] introduced
fractional-order Darwinian PSO to solve the problem of the
n-level threshold based on the Otsu function to maximize the
variance between classes.

In [31], WOA and MFA were proposed for solving the
image segmentation problem bymaximizing Otsu’s criterion,
although only for small threshold levels up to 6. FFA [42] has
also been applied to image segmentation but does not per-
form well for multi-level thresholding, so the improved FFA
(IFFA) [48] has been proposed using the Cauchy mutation
and neighborhood strategy to avoid being trapped in local
optima and to enhance the exploration operation.

CS [34] has also been proposed for tackling the ISP by
maximizing the Tsallis entropy. SOS [35] has been proposed
for segmenting the color images, improved by opposite-based
learning in an attempt to enhance its performance (ISOS).
ABC [49] has been used for segmentation of satellite imagery
based on maximizing various fitness functions—the tech-
nique has been modified by initializing the population using
a chaotic search and using differential evolution as a novel
search technique to improve the exploitation phase.

The Bacterial Foraging Algorithm (BFA) [50], relying on
fuzzy entropy to switch the bacterium between exploitation
and exploration operators, has been adapted for gray-scale
image segmentation. Also, BFA [51] has been modified by
moving the best bacteria to the subsequent iterations to accel-
erate the convergence to the optimal solution. Furthermore,
BFA [52] has been integrated with PSO to support the global
search capability and accelerate the convergence rate. In addi-
tion, the weak bacterium in BFA chooses a strong bacterium
from the healthiest bacteria, then it moves near to the location
of this strong selection. WOA [53] has been proposed for
tackling liver image segmentation. WOA divides the liver
image into a predetermined number of clusters based on
the prospect liver position in the abdominal image defined
by a statistical image. The problem of multi-level threshold
segmentation [54] is handled as a multi-objective problem
that maximized both Kapur’s entropy and Otsu’s function.

Although there are many existing methodologies for med-
ical image segmentation, none of the works exposed at the
literature was validated on an image with high threshold
levels to observe its ability to segment an image with many
similar regions. Subsequently, those algorithms may not be
the best choice for searching for smaller homogenous regions
in medical images that may contain the features of a disease
such as COVID-19. This challenge motivates us to observe
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the performance of some state-of-art algorithms proposed in
the literature for tackling ISP. In addition, it leads us to pro-
pose a robust meta-heuristic algorithm, namely the improved
marine predators algorithm (IMPA), that has a good ability to
segment an image into many similar regions.

The contribution of this paper is two-fold. First, we pro-
pose a hybrid model for COVID-19 detection using an
improvedmarine predators algorithm (IMPA) for overcoming
the multi-threshold image segmentation problems of chest
X-Ray images. Second, a newmethod, namely ranking-based
diversity reduction (RDR), has been proposed to improve the
MPA by moving the positions of the worst solutions to be
near to the best solution. The proposed RDR is compared
with other well-known algorithms using a set of chest X-Ray
images. The experimental results show that MPA and IMPA
are better able to solve the image segmentation problem com-
pared with state-of-art algorithms in terms of fitness value
and standard metrics. Additionally, it is competitive with EO
in low numbers of threshold levels in terms of peak signal-to-
noise-ratio (PSNR), and signal-to-noise-ratio (SNR), but has
significantly better performance for high numbers of thresh-
old levels. Along with EO, the performance of our proposed
algorithm is convergent using the structured similarity index
metric (SSIM) and the Universal Quality Index (UQI).

The remainder of the paper is organized as follows.
In section 2, we explain the Kapur’s entropy formulation.
Then, section 3 provides a description of the marine predators
algorithm. Section 4 describes the steps of adapting MPA for
application to image segmentation. Section 5 provides the
results and discussions and section 6 concludes the paper.

II. MULTILEVEL THRESHOLDING
As discussed earlier, image threshold techniques are cate-
gorized as bi-level or multilevel thresholding. In this work,
optimal threshold values are obtained using a popular mul-
tilevel method, namely Kapur’s entropy, which determines
the optimal threshold values based on the entropy of the seg-
mented regions [20]. Assuming that [t0, t1, t2, . . . . . . . . . , tn]
represents the threshold values that segment the image into
multiple regions, then Kapur’s entropy method can be for-
mulated in Eq. 1, Eq. 2, Eq. 3, Eq. 4, and Eq. 5.

