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ABSTRACT In this work, we propose an image denoising approach, specifically for “salt-and-pepper
noise,” based on the optimized sparse approximation for restoring images contaminated by high-density
impulse noise. The proposed method first uses the inverse-distance weighting-based prediction to estimate
noise-recovered pixels. It then utilizes DCT-based sparse approximation to further refine the denoised results
with the ant colony optimization. Experiments on an image benchmark dataset demonstrate that the proposed
method yields better results compared to the state-of-the-art image noise removal methods.

INDEX TERMS Noise removal, sparse approximation, ant-colony optimization.

I. INTRODUCTION
Image communication and acquisition under unfavorable
conditions often cause captured images to corrupt with high-
density impulse noise [1]. Such image noise can not only
degrade visual quality but negatively affect the performance
of various computer-vision applications, such as people-
counting, crowd analysis, action recognition, human tracking,
and so on [1]. Therefore, developing a robust and effec-
tive denoising method is essential. In general, conventional
denoising methods for removing impulse noise often use
median filtering [2] or average filtering. Toh and Isa [3]
developed a noise adaptive fuzzy switching median filter to
remove impulse noise from corrupted images, obtaining a
denoised image by using fuzzy computation via a weighted
smoothing for the original and filtered pixels.

Esakkirajan et al. proposed to use the mean and median
filtering conjunctively deal with the high-density noise of an
image. An adaptive weighted mean filter [4] recovers noisy
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images with adaptively-sized kernels. Hsieh ef al. [5] devel-
oped a fast median filter using two forms of the filtering win-
dow to restore images corrupted with high-density impulse
noise. The denoising approaches based on the median filter-
ing can generate decent results as long as acquired images
are not heavily contaminated by impulse noise. In other
words, these approaches cannot deal with images having
high-density impulse noise, especially with the noise level
over 50%. Erkan et al. [6] proposed to use two-pass median
filtering with the selective window size for image noise
removal. The approach chooses the window size in the first
pass, where it contains at least one non-noise pixel, and then
applies median filtering. If there are still noise pixels in the
window, median filtering is applied again in the second pass
to remove the rest of the noise pixels. The main disadvantage
of it is that fake edges often exist in its denoised results.
There has been research done using learning-based tech-
niques for image noise removal recently. In particular,
sparse approximation approaches with a dictionary learned
to restore images with high-density impulse noise for
better results than those of median-filter-based methods.
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FIGURE 1. (a) Examples of the “Lena” image corrupted with different
levels of impulse noise ranging from 70% to 90%. (b) Abstract flowchart
for the proposed method.

Chen et al. [7] first detected noise candidates via the con-
junctive utilization of the adaptive median filter and the
adaptive center-weighted median filter, producing denoised
images through sparse representation learning from noise-
free images. Stankovic¢ et al. [8], [9] proposed to deal with
images taken in impulsive disturbance environments using a
gradient-based iterative algorithm to locate and then remove
noise pixels. Peng er al. [10] proposed an overlapped and
adaptive Gaussian smoothing method with convolutional
refinement networks for denoising. Liu et al. [11] proposed
a feature extraction algorithm based on sparse and low-rank
representation. Ma et al. [12] extended it to get better denois-
ing results by utilizing the total variation regularization based
on the sparse representation prior. Jiang et al. [13] developed
an approach that uses weighted encoding with sparse non-
local regularization for high-density impulse noise removal,
in which soft impulse pixel detection is applied through
weighted encoding to deal with impulse noise. Aggarwal and
Majumdar [14] regarded image denoising as a data fidelity
minimization problem with /{-norm regularization. They then
used a split Bregman-based algorithm to solve the problem
via the general analysis prior.

Zhang et al. [15] proposed feed-forward denoising con-
volutional neural networks (DnCNNs) that use residual con-
nections and batch normalization to try to deal with more
general image denoising tasks at different scales. However,
it is often too general to work well on more specific
image noise. One common disadvantage these learning-based
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methods have is that they often fail to recover images having
a high percentage of noise pixels. For example, they usually
cannot handle images with a noise level exceeding 70% (see
Fig. 1 (a)). It could introduce excessive artifacts in denoised
results. In such cases, there are too few noise-free pixels
available in the image to sufficiently facilitate the sparse
representation based on learning-based techniques.

