
Received March 24, 2020, accepted April 20, 2020, date of publication May 6, 2020, date of current version May 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991773

Distributed Edge Computing Offloading
Algorithm Based on Deep
Reinforcement Learning
YUNZHAO LI 1, FENG QI 1, ZHILI WANG1, XIUMING YU2, AND SUJIE SHAO 1
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2China Electronics Standardization Institute, Beijing 100007, China

Corresponding authors: Zhili Wang (zlwang@bupt.edu.cn) and Xiuming Yu (yuxiuming@cesi.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB2102302, in part
by the Beijing Natural Science Foundation under Grant 4194085, and in part by the Construction of Industrial Internet Platform Test Bed
(New Mode).

ABSTRACT As a mode of processing task request, edge computing paradigm can reduce task delay
and effectively alleviate network congestion caused by the proliferation of Internet of things(IoT) devices
compared with cloud computing. However, in the actual construction of the network, there are various edge
autonomous subnets in the adjacent areas, which leads to the possibility of unbalance of server load among
autonomous subnets during the peak period of task request. In this paper, a deep reinforcement learning
algorithm is proposed to solve the complex computation offloading problem for the heterogeneous Edge
Computing Server(ECS) collaborative computing. The problem is solved based on the real-time state of the
network and the attributes of the task, which adopts Actor Critic and Policy Gradient’s Deep Deterministic
Policy Gradient(DDPG) to make optimized decisions of computation offloading. Considering multi-task,
the heterogeneity of edge subnet and mobility of edge devices, the proposed algorithm can learn the
network environment and generate the computation offloading decision to minimize the task delay.The
simulation results show that the proposed DDPG-based algorithm is competitive compared with the Deep
Q Network(DQN) algorithm and Asynchronous Advantage Actor-Critic(A3C) algorithm. Moreover, the
optimal solutions are leveraged to analyze the influence of edge network parameters on task delay.

INDEX TERMS Edge computing, computation offload, collaborative computing, reinforcement learning,
DDPG.

I. INTRODUCTION
IN order to meet the access network requirements of dif-
ferent devices in different scenarios [1], network operators
use heterogeneous access methods (wired or wireless access
point) when they build networks. Limited by the computing
capability of the IoT device itself, the IoT device will offload
some tasks to the cloud server to reduce the device’s own
burden. However, with the advent of the 5G era, the number
of connected devices will be exploded, and a large number
of tasks from connected IoT devices will squeeze bandwidth
and cause network congestion. In addition, the long distance
between the cloud server and the IoT device has brought
about severe time delay in the cloud computing mode.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chuan Huang .

Aiming at the above problems of the cloud computing
model and meeting the requirements of network devices
for low latency, low energy consumption, and better quality
for network services, academia and industry have begun to
conduct in-depth research on new computing modes, and
proposed paradigms of edge computing types such as mobile
edge computing(MEC), fog computing [2], and cloudlet [3].
Edge computing is a shared application mode with com-
munication, computing, and storage functions. Compared
with cloud computing, edge computing mode is closer to
connected devices in geography, which can effectively solve
the problems of time extension and network congestion in
cloud computing mode [4], [5]. However, compared to cloud
servers, the resources and service scope of a single edge
server are limited. When excessive edge devices offload tasks
to an edge server, the entire edge network resources will be
underutilized.

85204 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4268-9494
https://orcid.org/0000-0003-2481-8774
https://orcid.org/0000-0003-3945-0706
https://orcid.org/0000-0001-5965-0823

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

In order to alleviate the burden on a single edge server and
effectively utilize the computing resources of the whole edge
network, a distributed MEC model was proposed [6]–[8] to
coordinate global edge servers for distributed computing.
Without loss of generality, we name the edge server con-
nected by Edge Device (ED) as access Edge Computing
Server (aECS) and the adjacent edge server as collaborate
Edge Computing Server (cECS). In distributed MEC mode,
aECS assigns part of the received task to the nearby cECS
through its associated coordinator. In this way, distributed
MEC makes each edge server responsible for part of the task
in order to effectively use edge network resources.

However, the existed modes become complicated due to
the collaboration between edge servers as well as mobil-
ity of services. In heterogeneous network scenarios, offload
decisions in the distributed MEC mode becomes very com-
plicated. That is because the offload decisions include task
division between ED and aECS, aECS and cECS, as well
as device mobility in wireless scenarios. It is difficult to
handle such a complex decision problem by traditional opti-
mization algorithms. Fortunately, the revolution in artificial
intelligence technology triggered by the rise of deep learn-
ing has brought new ideas to solve complex model prob-
lems. In solving high-dimensional state and action space
decision problems, the deep reinforcement learning (DRL)
algorithm [9]–[11] has been proven to be more effective
than the traditional methods. Therefore, deep reinforce-
ment learning is adopted to solve the above computation
offloading and services migration issues in collaborative edge
computing.

In this study, edge servers from an overall perspective of
heterogeneous edge subnets are selected to solve the multi-
user edge computing offloading problem by using distributed
computing manner. Based on DDPG, a distributed computing
algorithm is proposed, by which different types of tasks can
be offloaded to appropriate locations in the edge subnet for
execution. Simulation studies will be carried out to compare
with traditional computation offloading methods in heteroge-
neous scenarios [12]. The contributions of this article are as
follows:

1) The computation offloading model is proposed in
heterogeneous network scenarios. Different from the
existing edge computing offloading model in a single
scenario, the proposed model can effectively utilize the
computing resources among heterogeneous subnets,
and maximize resource utilization in heterogeneous
scenarios.

2) The resource allocation algorithm based on reinforce-
ment learning with Task completion rate(TCR) and
total task time delay is proposed. Compared with
pure consideration of delay, TCR and delay can bet-
ter offload different types of tasks to different site
of network, and more effectively use broadband and
computing resources.

