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ABSTRACT This paper addresses the finite-time controllability and set controllability of impulsive
probabilistic Boolean control networks (IPBCNs). Firstly, using the algebraic state space representation
(ASSR) method, the transition probability matrix of IPBCNs is established. Secondly, a kind of finite
step reachability matrix with probability one is constructed, based on which, several effective criteria
are proposed for the finite-time controllability with probability one of IPBCNs. Thirdly, a necessary and
sufficient condition is presented for the finite-time set controllability with probability one of IPBCNs by
constructing the set controllability probability distribution vector. Finally, the obtained results are extended
to switching topology case.

INDEX TERMS Probabilistic Boolean control network, impulsive effect, controllability, set controllability,
algebraic state space representation.

I. INTRODUCTION
As one of the most significant issues in modern control
theory, the concept of controllability was initiated for linear
systems in 1960s [16]. In the following decades, stochas-
tic nonlinear systems have drawn many scholars’ interest
and a sequence of results have been obtained [47], [48],
[54]. Under this trend, controllability has been introduced
into nonlinear systems [44], [53] and stochastic systems [1],
[12]. Compared with the controllability of deterministic sys-
tems which shows the ability to steer any initial state to
any target state under specific control inputs, the control-
lability of stochastic systems is more complicated, which
includes complete controllability, approximate controllability
and stochastic controllability [35]. All these concepts gen-
eralize the classical controllability of deterministic systems.
When impulsive effects were considered, the controllability
of stochastic impulsive systems was discussed in [17]. As a
natural generalization of controllability, Cheng and Hu [6]
developed the concept of set controllability for switched lin-
ear systems. Set controllability has many applications, such
as set stabilization, synchronization, output tracking and so
on [4], [19], [23], [29], [34], [51], [55].
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As a special kind of nonlinear stochastic systems,
probabilistic Boolean networks were firstly proposed by
Shmulevich in 2002 [41] to accurately describe the regula-
tory process among genes. The steady state of probabilis-
tic Boolean networks was analyzed in [42]. Pal et al. [38]
investigated the infinite-horizon optimal control problem of
probabilistic Boolean control networks (PBCNs). Qian and
Dougherty [39] considered the steady-state distributions for
structurally perturbed probabilistic Boolean networks. On the
other hand, many evolutionary processes in biological net-
works are likely to be influenced by sudden changes in
internal or external environment, which is often modeled in
the form of impulses [37], [43]. Therefore, it is meaningful
to consider PBCNs with impulsive effects. However, due to
the lack of suitable mathematical tools, it is very hard to
systematically study the controllability and control design
problems of PBCNs and impulsive PBCNs (IPBCNs).

Recently, Cheng et al. [8] has pioneered an algebraic
state space representation (ASSR) method to study Boolean
networks [9], [24], [26], [52], [58], probabilistic Boolean
networks [10], [14], [31], [36] and evolutionary games [11].
Using this effective mathematical tool, several fundamen-
tal issues have been properly solved for Boolean networks
and probabilistic Boolean networks, including state estima-
tion [3], controllability and observability [13], stability and
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stabilization [27], [30], optimal control [18], [46], and so
on. Since then, the study of controllability has made rapid
progress and achieved fruitful results. Li and Sun [20] con-
sidered the controllability of PBCNs via open-loop control
and closed-loop control, respectively. In [32], Liu et al.
further analyzed the controllability problem of PBCNs and
gave some more general conclusions. In [57], several con-
cepts of set reachability has been introduced to PBCNs,
including finite-time set reachability with probability one and
asymptotically reachability in distribution.

As is well known to us all, impulsive effect is a common
phenomenon, and some recent novel works have been devel-
oped for impulsive systems [22], [45]. Especially, considering
the sudden changes in gene regulation, the impulsive effect on
genetic regulatory networks attracts many scholars’ interest
[40], [56]. It is noted that the ASSR method was also applied
to Boolean networks with impulsive effects [5], [49]–[51].
Li and Sun [21] firstly introduced impulsive effects into
Boolean networks. Liu et al. [33] studied the controllability of
Boolean networks with impulsive effects avoiding certain for-
bidden states. As was revealed in [2], impulsive phenomenon
may change the stability and controllability of Boolean net-
works. For probabilistic Boolean networks, Li et al. [25]
showed that impulses may change the finite-time stability.
Hu et al. [15] solved the problem of stabilizing PBCNs by
designing a state feedback controller and impulsive strategies.
However, to our best knowledge, there are no results available
on the finite-time controllability and set controllability [7] of
impulsive PBCNs (IPBCNs), which motivates the study of
this paper.

In this paper, we investigate the finite-time controllabil-
ity and set controllability with probability one of IPBCNs.
In order to facilitate the analysis of IPBCNs, we convert
the dynamics of IPBCNs into the ASSR framework. Then,
we define the set controllability probability distribution vec-
tor and set controllability index for IPBCNs, based on which,
we present several criteria for the finite-time controllabil-
ity and set controllability with probability one of IPBCNs.
These criteria are easily checked viaMATLAB. Furthermore,
as an extension, we also discuss the set controllability of
IPBCNs with switching topology and establish some cri-
teria. It is shown that impulsive effects play an important
role in the finite-time controllability analysis of PBCNs
(see Remark 4).
Notations:D := {1, 0}. The set of allm×r real matrices is

denoted by Mm×r . Coli(M ), Rowj(M ) and (M )i,j represent
the i-th column, j-th row and (i, j)-th entry of matrix M ,
respectively. The column set of M is denoted by Col(M ).
1n := Col(In), where In is the n × n identity matrix.
δkn := Colk (In), k = 1, · · · , n. Lm×r := {M ∈ Mm×r :