T (t0, t1, t2, . . . . . . . . . , tn) = T0+T1 + T2+. . . . . . . . .+Tn

(1)

where:
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T0,T1,T2, . . . . . . . . . , and Tn are the entropies of the dis-
tinct regions, and Ni indicates the number of pixels with a
value of i, the grey level. W0,W1,W2, . . . , and Wn are the
probabilities of the regions relative to the number of pixels W
found in the whole image.

To obtain the optimal threshold values, the function at Eq. 6
must be maximized.

F (t0, t1, t2, . . . . . . . . . , tn) = max{T(t0, t1, t2, . . . . . . . . . , tn)}

(6)

Here, Eq.6 is used as a fitness function to obtain the optimal
threshold values using theMPA illustrated in the next section.

III. MARINE PREDATORS ALGORITHM (MPA)
MPA has been proposed to simulate the optimal foraging
mechanism for marine predators in finding their prey: preda-
tors use Lévy strategy when there is a low concentration
of prey and Brownian movements when there is abundant
prey [55]. The velocity ratio v from the prey to the preda-
tors represents the tradeoff between the Lévy and Brownian
strategies:

1. At low-velocity, v < 0.1, the best strategy for the
predators is to move in Lévy steps regardless of whether
the prey is moving in Brownian or Lévy.

2. At unit velocity, v = 1, the predators should move in
Brownian if the prey is moving in Lévy steps.

3. Finally, at high-velocity > 10, the best strategy for the
predators is to remain motionless, regardless of whether
the prey is moving in Brownian or Lévy.

The mathematical model of the MPA is as follows:.
In the first stage, a group of the prey will be initialized

within the search space using the following equation:
−→
X =

−→
X min + rand (0, 1) ∗ (

−→
X max −

−→
X min) (7)

where rand (0, 1) is a random number in the range of [0, 1],
and
−→
X min and

−→
X max are the vectors including the upper and

lower bounds for the search space of each dimension in the
optimization problem.

After initializing the prey, the fitness of each predator is
calculated, and the one that has the best fitness value is
determined to be the top predator. Based on the survival of
the fittest, the top predator is the best one in foraging, so it is
used to construct a matrix known as Elite. This elite matrix
can be formulated as follows:

Elite =


X I1,1 X I1,2 . . . X I1,d
X I2,1 X I2,2 . . . X I2,d
.

.

X In,1

.

.

X In,2

.

.

. . .

.

.

X In,d


where

−→
X I represents the top predator vector and is replicated n

times to build up an n×d Elite matrix, where n is the number
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of the individuals in the population, and d is the number of
dimensions.

Another matrix, namely Prey, has the same dimensions as
Elite and is used by the predators to update their positions.

Prey =


X1,1 X1,2 . . . X1,d
X2,1 X2,2 . . . X2,d
.

.

Xn,1

.

.

Xn,2

.

.

. . .

.

.

Xn,d


In the main loops of the MPA, the optimization process is
divided into three stages based on the velocity ratio, and is
modeled as follows:

A. HIGH VELOCITY RATIO
This is the exploration phase, and is formulated at Eq. 8 and
Eq. 9:

while it <
1
3
∗ max_iter

−→
S i =

−→
R B ⊗

(
−−→
Elitei −

−→
R B
−−−−→
⊗Preyi

)
(8)

−−→preyi =
−−→preyi + P ∗

−→
R ⊗
−→
S i (9)

where
−→
R B is a vector of random numbers created based on

the normal distribution and represents the Brownian motion,
⊗ represent the entry-wise multiplication, P = 0.5, 0.5 con-
stant is recommended from the original paper, is a constant
number, R is a random numbers vector created uniformly,
t is the current iteration, and tmax is the maximum number
of iterations.