To address this issue, we propose an effective sparse
approximation method based on a DCT dictionary with
the ant colony optimization for high-density impulse noise
removal. The proposed method consists of two primary mod-
ules: a Sparse Representation (SR) module and an Ant-colony
Optimization (AO) module.

In order to have enough non-noise information for sparse
approximation, the proposed method first adopts an inverse-
distance weighting-based prediction to recover noise-tainted
pixels in the proposed SR module. Next, it seeks a better
prediction of noise-recovered pixels based on ant-colony
optimization in the proposed AO module. Fig. 1 (b) shows
the abstract flowchart for the proposed method. To sum up,
the primary contributions of this paper are:

1) We propose a novel denoising method through an effec-
tive combination of the SR and AO modules to better
reconstruct the corrupted images.

2) As far as we know, we are the first to adopt ant-colony
optimization for further improving the visual quality of
denoised results.

3) We evaluate our method with numerous experiments and
demonstrate that our method outperforms other state-of-
the-art methods.

The remainder of this paper is organized as follows.
The proposed method is described in detail in SectionII.
Section III discusses the comparisons between the proposed
method and other state-of-the-art learning-based methods.
Section IV concludes the paper.

Il. PROPOSED DENOISING METHOD

This paper proposes a novel noise removal approach based
on sparse approximation using ant-colony optimization to
remove high-density impulse noise from a corrupted image
and then recover the image. As illustrated in Fig.2, our
approach consists of two major modules: a sparse represen-
tation module and an ant-colony optimization module.

Since noise-free pixels in the input image with high-density
noise are not enough for general learning-based denoising
methods to learn sparse representations, these methods often
fail to reconstruct the de-noised image effectively because
of insufficient training patterns. To overcome this prob-
lem, the proposed SR module employs the inverse-distance
weighting based prediction model to estimate noise-fixed pix-
els, which serve as non-noise information for learning sparse
approximation. Note that the sparse representation module
was primarily presented in our previous work [16].

Based on the inverse-distance weighting-based prediction
model [17], different sampled noise-free pixels may have dif-
ferent weights for estimating recovered noise pixels. Thus, to
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FIGURE 2. Overview of the proposed sparse approximation approach using ant colony optimization.
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FIGURE 3. lllustration of the noise-free pixel counters NF; of overlapped
image patches. Note that the noise-free pixel map shows all the
non-noise pixels as they are in the image whereas setting the noise
pixels to 0.

seek a better reconstruction for a de-noised image, ant-colony
optimization is used in the proposed AO module.

Initially, the impulse noise detector [18]-[20] is adopted to
discriminate noise pixels and noise-free pixels in an image.
The impulse noise detector can be expressed as follows:

B(x) = 1, if I (x) is noise; )

0, otherwise,

where [ (x) denotes the intensity value of a pixel at position
x, and B (x) denotes the binary noise mask. If the mask is
labeled ‘1’, it indicates that the corresponding pixel is either
the maximal or minimal intensity values (i.e., 0 or 255 for an
8-bit image). The label ‘0’ represents that the pixel is a noise-
free pixel. The detailed description of these two modules is
given in the following subsections.

99182

FIGURE 4. lllustration of the distance between the noise pixel (indicated
by *) and its surrounding noise-free pixels (marked in red circles) in the

inverse-distance weighting-based prediction model.

A. SPARSE REPRESENTATION MODULE

First of all, we decompose the input image / into overlapped
patches with size \/n x /i, where n is the width of the input
square image /. As demonstrated in Fig. 3, we introduce a
noise-free pixel counter NF; for the iy, patch, where we use
the counter to record the number of noise-free pixels. It can
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FIGURE 5. lllustration of training patterns based on the IDW prediction results in the proposed SR
module. The noise-free pixels are circled in red. The others are the recovered noise pixels in the patch.

be expressed as follows:

NFi=n— Y B(),

VxeQ(i)

@

where (i) denotes the coordinate set for the pixels in the
is patch.