3) The performance of the proposed solution is compared
with the DQN algorithm. In addition, DQN and other

else offloading strategies are used to analyze the impact
of computing resource allocation on offloading deci-
sion calculation.

II. RELATED WORK
Edge computing is proposed for edge access network with
distributed cloud computing capabilities. Compared with
cloud computing mode, it has lower latency and higher com-
puting capabilities [13]. However, the computing capability
of a singleMEC server has not been able tomeet the challenge
of the growing number of connected devices. Thus, comput-
ing offloading and resource allocation have become hot issues
in edge computing [14]–[16]. Traditional resource allocation
and calculation offloading are solved by clustering or con-
vex optimization methods [17]–[21]. [17] designed a micro-
cloud computing (CLOUDLET) in an Orthogonal Frequency
Division Multiplexing Access (OFDMA) system with multi-
ple mobile devices, which can simultaneously allocate radio
resources and computing resources. The work in [18] used
time division multiple access (TDMA) at the communication
end to download the results in a predetermined time slot. The
literature [19] Obtained the optimal data allocation scheme
based on particle swarm optimization of simulated annealing.
Unlike the above three studies, which are optimized from
the perspective of download links, Authors in [20] optimized
the mission uplinks and achieved satisfactory results. The
above method is optimized from the perspective of traditional
communication. The above researchers have used traditional
optimization methods to optimize the allocation of chan-
nel resources and computing resources, and have achieved
certain results.

In recent years, researchers have tried to optimize the
offloading and resource allocation with different optimiza-
tion objectives. The method was proposed in [21] generated
considering both cost and performance factors, an effective
resource allocation scheme can be generated. A resource allo-
cation and provisioning algorithm was proposed in [22] by
using resource ranking and provision of resources in a hybrid
and hierarchical fashion. Reference [23] proposed a Support
and Confidence based (SCB) technique which optimises the
resource usage in the resource monitoring service. However,
as the network scale becomes increasingly complex, there are
solutions which are better than the traditional methods.

In order to achieve better edge network resource utilization,
the tasks are divided into subtasks in a distributed computing
manner and handed over to multiple edge servers for pro-
cessing into a computing offload mode [24]–[26]. The litera-
ture [24] utilize specific repetitive structures of computation
allocation at the user to provide coding opportunities that
reduce the shuffling load by a factor that increases linearly
with the number of users. The work in [25] developed the
‘‘Stackelberg’’ game to model the interaction between the
edge cloud and users, where the edge cloud sets prices based
on limited computing capability to maximize its revenue. For
a given price, each user makes offload decisions locally to
minimize their own costs. Authors in [26] a decentralized

VOLUME 8, 2020 85205

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

edge cloud infrastructure that explores the use of voluntary
resources for computing and data storage.

At present, most of the research on computation offload-
ing is in a single scenario. With the rollout of 5G network
construction, multiple access methods and edge subnets are
possible in an area. Several studies onmulti-access edge com-
puting have been considered [27]–[29]. Authors in [27] con-
sidered a MIMO multi-cell system in which multiple mobile
users (MUs) required the transfer of computing tasks to a
public cloud server. The literature [28] decomposed the orig-
inal problem into a resource allocation (RA) problem with
fixed task offloading decisions and a task offloading (TO)
problem that optimizes the optimal value function corre-
sponding to the RA problem, solve the RA problem by using
convex optimization manner, and a novel heuristic algorithm
is proposed for the TO problem. This algorithm achieves a
suboptimal solution in polynomial time. Software defined
network (SDN) are used in heterogeneous edge network.
Reference [30] proposed a heterogeneous vehicular networks
by using the SDN. Reference [31] propose a software-defined
adaptive transmission control protocol (SATCP) for selecting
various transmission control policies to adapt to the time-
varying vehicular environment. Reference [32] propose a
SINET customized solution enabling crowd collaborations
for software defined vehicular networks. Reference [33]
propose a joint resource allocation and task scheduling
approach to efficiently allocate the computing resources to
virtual machines and schedule the offloaded tasks. The work
in [29] proposed an optimization framework for computation
offloading and resource allocation for multi-server mobile
edge computing system. The framework aims to minimize
system-wide computing overhead by jointly optimizing each
computing decisions, transmission capabilities, and comput-
ing resources on the server.

In recent years, some studies related to resource allocation
and computation offloading use DRL as a solution [34]–[38].
The literature [34] started with finite blocklength code, com-
bined with Deep q-learning algorithm for resource allocation,
reduced delay violation rate, and achieved better results than
random and equal scheduling benchmark. Reference [35]
used the deep reinforcement learning method to make data
migration decisions for multi-access edge computing in a
dynamic network environment. Reference [36] used DDQN
on virtual edge computing and obtained good performance in
offloading computing. The literature [37] applied the Monte
Carlo tree search algorithm to the resource allocation of
MEC, and the performance of the scheme was significantly
better than that of DQN. Reference [38] combined the com-
puting offload of edge computing with block chain, compre-
hensively considered the time delay energy consumption and
the cost of the block chain, and achieved a good effect with
the DRL-based algorithm.

It can be seen from the simulation results of the above
article that the DRL-based algorithm performs better than
traditional optimization algorithms. In the field of DRL, we
find that the algorithm based on Q-learning cannot reach

the optimal due to its discrete actions. So the Actor-Critic-
based DDPG algorithm is used to optimize the strategy
of this paper. Different from previous research, this paper
comprehensively considers distributed computing offloading
method and DDPG algorithm to optimize edge computing in
heterogeneous edge network scenarios.