B. UNIT VELOCITY RATIO
This phase occurs in the intermediate phase of optimization
process, where exploration is gradually changed to exploita-
tion. The mathematical model of this phase is represented in
Eq. 10, Eq. 11, Eq. 12, and Eq. 13.

while
1
3
∗ maxiter < it <

2
3
∗ max_iter

- For the first half of the population
−→
S i =

−→
R L ⊗

(
−−→
Elitei −

−→
R L
−−−−→
⊗Preyi

)
(10)

−−→preyi =
−−→preyi + P ∗

−→
R ⊗
−→
S i (11)

- For the second half of the population
−→
S i =

−→
R B ⊗

(
−→
R B ⊗

−−→
Elitei −

−−→
Preyi

)
(12)

−−→preyi =
−−→
Elitei + P ∗ CF ⊗

−→
S i (13)

where
−→
R L is the vector created using the Lé vy flight strategy.

In this phase, the first half of prey would move with Lé vy
steps, while the other half uses Brownian steps.

where CF is an adaptive parameter to control the step size
and is generated using Eq. 14.

CF = (1−
it

max_iter
)

(
2 it
max_iter

)
(14)

C. LOW VELOCITY RATIO
This is the exploitation phase and is formulated using
Eq. 15 and Eq. 16:

while it >
2
3
∗ max_iter

−→
S i =

−→
R L ⊗

(
−→
R L ⊗

−−→
Elitei −

−−→
Preyi

)
(15)

−−→preyi =
−−→
Elitei + P ∗ CF ⊗

−→
S i (16)

Some studies confirmed that the surrounding environ-
ment such as the eddy formulation, and fish aggregating
devices (FADs) affects the behavior of the prey. As a result,
the predators spend 80% of their time searching for their prey
in the vicinity, while the remaining time, they search for the
prey in another environment. This process is known as FADs
and is calculated using Eq. 17.

−−→preyi =


−−→preyi + CF[

−→
X min +

−→
R ∗ (
−→
X max −

−→
X min)]⊗

−→
U

if r < FADs
−−→preyi + [FADs (1− r)+ r]

(−−→preyr1 −−−→preyr2)
if r > FADs

(17)

where r is a random number in the range of [0, 1].
−→
U is the

vector containing the arrays with 0 and 1 values. For each
array in

−→
U , a random number between 0 and 1 is generated

and if the generated number is greater than 0.2, then this array
is set to 1; otherwise it is set to 0. FADs = 0.2 indicates the
influence of the FADs on the searching process.

MPA accomplishes memory saving by saving the old posi-
tion of the prey. And, after updating the current solutions,
the fitness values of each current solution and each old solu-
tion are compared, and if the fitness of the old one is better
than the current one, they are swapped. The steps of MPA are
listed in Algorithm 1.

IV. THE HYBRID PROPOSED MODEL
In this section, standard MPA and improved MPA (IMPA)
have been developed for overcoming the multi-thresholding
image segmentation problems. The steps of adaptation are
shown in the next sections.

A. INITIALIZATION
In this phase, the number of prey N and the number threshold
are predefined. Then each threshold is initialized randomly
within 0 and 255 (the gray levels of the 8-bit image) using
Eq. 18.

Pi,j = Lmin + r ∗ (Lmax − Lmin) (18)

where Lmin, and Lmax indicate the upper and lower bounds
of the gray level values in the image histogram, and r
is a random number generated randomly in the range
of [0, 1].
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Algorithm 1 The Marine Predators Algorithm (MPA)
1. Initialize the population of prey pi(i = 1, 2, 3, . . . ., n)
2. Set parameter’s value
3. P = 0.5;Top_Predetor_fit = = MAX_VALUEX
4. Top_Predetor_Position = NULL
5. while (it < tmaxIter)
6. for each i prey
7. Calculate the fitness value of prey if (−→p i)
8. if (f (−→p i) < Top_Predetor_Best) )
9. Top_Predetor_Best = f (−→p i)

10. Top_Predetor_Position =−→p i
11. End if
12. End for
13. Construct The Elitematrix
14. Accomplish the memory saving
15. Assign CF using Eq. (14)
16. for each i prey
17. if (it < 1

3 ∗ tmax)
18. Update the current −→p i using Eq. (9)
19. Elseif ( 13 ∗ tmax < it < 2