The minimal value of NFp, over overlapped image
patches is used as the number of sampled pixels to predict
potential noise-fixed pixels in the proposed inverse-distance
weighting-based (IDW) prediction model [17]. Note that the
number of noise-free pixels might be greater than or equal
to the number of sampled pixels. Thus, the inverse-distance
weighting based prediction model can be expressed as
follows:

NF min

V(x) = Z % st.VB(x)=0, (3)
i=0 i
where
1
wi (x) = d—p, 4)

and V (x) represents the predicted intensity of a potential
noise-fixed pixel at position x within the ith overlapped image
patch which is interpolated with a set of given intensity of
noise-free pixels I (x), s.z. VB (x) = 0; d is the Euclidean dis-
tance between the noise pixel (i.e., I (x), s.t. VB (x) = 1) and
the noise-free pixel (i.e., I (x), s.t. VB (x) = 0 [See Fig. 4]);
wi'™ is the sum of weights within the ith overlapped image
patch; p is a predefined power factor. Here, we empirically
set p = 11 in our experiment.

According to the sparsity-based regularization principle,
each overlapped image patch can be sparsely represented as
I; =~ ¢uy ; by solving the following /;-minimization problem
using the DCT-based dictionary ¢ € KM stn <M [7]:

o =argmin {1, = geul3 + Il ). )

o i
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where ||I; — ¢ai||% and |||l are the data-fidelity term and
the sparse regularization term, respectively. Next, we can
reconstruct a de-noised image from the set of sparse codes
{ay i} by using the least-square solution [21] as follows:

_lM

T
Y R ¢,
i=1

where M is the total number of overlapped patches with size
J/n x 4/n in the image I. Here, in order to reconstruct a
de-noised patch, the predicted noise-fixed pixels within the
ith overlapped image patch are regarded as the measured
patch by which to provide a sufficient training pattern for
sparse approximation (See Fig. 5). Therefore, we reformulate
the minimization task in Eq. (5) into:

M
I~¢oa =) RIR (6)

i=1

s.t. Z HI,- — ¢a1,,-||§ <€,
ieQ
@)

where the term ||I; — ¢ozl~||% denotes each patch-error with a
predefined tolerance € . Note that the ith overlapped image
patch /; is composed of both noise-free pixels and predicted
noise-fixed pixels. The error-constrained orthogonal match-
ing pursuit is employed in the proposed SR module for solv-
ing the above minimization task [22].

o j=argmin AZ Hau || ]

ay i -
Li ieQ

B. ANT-COLONY OPTIMIZATION MODULE

Ant-colony optimization was first introduced in [23] and is
regarded as an adaptive meta-heuristic optimization method
inspired by nature for solving the combinatorial optimization
problems [24]. The principles of ant colony optimization
include:

1) constructing ant solutions that can balance pheromone
trails (i.e., characteristics of past solutions, with a
problem-specific heuristic);
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2) reinforcing and evaporating pheromone;
3) searching locally for improved solutions.

The key steps of the proposed ant-colony optimization are
described below.

Step 1) Constructing ant solutions: In general, there is a set
of solutions § = {Sy, ..., S/, ..., Sk} (also called trails) that
can satisfy all the constraints in the set, in which each decision
variable has a series of values assigned by s} e, s?, e, skM .
Moreover, the solution is feasible for the given optimization
problem. The set of solutions is randomly initialized while
the series of values in sﬁ is restricted to 0 < sf < n A
VB; (x) = 0 for each solution. Therefore, a complete ant
solution is composed of an integer vector of size k x M.

Step 2) Reinforcing and evaporating pheromones: After
the set of solution is generated, each series of values in
sf can be used to reconstruct an overlapped image patch
in the proposed SR module. The quality of each solution
(i.e., the de-noised image) is evaluated by using the
no-reference Q metric. This no-reference metric can be

expressed as follows:
21— 22
-+

0=z

®

where z; and z denote the singular values representing the
energy observed in the dominant direction V| and the per-
pendicular direction V5, respectively. These directions can be
obtained as follows:

G=USV*=U [Zol O] [V1 Val¥, )
22

where G denotes the gradient matrix over a local window of
size «/n x /n. Hence, the dominant orientation of the local
window can be obtained by computing the SVD of G [25].
Scores attained by the aforementioned Q metric with higher
values indicate superior noise removal effects.