III. SYSTEM MODEL
A. THE SYSTEM STRUCTURE
Fig. 1 show the 3 level architecture of the heterogeneous
edge network. From bottom to top are IoT device layer,
heterogeneous edge computing layer and cloud computing
layer. Among of them, the heterogeneous physical layer is
composed of different types of edge devices, such as driver-
less cars, smart homes, smart phones, etc. In this architec-
ture, the networking scenarios (such as wired and wireless
network scenes) where edge devices located are different.
The characteristics of the tasks (such as traffic characteristics
and time delay characteristics) to be performed on the device
are also different. Users access the network in different ways
through various IoT devices. These devices generate tasks
and send requests to edge subnets which they connect. Agents
of autonomous edge subnets will get the network state of
other subnets through distributed file system. After receiving
the task request from the Internet of things device, the agent
makes the decision of computing and offloading according to
the characteristics of the request. After training, computation
intensive tasks tend to be executed on cloud servers, while
time sensitive task tend to be performed on local and edge
servers.

B. HETEROGENEOUS NETWORK MODEL
In the proposed Structure, the subnets of the edge layer are
not only autonomous but also heterogeneous. These edge
subnets may be composed in different ways. As described
in Fig. 1. In order to meet the requirement for different types
of tasks, an edge device will be covered by multiple hetero-
geneous edge subnets at the same time with its own access
mode. Edge subnets with different structures have different
characteristics. For example, a wireless subnet composed
of interconnected wireless access points (AP) can handle
mobile edge devices well and has minimal requirements for
the infrastructure of the subnet, while wired edge subnets
have the most abundant communication resources and are
suitable for tasks with heavy traffic characteristics. Wireless
edge subnet has the best mobility, fiber wireless hybrid edge
subnet has both mobility and high bandwidth and low latency,
wired edge subnet has the highest bandwidth and the lowest
latency, but it cannot be suitable for moving edge equipment.
Edge device selects different subnet computing offloading
according to the task properties.

In each subnet, an edge node that is fully connected to other
ECS is designated as the coordinator, which is responsible
for collecting task offload requests received by each ECS,
making offloading decisions, and coordinating the computing

85206 VOLUME 8, 2020

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

FIGURE 1. Three-layer edge network structure.

resources of this subnet and other subnets to maximize Edge
computing resources for each subnet.

C. WORKFLOW OF THE COORDINATOR’S WORK
As shown in Fig. 2, the decision workflow of computing
offloading based on reinforcement learning can be divided
into two parts: information input flow and decision output
flow. Information input flow is the information flow from
edge network to decision optimization engine based on rein-
forcement learning. The decision output flow is the decision
control flow from the decision optimization engine to the
edge network entity.

FIGURE 2. Process of heterogeneous edge network distributed computing
offload Algorithm.

The edge device accesses the edge network through differ-
ent access methods and requests to offload the task upward.
At this time, the service request coordinator obtains the task
request from the edge device, then extracts the feature infor-
mation of the task, abstracts it into a feature vector suitable for
the task feature of the decision engine, and inputs the decision
optimization engine. When Ed generates tasks and sends
service requests to the network, the requests which consist
of the task’s eigenvectors will be captured by agents in the
subnet. In the network architecture proposed in this paper, the
coordination between edge servers is realized by distributed
file system. Through the distributed file system, agents in
each edge subnet can obtain the real-time network state.
Because of this, the agents can make the right decision for
computing offload. Agent in the edge network offload tasks
to the appropriate location in the network for processing, so
as to achieve the overall performance optimization.

After obtaining the network state matrix and task eigen-
vector, the decision optimization engine makes the decision
of computation offloading and deploys the physical instance
through the edge network agent. In section V, there are the
further explanation of decision algorithm with Fig. 2.

D. HETEROGENEOUS EDGE NETWORK COMPUTING
OFFLOADING MODEL
The edge network consists of ND edge devices, each of
which is connected to a different ECS according to its com-
munication characteristics. Limited by the weak computing
capability of the edge device itself, the task execution time
will be very long for computation-intensive tasks if they

VOLUME 8, 2020 85207

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

are all performed locally. Therefore, it is a good choice to
offload tasks to the edge server in a reasonably way. In this
process, each ECS will carry a large number of tasks from
edge devices.We record the task waiting queue of edge server
ei as qei , which indicates that there are tasks with qei time to
be processed. If the q of ECS is very long, it means that the
ECS is overloaded, and the task will be offloaded to the cloud
server for processing.

Different types of edge devices tend to different task
characteristics, such as different network access methods, dif-
ferent traffic characteristics, and different time delay require-
ments. In order tomeet different types of tasks, heterogeneous
edge network is needed to meet different task requirements.
In this paper, access networks are chose to access wireless
edge network by identifying the edge of the device type,
such as smart car, smart phones, which have the strongest
mobility. Sweeper robots with certain mobility and large data
flow access conditions have priority access to wireless fiber
hybrid edge subnet, while devices with large task data flow
and optical fiber access conditions, such as smart TV, have
priority access to wired edge subnet.

In this framework, tasks are distributed to local, edge and
cloud servers respectively according to the strategy. Accord-
ing to the network state and task characteristics, aECS assigns
tasks to the adjacent ECSs for collaborative processing. If the
adjacent edge servers also have no spare computing capa-
bility, the tasks is sent to the cloud computing center for
execution. When the adjacent cECS finishes the task, the task
will be returned to access aECS, which will be integrated and
returned to IoTD.

IV. PROBLEM FORMULATION
In this section, the optimization problem will be formulated
with two objectives. The goal of this paper is to find a
computing offloading strategy with expected minimum task
delay under the condition of ensuring TCR. The task delay is
determined by the maximum value of the local execution and
the offloading computation.

A. NETWORK AND TASK STATUS AND CHARACTERISTICS
The state of each episode can be expressed as a state set S(SE ,
T d , Sd , LE→E), as explained below.
• SE represents the state set of the edge server, SE = {Sj =
(qej , fej)|j = 1, 2, . . . ,m}, qej is the task queue duration
of the ECS ej, and fej is the frequency of the ECS ej CPU.
Where qej is given as follows:

qej =
N∑
i=1

ci × ad→e
i

fej
(1)

• T d represents the feature set of the task, T d =

{ci, tdi, sui , s
d
i |i = 1, 2, . . . ,N }, ci represents the com-

puting cycle required to process task i, tdi is the Deadline
of task i, sti is the size of task.