3 ∗ tmax
20. If (i < 1

2 ∗ n)
21. Update the current −→p i using Eq. (11)
22. Else
23. Update the current −→p i using Eq. (13)
24. End if
25. Else
26. Update the current −→p i using Eq. (16)
27. End if
28. end for
29. for each i prey
30. Calculate the fitness value of prey if (−→p i)
31. if (f (−→p i) < Top_Predetor_Best) )
32. Top_Predetor_Best = f (−→p i)
33. Top_Predetor_Position =−→p i
34. End if
35. end for
36. Accomplish the memory saving
37. Accomplish the FADs for each predator −→p i using

Eq. (17)
38. it ++
39. end while

B. RANKING-BASED DIVERSITY REDUCTION TECHNIQUE
(RDR)
Some particles may be far away from an optimal solution
which will require a long time to find and the number of
iterations may terminate before a better solution is reached.
Therefore, we propose an algorithm to calculate the consec-
utive number of iterations in which each particle was not
able to identify a better solution. After identifying the worst
particles that fail to find a better solution within a consecutive
number of iterations, in Algorithm 2 those particles will be
updated towards the best solution found so far to reduce the

Algorithm 2 RDR
1. P : the number of prey
2. CR : a vector of size N and contain 0’s value in the start
3. i = 0
4. perIter = 3
5. while (i < N )
6. if (fit (Pi) > fitLocal (Pi))
7. CRi ++
8. else
9. CRi = 0

10. end if
11. i++
12. end while
13. for each i particle
14. if (CRi > perIter)
15. Update Pi toward the best one using Eq.19
16. end if
17. end for

distance from the optimal solution using the Eq.19.
−→
Pb =

−→
Pb + r ∗

(
−→
Pb −

−→
Pi
)

(19)

where
−→
Pi refers to a worst particle that fails in finding a

better solution within a consecutive number of iteration,
−→
Pb

refers to a vector of the best solution, and r is a number
generated randomly in the range of [0, 1]. This technique
that reduces the distance between the optimal solution and
the particles that couldn’t find a better solution within a
consecutive number of iterations is called RDR.Algorithm 2
illustrates the steps of the RDR technique.

In Algorithm 2, a vector of size equal to the number of
prey is created and initialized in 0’s value. Then the old fitness
is compared with the current fitness, and if the old fitness is
still better, the rank CRi of the ith particle is increased by 1.
Otherwise, it is reset to 0 again. This will help to identify the
number of particles that couldn’t reach better solutions within
a consecutive number of iterations. After that, each particle
couldn’t find a better solution within the consecutive number
of iterations CN, predefined, will be updated towards the best
solution using Eq.19.

C. THE PROPOSED IMPA
The steps of adapting the IMPA using the RDR for over-
coming multi-thresholding problems are illustrated in Fig 1.
The initialization step is considered the first step for all
meta-heuristic algorithms, so it is firstly used for initial-
izing the prey randomly, as shown in Fig 1. Within the
initialization step, the fitness of each prey would be cal-
culated, and the one with the highest fitness value is
defined as the Top_Predator_Best, and its position as the
Top_Predator_Position. After that, the first stage of the pri-
mary optimization process will start to update the current
positions using one of the updating equations illustrated in
Section 2 at the expense of the current iteration and prey.
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FIGURE 1. Flowchart of IMPA for overcoming image segmentation problem.

After finishing the first stage of the optimization process,
the fitness value of each prey is calculated, and memory
saving is accomplished. Last but not least, the second stage
of the optimization process implements the FADs methodol-
ogy. FADs helps MPA dispose of local optima, subsequently
finding better solutions. Finally, after the selected number
of iterations, the RDR strategy is called to reduce diversity
through the population, as elaborated in Section 4.2. The first
and second stages of the optimization process, in addition
to the RDR strategy, will be repeated until the termination
criterion is satisfied.

Note that i in Fig. 1 indicates the current particle number,
and N refers to the maximum number of particles.

Memory saving in MPA replaces the old solution with
the current one if the current is better; otherwise the old
one is used in the population to be updated toward another
direction for finding better solutions. But what happen if
the old one is always better? This means that the predator
would stay in its position, motionless, and the distance with
the best solution would not change. As long as the particles
are far away of the best solution, the probability of finding a
better solution reduces. Subsequently, a significant number of
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FIGURE 2. Illustration the original images and their histograms used in our experiment.
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FIGURE 3. Comparison of the STD values obtained by each algorithm.