Next, each pheromone is reinforced and evaporated in
order to facilitate the construction of a better trail (i.e., solu-
tion) that is likely to be feasible and observe the weight and
cost constraints. The better trail S possesses a higher weight
w ranked by Q and labeled by I = {1, ..., k}. The weight @
can be calculated by

] *(2];27222 10
W m me ; (10)
where k is the number of solution in a set, and ¢ is a tolerance
factor that is set to 0.5 in our experiments. Therefore, the new
trail is represented by
i slcdf(rand(o,l))’ if rand (0, 1) > § (11
new ant solutions, otherwise,

where & is the mutation factor. If the random value of
rand (0, 1) exceeds the mutation factor §, then the trail
is randomly updated by previous trail sédf(mnd(o’l)), where
the cdf(-) denotes the cumulative probability density of
weight w. Otherwise, we create a new solution via Step 1.
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FIGURE 6. Comparison between the reconstructed images via different
values of the mutation factor in the proposed AO module.

The lower mutation factor § possesses higher Q score climb-
ing in order to overcome the local optimum problem [26],
as indicated in Fig. 6.

Step 3) Searching locally for improved solutions: Finally,
a selection process is performed from the solution set
(see Fig.7) for the next generation. In the solution set §,
the solutions assigned with the top ten lowest labels [ =
{1, ..., k} are maintained into the next generation. By exe-
cuting the above steps iteratively, the best solutions can be
preserved from generation to generation. Therefore, the pro-
posed method is able to effectively remove impulse noise
from corrupted images for each level of high-density noise,
as shown in Fig. 8.

Ill. EXPERIMENTAL RESULTS

In this section, the experimental results for high-density
impulse noise removal using the proposed approach and
three other state-of-the-art approaches are conducted for
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FIGURE 8. Convergence profile of the proposed approach based on
sparse approximation using ant colony optimization for removing
high-density impulse noise from the image “Lena,” where the percentage
of noise ranges from 70% to 90%.

several images corrupted by high-density impulse noise.
These state-of-the-art approaches include Aggarwal et al.’s
approach [14], Ma et al’s approach [12], and
Jiang et al.’s approach [13], Erkan et al.’s approach [6], and
Zhang et al.’s approach [15].
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FIGURE 10. Illustration of “Clock” image reconstructed via each
compared method as impulse noise increases from 70% to 90%.

A. QUALITATIVE EVALUATION

As can be seen in Figs.9-14, we visually demonstrate the
reconstruction efficacy of each compared method through
eight different images corrupted with high-density impulse
noise levels ranging from 70% to 90%. Additionally,
we include the corresponding peak signal-to-noise ratio
(PSNR) of each reconstruction result.

As can be seen in the third to fifth columns of Figs. 9-14,
the reconstructed images obtained through the approaches
of Aggarwal and Majumdar [14], Ma et al. [12], and
Jiang et al. [13] appear blurrier and with more serious arti-
facts compared to the results produced through the pro-
posed method. Aggarwal et al.’s approach [14] considered
the impulse noise removal problem as an /;-norm regularized
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FIGURE 12. lllustration of “Lena” image reconstructed via each compared
method as impulse noise increases from 70% to 90%.

l1-norm data fidelity minimization problem and thereby a
noise-free image was produced by solving this problem via
a general analysis prior using a split Bregman-based algo-
rithm. Ma et al’s approach [12] conjunctly utilized the
sparse representation prior and total variation regularization
to seek better recovery results. Jiang et al.’s approach [13]
employed weighted encoding with sparse nonlocal regular-
ization for high-density impulse noise removal, in which soft
impulse pixel detection is employed via weighted encod-
ing to deal with the impulse noise. Additionally, both the
image sparsity prior and nonlocal self-similarity prior are
used to represent the noise-free image. However, these meth-
ods employ insufficient noise-free information with which to
predict the unknown corrupted patches for learning sparse
approximation when the impulse noise in the corrupted image
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FIGURE 13. lllustration of “Vacas” image reconstructed via each
compared method as impulse noise increases from 70% to 90%.
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FIGURE 14. lllustration of “Venice” image reconstructed via each
compared method as impulse noise increases from 70% to 90%.

exceeds 70%. Erkan et al.’s approach [6] produces relatively
clear results but introduces more false edges and artifacts.
Zhang et al.’s approach [15] does not work at all for images
with impulsive noise.