• Sd indicates the state and characteristics of the edge
device, Sd = {Sj = (qdj , fdj)|j = 1, 2, . . . , n}, qdj is

the task queue duration of edge device dj, and fdj is the
CPU frequency of edge device dj. Where qdj is given by

qdj =
N∑
i=1

ci × adi
fdj

(2)

• LE→E represents the communication link bandwidth
between the nodes.

B. OFFLOAD ACTION
The task offloading action consists of three parts: from ED to
aECS, from aECS to cECS, and from aECS to cloud server.
The offloaded task includes the task execution code and the
task data. It has been found that the offloading ratio of the
computing cycle is roughly equal to the total amount of task
offload, so we merge the two sub-actions of the ED offload
to aECS. Then each episode’s set of computation actions can
be expressed as A(Ad→ê,Aê→e,Aê→

^e), as specified below:

• Ad→êindicates the proportion of task calculation/data
amount offloaded from ED to aECS.

• Aê→eindicates the proportion of task calculation/data
amount offloaded from aECS to cECS.

• Aê→
^e indicates the proportion of task calculation/data

amount offloaded from aECS to cloud server.

C. COMPUTING MODEL
1) LOCAL EXECUTION
The local computing time of the task consists of two parts,
namely the local execution time and the local task queue wait-
ing time. The total completion time of the local computing
task is calculated by the following formula:

t local = adi ×
ci
fdj
+ qdj (3)

2) SERVER EXECUTION
If the task is all executed locally, the ED computing capability
is not sufficient to complete it within the task’s deadline,
so the ED needs to offload a portion of the task to the
edge server. The time spent in the computation offloading
consists of task queuing time, task execution time, and task
transfer time. The edge calculation time + queuing time +
transmission delay is calculated by the following formula.

tcal+quei = max(ad→ê
i ×

ci
fê
+ qê, a

ê→ej
i ×

ci
fej
+ qej ,

aê→
^e

i ×
ci
f^e
+ q^e |j ∈ {1, 2, . . . ,m− 1}) (4)

The calculation formula of the transmission delay of the
task is as follows.

t transi = max(ad→ê
i ×

st
ld→ê

, a
ê→ej
i ×

st
l ê→ej

,

aê→
^e

i ×
st

l ê→
^e
|j ∈ {1, 2, . . . ,m− 1}) (5)

85208 VOLUME 8, 2020

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

3) OPTIMIZATION GOAL
Our optimization objective takes into account the expectation
of task delay and TCR. Based on the above formula, the task
completion time is

ti = max(t locali , (tcal+quei + t transi)) (6)

We assume that there areP tasks in total, so the expected delay
of all tasks is

Et =

P∑
i=1

ti

P
(7)

The purpose of this paper is to maximize the TCR while
making the task latency expectation as small as possible.
Therefore, when the task is not completed in the deadline,
a negative reward is given, and when the task is completed
in the deadline, a high positive reward is given. We set the
reward as:

ri =

−ti ti > tdi

log0.995(1−
1

e
√
ti
) ti < tdi

(8)

In order to explain the role of rewardmore clearly, an example
will be proposed as follow. Assuming that the deadline of a
task ti is 8ms, and the execution time of the task is 9ms in a
one training. So that the reward generated in this state is -9.
In the next iteration training, the execution time of task ti
is 7ms, so the reward of the state is 14.68. After this iteration,
DRL agent finds that the total rewards of the second iteration
is greater than the previous, and actions in this iteration will
be remembered by neural network. In the another iteration
training, the execution time of task ti is 5ms, and the reward
of this state is 22.55, which is greater than the previous two
iterations. After continuous iterative training, the decision-
making of DRL agent’s computing offload will performmore
outstanding in general. The meanings of the symbols defined
in this article are shown in Table 1.

V. RESOURCE ALLOCATION ALGORITHM BASED ON DRL
In this section, the complex computation offloading problem
is abstracted into the MDPs. In the next step, we propose a
collaborative computing resource allocation algorithm based
on deep reinforcement learning, which is used to solve the
optimization problem of offloading action. It consists of four
neural networks and an experience pool.

A. MARKOV DECISION PROCESS
The optimization goal ti is an single time slot object, it
depends only on the current state. However, the state of
network environment is dynamically, so the past network
states are also important reference factors for computation
offloading actions. If only the current state is taken to make a
decision, the decision action made by agent will lack further
vision.

Reinforcement learning is a method to optimize problems
in a dynamic environment. We describe the problem as a

TABLE 1. Symbol summary.

simple one-slot problem, and then add the past state on this
basis. So that, we first formulated the problem as a MDPs,
which can be represented by a tuple {S,A,P,R}, S is the state
space of the model, and A is the action space of the model. P
is the state transition matrix of the model, and R is the reward
function of the model.The description of each element is as
follows:

• The state space in this article is defined as the state of
each server and task in the edge network. The server
set is SESC = {s1, s2, . . . sn}, where n is the num-
ber of servers in the edge network. The server status
is task waiting queue length, and the task set is A,
where v is the total number of tasks. Task status SM =

{m1,m2, . . . ,mv}, qi ∈ [0, 1],
n∑
i=1

qi = 1 represents

the percentage of tasks assigned by the server at various
locations.