TABLE 1. PSNR values obtained by each algorithm.

iterations would be neglected. To solve this problem, the RDR
strategy is used to move the particle that failed to find a better
solution within a consecutive number of iterations, gradually
toward the best solution even if the updated position isn’t
better than the old one. This will help the particle in exploring
whether other regions may contain a better solution. Because
the best solution is unified for all the members, the diversity
between the members of the population will reduce when the
particles move toward it. Accordingly, many better solutions

may be generated, due to the exploration of more regions
by the particles that couldn’t find better solution within a
consecutive number of iterations.

V. RESULTS AND DISCUSSION
In this section, the conducted experiments are offered and
discussed to show the superiority of our proposed algorithm
for solving ISP. This section is organized as follows:
• Section A. Describes Test Images
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FIGURE 4. Average PSNR values obtained by each algorithm on selected threshold levels from 10 to 100.

• Section B. discusses Stability Analysis of all the com-
pared algorithms.

• Section C. discusses the results of The Peak Signal to
Noise Ratio (PSNR) metric.

• Section D. discusses the results of the Signal to Noise
Ratio (PSNR) metric.

• Section E. demonstrates the outcomes of the Structures
similarity index metric (SSIM).

• Section F. elaborates the results of the universal quality
index (UQI).

• Section G. demonstrate the obtained Kapure’s entropy
values

• Section H. shows some segmented images using IMPA,
and MPA

A. DESCRIPTION OF TEST IMAGES
In our experiment, eight COVID-19 Chest images taken
from https://github.com/ieee8023/covid-chestxray-dataset
are used to validate the performance of our proposed algo-
rithm and other algorithms in extracting the similar regions.

These images are labelled X1, X2, X3, X4, X5, X6, X7,
X8, and X9. The original images and the histogram of
each are shown in Fig.2. We compared our proposed model
and selected state-of-art algorithms: SCA [56], WOA [31],
EO [57], HHA [36] and SSA [58] using the same parameters
and running environment. The population size N was set
to 20, and the maximum iterations tmax set to 150 for a fair
comparison. The experiments are performed on a desktop
computer equipped with Windows 7 ultimate platform and
1 GB memory space. The RDR strategy is implemented on
each particle that exceeds 3 iterations (CN = 3) without a
better solution.

B. STABILITY ANALYSIS
To measure the dispersion of the results obtained by each
algorithm, the standard deviation (Std) is calculated using
Eq. 20.

Std =

√
1

n− 1

∑n

i=1

(
fi − f̄

)2 (20)
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TABLE 2. SNR values obtained by each algorithm.

TABLE 3. SSIM values of each algorithm.

where n is the number of runs, fi indicates the fitness value
of the i-th run, and f̄ is the mean of the fitness value obtained

within all the runs. Note that the lower value of Std metric
refers to better stability.
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FIGURE 5. Average SNR values obtained by each algorithm for selected threshold levels of 10 to 100.

To check the stability of our proposed model, the aver-
age of Std values was calculated for each algorithm using
20 independent runs on all test images and all the thresh-
old levels and introduced in Fig. 3, which shows that
IMPA and MPA have lower Std values compared with
the other algorithms investigated. As a result, both IMPA
and MPA provide results with better consistency and
stability.

C. PEAK SIGNAL TO NOISE RATIO (PSNR)
PSNR is an indicator used to evaluate the similarity of the
predicted image with the original by calculating the ratio
between the square of 255 and the mean square error between
the original image and the predicted one. This metric can be
calculated using Eq. 21 and Eq. 22.

PSNR = 10 log10

(
2552

MSE

)
(21)

where MSE is the mean squared error which is calculated as
follows:

MSE =

∑M
i=1

∑N
j=1 |A (i, j)− S(i, j)|

M ∗ N
(22)

where A (i, j) , S(i, j) represent the gray level of the predicted
and original images, respectively.M , andN are the number of
columns and rows of the image matrix. The greater value of
the PSNR refers to a better quality of the predicted image.
The average PSNR values obtained over 20 runs by each
algorithm using Kapur’s entropy are listed in Table 1, which
shows that both IMPA and MPA have the best performance
in 40 cases out of 72, while IMPA alone has the best
performance in 31 cases. With small threshold levels, pro-
posed IMPA algorithm is competitive with the EO algorithm.
In contrast, the proposed algorithm presents the best PSNR
values with an increase in the number of thresholds level.
Based on this analysis, the proposed algorithm can determine
the relevant threshold values for each image, especially for
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FIGURE 6. Average SSIM values obtained by each algorithm for selected threshold levels between 10 and 100.

the images with high threshold levels, and subsequently,
the segmented image generated by IMPA is very close to the
original. Fig. 4 shows the average of the PSNR values across
20 runs, from which it can be seen that the proposed IMPA
algorithm has the best performance for high threshold levels,
and its performance is competitive of EO and MPA for small
threshold levels.