As can be observed in the sixth column of Figs.9-14,
our approach is capable of yielding clearer results than the
other state-of-the-art approaches, and those results possess
higher PSNR scores. This is because the proposed SR mod-
ule employs an inverse-distance weighting-based prediction
model to produce potential noise-fixed pixels by which to
sufficiently provide non-noise pixels for sparse approxima-
tion. Additionally, ant-colony optimization is used with the
no-reference O metric in the proposed AO module to seek
an optimized prediction of a de-noised image. As such,
the PSNR scores in Figs. 9-14 demonstrate that the corrupted
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40
Aggarwal et al.
35 4 ---- Jiang et al.
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---- Erkan et al
207 ---- Zhang et al
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Percentage of noise

FIGURE 15. Comparison of PSNR results between each compared method
for fifteen high-density noise images, where the percentage of noise
ranges from 70% to 90%.

FIGURE 16. All the images in our test dataset.

images are recovered more effectively through our approach
than through the others.

B. QUANTITATIVE EVALUATION

Next, the quantitative results obtained by the proposed
approach are compared with those obtained by the
approaches of Aggarwal and Majumdar [14], Ma et al. [12],
Jiang et al. [13], Erkan et al. [6], and Zhang et al. [15],
in terms of the average PSNR [27] over 70 gray scale image
sets. Note that higher rates produced by the PSNR metric
indicate superior noise removal effects.

As shown in Fig. 15, the PSNR scores of images recon-
structed via the approaches of Aggarwal and Majumdar [14],
Jiang et al. [13], and Erkan et al. [6] indicate those reconstruc-
tions degrade as the impulse noises increased. Regarding the

VOLUME 8, 2020

approach of Ma et al. [12], while the PSNR score increases
for its reconstructed images, they inevitably suffered from
artifacts, and the PSNR is still lower than that of the other
compared approaches. The PSNR score of Zhang et al.’s
approach [15] shows that it cannot deal with images with such
noise at all. The PSNR scores for the images reconstructed
by our method did not degrade as much as noise increased,
and thus outperformed the results from the approaches of
Aggarwal and Majumdar [14], Ma et al. [12], Jiang et al. [13],
Erkan et al. [6], and Zhang et al. [15]. The results also
show that the proposed method is capable of performing
superior noise removal while recovering texture information
effectively.

IV. CONCLUSIONS

This paper has presented a new de-noising method based on
optimized sparse approximation using ant-colony optimiza-
tion for high-density impulse noise removal from a corrupted
image. The proposed method allows high-density impulse
noise removal from corrupted images, which is strongly
required in several computer-vision systems. Unlike existing
methods that use the corrupted texture information or remnant
noise-free information to reconstruct a de-noised image, our
method employs the inverse-distance weighting based predic-
tion model to produce potential noise-fixed pixels for sparse
approximation learning. This gives the proposed method
the ability to remove high-density impulse noise from the
corrupted image. Additionally, the proposed method adopt
the ant-colony optimization to seek an optimized non-noise
image reconstruction, in which the no-reference Q metric is
used to evaluate the reconstructed image at each generation
for improving the quality of the reconstruction result in accor-
dance with its original value. A comprehensive evaluation
of the results produced by the different compared meth-
ods via qualitative and quantitative assessments for image
noise removal is conducted in this paper. Our experimental
results, using various test images with varying levels of high-
density noise and comparing the results through different
evaluations, demonstrate the effectiveness of the proposed
method, its ability to outperform the other state-of-the-art
sparse approximation approaches, and its robustness for high-
density impulse noise removal.
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