• At each moment, after considering the task waiting
queue length of each node and the deadline of the task
itself, the agent must make an action to assign the task to
each server for processing.We define the action space as

A(Ad→ê,Aê→e,Aê→
^e)

and the constraint as

Ad→ê
+ Aê→e

+ Aê→
^e
= 1

The meaning of each element is given in Section 3.
• Every time an agent makes an action, the environ-
ment automatically gives a reward: here we define
the reward value as (8), so the total reward is

VOLUME 8, 2020 85209

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

G =
T∑
t=1

R(st ′, at ′, st+1). Our ultimate goal is maximin

the total reward.
In addition to the above four elements, there is a hyper-

parameter γ . γ is the future reward weight, the value range
is [0, 1]. The value function is focused on the currently
obtained reward when γ tends to 0.While. The value function
will consider more rewards from the followed steps if γ tends
to 1. In other words, γ makes decisions biased towards short-
term rewards or long-term rewards.

B. DYNAMIC RESOURCE OPTIMIZATION ALGORITHM
BASED ON DRL
In the resource allocation decision, we need to directly inter-
act with the environment to get the sample, and through the
resulting sample estimate value function, the ultimate goal
is to find out the optimal strategyπ∗. The state space and
action space of the network model in this paper are charac-
terized by high dimensionality, dynamics, and non-discrete
action, which need to be optimized in the process of sequence
generation. Based on the above factors, we choose DDPG-
based methods to optimize our decision-making algorithms.
DDPG is derived from the improved version of Actor-Critic
and Policy gradient algorithms, and also draws on the double
network structure of DDQN [39].

As shown in the Fig. 2, the deployment of DRL consists
of two parts: the network environment and the intelligent
agent. The network environment consists of network nodes
(edge nodes and cloud nodes), network monitors, and users.
The network node receives the task offload request from the
user, and the network monitor collects the information in the
network in real time and interacts with the intelligent agent
information to respond to the state change in the network.

DDPG uses a policy function πθ (s) to make a decision.
It definitely maps a state to a specific action. Compared
to a random strategy, its action choice is only one, which
greatly improves the convergence of training. In Actor-Critic
schema, the agent uses the PolicyGradientmethod to enhance
Gradient, and directly selects the actionwith the highest prob-
ability in the current state through the policy function πθ (s).
Correspondingly, the Critic network evaluates the current
decision based on the TDerror between the value function
and the current reward, and evaluates the behavior of the
Actor. The gradient calculation formula for the deterministic
strategy gradient based on Q value is:

∇θJ (πθ) = Es∼ρπ [∇θπθ (s)∇aQπ (s, a)|a = πθ (s)] (9)

As shown in the Fig. 2, the distributed dynamic resource
optimization algorithm based on DRL is composed of four
parts: edge network environment, experience pool, Actor
double network and Critic double network, in which the two
networks of Actor and the two networks of Critic have the
same structure respectively.

The network control node interacts with the edge network
environment to obtain the current network state and stores
the current state vector φ(S), action vector A, reward R, and

next state vector φ(S ′) to the experience pool. In order to
explore the action space more broadly, we add some noise
to the action selected by the Actor. Then, after accumulating
a certain amount of data in the experience pool, the data
block with the size of mini-batch will be taken out and input
into the estimated neural network to obtain the action value
function. The loss function 1

m

m∑
j=1

(yj − Q(φ(Sj), aj, ω))2 is

calculated together with the action value function of the target
value network, and all parameters ω of the current network
were updated through the gradient reverse transmission of the
neural network.

With the loss function, Eval-Net uses gradient descent to
update the parameters in the network. After a certain episode,
Eval-Net copies the latest parameters to Target-Net. After
several rounds of episode parameter update, the loss function
of Eval-Net tends to converge, and after obtaining the trained
neural network parametersω, the optimal strategy π∗can be
obtained.

First, we define the current target Q value, which is used to
calculate the expected reward value of the action in the current
state, which is defined as follows:

yj = Rj + γQtarget (φ(Sj′), πθ ′ (φ(Sj
′)), ω′) (10)

This represents the weighted expectation of the current
state of reward and possible future rewards, and is used to
evaluate the value of the current state.

Next, we define how the Actor-Critic neural network
parameters are updated:

ω′ ← τω + (1− τ)ω′ (11)

θ ′ ← τθ + (1− τ)θ ′ (12)

Unlike DQN, which directly copies the parameters of the
target-network to the eval-network, this algorithm uses a
gradual update method, and each parameter is updated only
by a small amount. At the same time, in order to increase
the randomness of the learning process and better explore
the entire solution space, we add some noise to the learning
process. The action selection expression is defined as follows:

A = πθ (S)+ η (13)

where η is noise. Next, we define the loss function of the
Critic network and the Actor network. Critic network’s loss
function is defined as follows:

J (ω) =
1
m

m∑
j=1

(yj − Q(φ(Sj), aj, ω))2 (14)

For the loss function of the Actor network, refer to (15).
The loss gradient defined in the article [39] is as follows:

∇θJ (πθ) = Es∼ρπ [∇aQπ (s, a)|s=si,a=πθ (s)∇θπθ (S)|s=si]

(15)

The computing offloading algorithm based on DDPG is as
described in Algorithm 1. It consists of two parts: the initial-
ization of the network environment and the DRL algorithm in
the intelligent agent.

85210 VOLUME 8, 2020

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

Algorithm 1Computation Offloading in Heterogeneity Edge
Environment
Input: environment parameters
Initialize: the actor eval-network and tar-network with
parameter θ , θ ′;
the critic eval-network and tar-network with parameter
ω, ω′;
1: for episode in range(Max_Iteration) do
2: Initialize edge network state and task queue.
3: for each stept = 0, 1, 2 . . . do
4: Get the current state st from edge network environ-

ment and transform it to vector φ(st).
5: Offload the request according to policy πθ (φ(s))+ℵ

in actor network;
6: Receive reward rt by (8);
7: Store the tuple {φ(st), at , rt , φ(st+1)} to the reply

memory D;
8: Get the next state st+1;
9: Calculate the Q value yj by(10);

10: Update critic by minimizing (14);
11: Update the actor policy using the (15);
12: Update the Actor tar-network by (11);
13: Update the Critic tar-network by (12);
14: t=t+1;
15: end for
16: end for

Output:Optimal Actor current network parameter θ ,
Critic current network parameter ω

At the beginning, the decisionmade by the intelligent agent
is close to the random algorithm.With the learning process of
the DDPG-based computing offload algorithm, the obtained
offload strategy is getting closer to the optimal algorithm.
After the learning iteration ends, the learned DDPG neural
network parameters are obtained.