D. SIGNAL TO NOISE RATIO (SNR)
SNR [59] is the error summation method that is used to
measure the quality of the predicted images by calculating
the ratio of the error between the original and the segmented
images, and is computed using the Eq. 23.

SNR = 10 log10

(
I2

SE2

)
(23)

where I is the average of the intensities of the original image
and is calculated using Eq. 24.

I =

∑M
i=1

∑N
j=1 X (i, j)

M ∗ N
(24)

and SE is the squared error and is calculated using Eq. 25.

SE =
∑M

i=1

∑N

j=1
|X (i, j)− Y (i, j)| (25)

where X (i, j) ,Y (i, j) represent the original and the seg-
mented images, respectively. Note that the higher value of
SNR refers to better performance.

The average of SNR values obtained over 20 runs by each
algorithm using Kapur’s entropy are listed in Table 2, which
shows that IMPA is competitive with EO for small threshold
levels and is superior for high threshold levels, as shown
in Fig.5.

E. STRUCTURED SIMILARITY INDEX METRIC (SSIM)
The SSIM [60] metric is used to calculate the differ-
ence between the structure of the segmented and original
image, which takes into consideration the structure similarity,
brightness, and contrast distortion between the original and
segmented images. The mathematical model of SSIM is
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TABLE 4. Average UQI values of each algorithm.

TABLE 5. Fitness values of each algorithm.

formulated as in Eq.26.

SSIM(O,S) =
(2µoµs + a) (2σos + b)(

µ2
o + µ

2
s + a

) (
σ 2
o + σ

2
s + b

) (26)

where µo, µs are the mean intensities of the original and
segmented image; σo and σs are the standard deviation of the
original and segmented image; σos is the co-variance between
the predicted and original image; and a and b are constant
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FIGURE 7. Average UQI of each algorithm on selected threshold levels from 10 to 100.

values equal to 0.001 and 0.003 respectively. A higher value
of SSIM indicates better results.

The average SSIM values obtained over 20 runs by
each compared algorithm using Kapur’s entropy are listed
in Table 3, from which it can be identified that both IMPA
and MPA are competitive with EO for both small and high
thresholds levels. Fig. 6 shows the average of the SSIM values
over 20 runs.

F. UNIVERSAL QUALITY INDEX (UQI)
UQI [61] is an indicator used to measure the quality of the
segmented image based on three factors: loss of correlation,
brightness, and contrast distortion instead of the error summa-
tion between the original and segmented. The mathematical
model of UQI is formulated as in Eq. 27.

UQI(O,S) =
(4σosµoµs)(

µ2
o + µ

2
s
) (
σ 2
o + σ

2
s
) (27)

O, and S refer to the original and segmented images,µo, µs
are the mean intensities of the original and segmented image;
σo and σs are the standard deviation of the original and

segmented image; σos is the co-variance between the pre-
dicted and original image. A higher value of UQI indicates
better results.

The average UQI values obtained over 20 runs by each
algorithm using Kapur’s entropy are listed in Table 4, which
shows that both IMPA outperforms all the other algorithms
in 26 of 72 cases, while achieves the same values as EO
in 15 cases. Meanwhile, MPA outperforms both EO and
IMPA in 2 cases of 72. Further, EO outperforms our pro-
posed IMPA in 19 cases of 72. The proposed IMPA therefore
achieves high quality for the segmented images especially for
the images with the upper threshold levels. Fig. 7 introduces
the average of the UQI values obtained over 20 run at each
threshold level.