VI. EXPERIMENTAL PERFORMANCE ANALYSIS AND
COMPARISON
A. HETEROGENEOUS NETWORK ENVIRONMENT
Because the real edge computing environment is not realized
for us to the algorithm, we use the network packageNetworkx
based on Python to build the network environment, and
use tensorflow to implement the proposed algorithm. In this
section, we perform simulation experiments on DDPG-based
computing offloading algorithms in heterogeneous scenarios.
In the standard configuration, three edge devices are con-
nected in each scenario. In Fig. 3, the wired scenarios, edge
devices are connected to the edge network through optical
fibers. In this scenario, we only focus on computing offload,
not considering service migration.

In the wireless access scenario, as shown in Fig. 3, we
divide the scenario into two categories, one is pedestrian
walking, and the other is vehicle movement. Pedestrians
move in a low-speed environment, and vehicles move at a

FIGURE 3. Simulation of different access scenarios.

constant speed (0-50m/s) in a fixed direction. In the wireless
access scenario, the device has mobility, so this scenario is a
mobile edge computing scenario. In this scenario, we use the
computing offloading scheme under MEC.

B. SIMULATION SETTINGS
The environment of this simulation is a three-layer edge
network, including a terminal layer, a heterogeneous edge
layer, and a cloud layer. There are 2-8 wireless edge servers
in the edge layer and 1-4 wired edge servers. The ED with
fiber access mode has no mobility. The service range of
each wireless AP is 50×50m, and the speed of each wireless
mobile ED is randomly 0-40m/s. Initially, there are edge
devices in each AP service range, and the probability that
each edge generates an offload request in each time slot meets
the Poisson distribution.

The related parameters in the experiment are listed
in Table 2, which are applied in simulation examples unless
otherwise stated.

TABLE 2. Simulation environment parameters.

VOLUME 8, 2020 85211

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

DDPG’s Actor network and Critic network are three-layer
structure, and the second layer of the fully connected layer is
composed of 200 neurons. In the first layer, the input state
vector is normalized. The hyperparameters of other neural
networks are shown in Table 3.

TABLE 3. Simulation neural network hyperparameter.

C. COMPARISON OF ALGORITHMS
In order to study what factors affect the performance of the
algorithm, 4 setting are changed in this experiment. Other-
wise, there are other 4 offloading method are compared with
the proposed algorithm in each scene. The three schemes are
as follows.

1) A3C-based offload algorithm:A3C andDDPG are both
actor-critic algorithms. It have unique advantages in
some aspects, such as the convergence of algorithm
training. This algorithm has been used in many studies
recently, and that is the reason why we chose this
algorithm as a comparison algorithm for experiments.

2) DQN-based offload algorithm: Since the action space
of DQN can only be discrete values, we set the action
on each dimension of DQN to be 0.2. The IoT device
performs computation offloading for each task request
according to the decision given by the trained DQN
network.

3) Edge server computing: The IoT terminal ignores the
burden of the edge server and always offloads the task
to the access edge server for calculation.

4) Local computing: The IoT terminal puts all comput-
ing work locally and does not request the computing
offload to the edge network.

D. SIMULATION RESULTS
In this section, we first observe the convergence of the algo-
rithm in the training process, and then compare it with the per-
formance of other algorithms in the heterogeneous network
scenario.

As shown in Fig. 4 and Fig. 5, during the first 3300 rounds
of training, the average task delay decreases rapidly. When
the number of training reaches 3,500, the task delay tends
to be stable. In the first 3,500 rounds of training, the task
completion rate increased rapidly, and the training effect
converges to 98%-99% after the 3500th.

As depicted in the Fig. 6(a) and Fig. 6(b), the proposed
algorithm is compared with other algorithms in different
settings of edge network environment. CPU Capacity and

FIGURE 4. Relation between delay with training iterations.

FIGURE 5. Relation between task completion rate with training iterations.

Number of ECS are changed in Fig. 6(a) and Fig. 6(b). After
4000 iterations training, it is 0.8%, 10.9%, 30.5% lower in
DDPG-based algorithmwhen compared with the A3C, DQN,
Edge server computing and local computing. We can clearly
see that the proposed algorithm and A3C-based algorithm
performed significant better then the others. As both DDPG
and A3C algorithms belong to actor-critic mode, their per-
formances in each setting are very close. We set the capacity
of each edge server as 2GHZ, 3GHZ, 4GHZ, 5GHZ, 6GHZ.
When the number of edge servers increases from 3 to 12,
the average task delay of other computing methods except
local computing is gradually decreasing. After the number
of servers is increased to 6, increasing the number of edge
servers does not significantly improve the effect. It can be
seen that with the improvement of the CPU capacity of the
edge server, the average delay of tasks is decreasing. How-
ever, this kind of improvement is not obvious compared with
the improvement of CPU capacity. We find that task delay
is limited by the network bandwidth and the capacity of the
terminal’s own CPU, and the it has a theoretical limit.

In the MEC scenario, the mobile ED moves from the
service area of one AP to the service area of another AP.
Due to the migration, the moving speed of the mobile ED
also affects the performance in this scenario. According to
Fig. 7(a), in addition to the local execution of the ED, as the
ED moves faster, the task latency expectation is increasing.

85212 VOLUME 8, 2020

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

FIGURE 6. Task delay with different ES computing capacity and number.

FIGURE 7. Task delay with different device speed and number.