G. FITNESS VALUES USING KAPUR’S ENTROPY
Table 5 shows the average of the fitness values across 20 runs
obtained by each algorithm using Kapur’s entropy. It can
be seen that both IMPA and MPA outperform the other
algorithms in 55 cases of 72, while IMPA alone could out-
perform in 50 cases of the 72, presenting the best fitness
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FIGURE 8. Average fitness values of each algorithm on selected threshold levels from 10 to 100.

FIGURE 9. Average fitness values obtained by each algorithm on all threshold levels (10 to 100).

values with all threshold levels in most cases. Fig. 8 shows the
average of the fitness values within 20 times obtained by each
algorithm using Kapur’s entropy for selected threshold levels
from 10 to 100. Fig. 9 presents the average across 20 runs of
Kapur’s entropy for all thresholds levels, fromwhich it can be
seen that the proposed IMPA algorithm outperforms all other
algorithms investigated.

H. CONVERGENCE RATE
The convergence toward the best solution is illustrated
in Fig.10; at the outset of iterations, MPA has high explo-
ration capabilities, so the convergence rate toward the best
solution is low compared with the other algorithms, as shown
in Fig.10. After that, at the intermediate phase of the opti-
mization process specifically between maximum iterations
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FIGURE 10. Convergence rate towards the best value obtained by each algorithm using Kapur’s entropy.
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FIGURE 10. (Continued.) Convergence rate towards the best value obtained by each algorithm using Kapur’s entropy.

and maximum iterations, MPA is between the exploration
and exploitation operators, where it divides the population
into two parts: the first part will move using the explo-
ration operator and while the second will be moved using
the exploitation operator. So in this case, MPA moves faster
toward the best solution, and the convergence rate increases,
this is illustrated in Fig.10 at the half of the iterations. In the
final stage, all the prey would be moved with the exploitation
step, so the convergence rate increases significantly towards
the best solution.

However, MPA still suffers from low convergence due to
spending many iterations in exploration, so RDR is used
to help IMPA to achieve a high convergence rate toward
the optimal solution as shown in Fig.10. Further, IMPA
can outperform all the other algorithms in convergence rate
for all threshold levels, especially for high threshold levels.
In Figure 10, the convergence rate is shown for all algorithms
for the threshold levels 20, 30, 40, 80, and 100. For threshold
level 20, WOA has a higher convergence rate, but after
100 iterations, the performance of WOA drops, while IMPA
increases significantly. For threshold level 20, MPA couldn’t

outperform WOA. For threshold levels 30, 40, 80, and 100,
IMPA, and MPA could outperform all the other algorithms in
convergence rate during the second half of iterations.

I. SEGMENTED IMAGES OF THE PROPOSED MODEL
This section shows a graphical comparison between MPA
and IMPA to illustrate better the performance improvement.
Table 6 shows the segmented images obtained by the pro-
posed IMPA algorithm and MPA. All the results of the per-
formance metrics discussed before confirm that IMPA could
produce higher quality segmented images than MPA. As a
result, the segmented images produced by IMPA, and intro-
duced in Table 6 is better than the images produced by MPA,
and introduced also in Table 6 It is noticeable in Table 6 that
IMPA outperforms MPA for all threshold levels.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new hybrid model to detect
the COVOD-19 using an improved marine predators algo-
rithm (IMPA) and a ranking-based diversity reduction (RDR)
strategy to obtain the number of particles that can’t find a
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TABLE 6. The segmented images obtained by the proposed IMPA algorithm.
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better solution within a consecutive number of iterations.
Our model works on the x-ray images to extract similar
small regions, in an attempt to obtain the regions that may
contain COVID-19. Extracting these regions can be treated
as an image segmentation problem. The performance of our
proposed IMPA algorithm was compared with five state-
of-art algorithms—whale optimization algorithm (WOA),
sine-cosine algorithm (SCA), salp swarm algorithm (SSA),
Harris hawks algorithm (HHA), and Equilibrium optimizer
(EO)—using a set of chest X-Ray images with threshold
levels between 10 and 100. The performance of our proposed
IMPA algorithm is shown to outperform all other investigated
algorithms in the fitness values, Std, and a range of threshold
metrics. In addition, the performance of our proposed model
and EOwas shown to be convergent on all the thresholds level
in SSIM and UQI metrics.

In the future work, the proposed algorithm can be
applied to color image segmentation and different medical
applications.
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