Under low speed conditions, the performance based on
DDPG algorithm is significantly better than the rest of the
offloading mode. As the speed increases to 40m/s, the per-
formance based on DDPG algorithm is only slightly stronger
than DQN and A3C.

The impact of the number ofmobile terminals on task delay
expectations is shown in Fig. 7(b). It can be seen that the
algorithm based on DDPG performs optimally, and as the
number of mobile terminals increases, the task delay expec-
tation increases. In the mobile edge computing scenario, the
increase of number of the mobile terminal brings about an

increase in the number of task requests in the time slot, which
increases the burden on the edge server.

VII. CONCLUSION
To satisfy three heterogeneous edge networks using one
offloading algorithm, this paper combines three heteroge-
neous edge networks with remote cloud networks, and builds
a three-layer edge cloud network with cloud-side collabora-
tion. The heterogeneous edge network is used to implement
themulti-access capability on the edge side, and the task com-
pletion and task delay are used as reward values. Thus, the

VOLUME 8, 2020 85213

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

trained allocation strategy can reasonably offload different
types of tasks to different network locations to achieve the
highest task completion rate. At the same time, task delay
is minimized. It is verified by simulation studies that the
DDPG-based algorithm designed in this study can effectively
improve the system performance, reduce the task delay by
up to 50% while that most tasks are completed within the
deadline. However, the ECS divides tasks in terms of task
delay and deadline in this study, we will consider the cost
consumption in the future work.

REFERENCES
[1] F. Jalali, T. Lynar, O. J. Smith, R. R. Kolluri, C. V. Hardgrove, N.Waywood,

and F. Suits, ‘‘Dynamic edge fabric EnvironmenT: Seamless and automatic
switching among resources at the edge of IoT network and cloud,’’ in Proc.
IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2019, pp. 77–86.

[2] R. K.Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y.Xiang,
and R. Ranjan, ‘‘Fog computing: Survey of trends, architectures, require-
ments, and research directions,’’ IEEE Access, vol. 6, pp. 47980–48009,
2018.

[3] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, ‘‘Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,’’
J. Netw. Comput. Appl., vol. 59, pp. 46–54, Jan. 2016.

[4] W. Yu, F. Liang, X. He, W. Grant Hatcher, C. Lu, J. Lin, and
X. Yang, ‘‘A survey on the edge computing for the Internet of Things,’’
IEEE Access, vol. 6, pp. 6900–6919, 2018.

[5] M. Caprolu, R. Di Pietro, F. Lombardi, and S. Raponi, ‘‘Edge computing
perspectives: Architectures, technologies, and open security issues,’’ in
Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2019, pp. 116–123.

[6] A. Khakimov, A. Muthanna, and M. Saleh Ali Muthanna, ‘‘Study of fog
computing structure,’’ in Proc. IEEE Conf. Russian Young Researchers
Electr. Electron. Eng. (EIConRus), Feb. 2018, pp. 51–54.

[7] E. Balevi and R. D. Gitlin, ‘‘A clustering algorithm that maximizes
throughput in 5G heterogeneous F-RAN networks,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), May 2018, pp. 1–6.

[8] D. Chen and V. Kuehn, ‘‘Weighted max-min fairness oriented load-
balancing and clustering for multicast cache-enabled F-RAN,’’ in Proc.
9th Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC), Sep. 2016,
pp. 395–399.

[9] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double q-learning,’’ in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[10] X. Zhao, K. Yang, Q. Chen, D. Peng, H. Jiang, X. Xu, and X. Shuang,
‘‘Deep learning based mobile data offloading in mobile edge computing
systems,’’ Future Gener. Comput. Syst., vol. 99, pp. 346–355, Oct. 2019.

[11] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, ‘‘A deep
learning approach for energy efficient computational offloading in mobile
edge computing,’’ IEEE Access, vol. 7, pp. 149623–149633, 2019.

[12] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, ‘‘Energy-aware
mobile edge computation offloading for IoT over heterogenous networks,’’
IEEE Access, vol. 7, pp. 13092–13105, 2019.

[13] H. Mueller, S. V. Gogouvitis, H. Haitof, A. Seitz, and B. Bruegge, ‘‘Con-
tinuous computing from cloud to edge,’’ in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2016, pp. 97–98.

[14] T. Mengistu, A. Alahmadi, A. Albuali, Y. Alsenani, and D. Che, ‘‘A ‘no
data center’ solution to cloud computing,’’ in Proc. IEEE 10th Int. Conf.
Cloud Comput. (CLOUD), Jun. 2017, pp. 714–717.

[15] T.-Y. Kan, Y. Chiang, and H.-Y. Wei, ‘‘Task offloading and resource
allocation in mobile-edge computing system,’’ in Proc. 27th Wireless Opt.
Commun. Conf. (WOCC), Apr. 2018, pp. 1–4.

[16] X. Wei, S. Wang, A. Zhou, J. Xu, S. Su, S. Kumar, and F. Yang, ‘‘MVR:
An architecture for computation offloading in mobile edge computing,’’ in
Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jun. 2017, pp. 232–235.

[17] Y. Yu, J. Zhang, and K. B. Letaief, ‘‘Joint subcarrier and CPU time
allocation for mobile edge computing,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[18] H. Xing, L. Liu, J. Xu, and A. Nallanathan, ‘‘Joint task assignment and
wireless resource allocation for cooperative mobile-edge computing,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[19] S. Zhu, L. Gui, J. Chen, Q. Zhang, and N. Zhang, ‘‘Cooperative computa-
tion offloading for UAVs: A joint radio and computing resource allocation
approach,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2018,
pp. 74–79.

[20] L. Ruan, S. Guo, H. Rutagemwa, B. Rong, X. Qiu, and W. Li, ‘‘The re-
expanded cloud: Distributed uplink offloading for mobile edge comput-
ing,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[21] S. K. Battula, S. Garg, R. K. Naha, P. Thulasiraman, and R. Thulasiram,
‘‘A micro-level compensation-based cost model for resource allocation in
a fog environment,’’ Sensors, vol. 19, no. 13, p. 2954, 2019.

[22] R. K. Naha, S. Garg, A. Chan, and S. K. Battula, ‘‘Deadline-based dynamic
resource allocation and provisioning algorithms in fog-cloud environ-
ment,’’ Future Gener. Comput. Syst., vol. 104, pp. 131–141, Mar. 2020.

[23] S. K. Battula, S. Garg, J. Montgomery, and B. H. Kang, ‘‘An
efficient resource monitoring service for fog computing environ-
ments,’’ IEEE Trans. Services Comput., early access, Dec. 27, 2019,
doi: 10.1109/TSC.2019.2962682.

[24] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, ‘‘Poster abstract:
A scalable coded computing framework for edge-facilitated wireless dis-
tributed computing,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Oct. 2016, pp. 79–80.

[25] M. Liu and Y. Liu, ‘‘Price-based distributed offloading for mobile-edge
computing with computation capacity constraints,’’ IEEE Wireless Com-
mun. Lett., vol. 7, no. 3, pp. 420–423, Jun. 2018.

[26] A. Jonathan, M. Ryden, K. Oh, A. Chandra, and J. Weissman, ‘‘Nebula:
Distributed edge cloud for data intensive computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 11, pp. 3229–3242, Nov. 2017.

[27] S. Sardellitti, G. Scutari, and S. Barbarossa, ‘‘Joint optimization of
radio and computational resources for multicell mobile-edge computing,’’
IEEE Trans. Signal Inf. Process. Over Netw., vol. 1, no. 2, pp. 89–103,
Jun. 2015.

[28] T. X. Tran and D. Pompili, ‘‘Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[29] Q.-V. Pham, T. Leanh, N. H. Tran, B. J. Park, and C. S. Hong, ‘‘Decen-
tralized computation offloading and resource allocation for mobile-
edge computing: A matching game approach,’’ IEEE Access, vol. 6,
pp. 75868–75885, 2018.

[30] W.Quan, K.Wang, Y. Liu, N. Cheng, H. Zhang, andX. S. Shen, ‘‘Software-
defined collaborative offloading for heterogeneous vehicular networks,’’
Wireless Commun. Mobile Comput., vol. 2018, pp. 1–9, Apr. 2018.

[31] W. Quan, N. Cheng, M. Qin, H. Zhang, H. A. Chan, and X. Shen, ‘‘Adap-
tive transmission control for software defined vehicular networks,’’ IEEE
Wireless Commun. Lett., vol. 8, no. 3, pp. 653–656, Jun. 2019.

[32] W. Quan, Y. Liu, H. Zhang, and S. Yu, ‘‘Enhancing crowd collaborations
for software defined vehicular networks,’’ IEEE Commun. Mag., vol. 55,
no. 8, pp. 80–86, Aug. 2017.

[33] X. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
‘‘Space/aerial-assisted computing offloading for IoT applications:
A learning-based approach,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 5,
pp. 1117–1129, May 2019.

[34] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar, ‘‘Deep
reinforcement learning based resource allocation in low latency edge
computing networks,’’ in Proc. 15th Int. Symp. Wireless Commun. Syst.
(ISWCS), Aug. 2018, pp. 1–5.

[35] F. D. Vita, D. Bruneo, A. Puliafito, G. Nardini, A. Virdis, and G. Stea,
‘‘A deep reinforcement learning approach for data migration in multi-
access edge computing,’’ in Proc. ITU Kaleidoscope, Mach. Learn. 5G
Future (ITU K), Nov. 2018, pp. 1–8.

[36] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[37] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, ‘‘IRAF: A deep
reinforcement learning approach for collaborative mobile edge computing
IoT networks,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 7011–7024,
Aug. 2019.

[38] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, ‘‘Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8,
pp. 8050–8062, Aug. 2019.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
Comput. Sci., vol. 8, no. 6, p. A187, 2015.

85214 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSC.2019.2962682

Y. Li et al.: Distributed Edge Computing Offloading Algorithm Based on DRL

YUNZHAO LI received the B.S. degree from
North China Electric Power University, Beijing,
China, in 2018. He is currently pursuing the
M.S. degree with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications,
Beijing, China. His main research interest include
edge computing.

FENG QI is currently a Professor with the
Beijing University of Posts and Telecommunica-
tions, engaged in scientific research, teaching, and
standardization research in information and com-
munication. His research interests include com-
munications software, network management, and
business intelligence. He has won two National
Science and Technology Progress Awards. He has
also written more than ten ITU-T international
standards and Industry Standards. He served as the

Vice Chairman for ITU-T Study Group 4 and Study Group 12.

ZHILI WANG is currently an Associate Pro-
fessor with the Beijing University of Posts and
Telecommunications, engaged in scientific, tech-
nology, and standardization research work in com-
munication networks and computer science. His
main research directions are networkmanagement,
communications software, and interface testing.
He has won one National Science and Technology
Progress Awards and wrote more than eight ITU-T
international standards, and successively served as

the Working Party Chair for ITU-T Study Group 2 and Working Party 2.

XIUMING YU received the master’s degree in
business administration from the University of
International Business and Economics (UIBE),
in 2013. She is currently an Engineer with
the China Electronics Standardization Institute
(CESI). She currently researches in the area of
cyber-physical systems, smart manufacturing, and
the industrial Internet.

SUJIE SHAO received the Ph.D. degree from the
Beijing University of Posts and Telecommunica-
tion, Beijing, China, in 2015. He is currently a
Lecturer with the Beijing University of Posts and
Telecommunication. His research interests include
edge computing, the Internet of Things, smart
grids, and communication network management.

VOLUME 8, 2020 85215