Col(M ) ⊂ 1m} denotes the set of all m× r logical matrices.
Bm×r := {M ∈ Mm×r : (M )i,j ∈ D} denotes the set
of all m × r Boolean matrices. 0m×r := {M ∈ Mm×r :

(M )i,j ≥ 0,
m∑
i=1

(M )i,j = 1, ∀ j = 1, · · · , r} denotes the set

of all m × r stochastic matrices. Denote the m × r matrix

with all entries being 1 by 1m,r . Especially, when r = 1,
the m-dimensional column vector is denoted by 1m. For an
m × r matrix M := (mi,j), define bMc := (bmi,jc), where

b c represents the floor function. Denote
r∨

k=1
Mk := M1 ∨

M2∨ · · ·∨Mr , whereMi, i = 1, · · · , r are matrices with the
same dimension. For two matrices M ,N ∈Mm×r , M ≥ N
represents that (M )i,j ≥ (N )i,j, i = 1, · · · ,m, j = 1, · · · , r .

II. MAIN RESULTS
A. FINITE-TIME CONTROLLABILITY OF IPBCNS
The dynamics of IPBCN is given as follows:{

X (t + 1) = f1
(
X (t),U (t)

)
, t ∈ N \3;

X (tk ) = f2
(
X (tk − 1)

)
, k ∈ Z+,

(1)

where X (t) =
(
x1(t), · · · , xn(t)

)
∈ Dn, U (t) =(

u1(t), · · · , um(t)
)
∈ Dm are state and control input of

system (1), respectively. The impulsive effects of system (1)
occur at time t = tk , where the impulsive time sequence {tk :
k ∈ Z+} ⊆ Z+ satisfies 0 := t0 < 1 < t1 < · · · < tk < · · · .
The non-impulsive time sequence is expressed as {t : t − 1 ∈
N \3} ⊆ Z+, where 3 := {ti− 1 : i ∈ Z+}. f1 : Dn+m

→

Dn and f2 : Dn
→ Dn are both Boolean mappings. At each

time, f1 and f2 are chosen from {f 11 , · · · , f
l
1 } and {f

1
2 , · · · , f

r
2 },

respectively, with P{f1 = f i1} = p1,i, i = 1, · · · , l and

P{f2 = f j2} = p2,j, j = 1, · · · , r . Obviously,
l∑
i=1

p1,i = 1,

r∑
j=1

p2,j = 1.

Denote P{X (s;X0,U ) = Xd } by the maximum transition
probability from the initial state X0 ∈ Dn to the target state
Xd ∈ Dn in s steps under a given control sequence

{
U (t) : t ∈

{0, · · · , s− 1} \3
}
. Then, we give the concept of finite-time

controllability with probability one for system (1).
Definition 1: Consider system (1).
(i) Xd ∈ Dn is said to be reachable from X0 ∈ Dn

with probability one at time s, if there exists a control
sequence

{
U (t) : t ∈ {0, · · · , s − 1} \3

}
⊆ Dm such

that P{X (s;X0,U ) = Xd } = 1.
(ii) Xd ∈ Dn is said to be reachable from X0 ∈ Dn with

probability one, if there exists a positive integer s such
that Xd is reachable from X0 with probability one at
time s.

(iii) System (1) is said to be finite-time controllable with
probability one at X0 ∈ Dn, if for any Xd ∈ Dn,
there exist a positive integer s and a control sequence
{U (t) : t ∈ {0, · · · , s − 1} \ 3} ⊆ Dm such that
P{X (s;X0,U ) = Xd } = 1.

(iv) System (1) is said to be finite-time controllable with
probability one, if for any X0 ∈ Dn, system (1) is
finite-time controllable with probability one at X0.

Using the semi-tensor product method [8], we now
establish the ASSR of IPBCN (1).
Taking the vector form of logical variables and setting

x(t) = nn
i=1xi(t) ∈ 12n , u(t) = nm

i=1ui(t) ∈ 12m ,

111996 VOLUME 8, 2020



J. Wang et al.: Finite-Time Controllability and Set Controllability of IPBCNs

the algebraic representation of IPBCN (1) can be expressed
as follows:{

x(t + 1) = L1u(t)x(t), t ∈ N \3;
x(tk ) = L2x(tk − 1), k ∈ Z+,

(2)

where L1 ∈ L2n×2n+m , L2 ∈ L2n×2n , P{L1 = L1,i} = p1,i,
i = 1, · · · , l, P{L2 = L2,j} = p2,j, j = 1, · · · , r , L1,i and L2,j
are structural matrices of f i1 and f

j
2 , respectively.

Denote the expectation of x(t + 1) by Ex(t + 1). Then one
can obtain the following expected system:{

Ex(t + 1) = M1u(t)Ex(t), t ∈ N \3;
Ex(tk ) = M2Ex(tk − 1), k ∈ Z+,

(3)

where M1 =
l∑
i=1

p1,iL1,i ∈ 02n×2n+m and M2 =
r∑
j=1

p2,j

L2,j ∈ 02n×2n are transition matrices.
In the following, we use the above ASSR framework to

consider the finite-time controllability of IPBCNs.
In this section, we presuppose t1 ≥ 2. Otherwise, when

t1 = 1, the following conclusions can be similarly drawn. We
splitM1 into 2m equal blocks asM1 = [M1,1M1,2 · · · M1,2m ].
Given an initial state x(0) ∈ 12n and an open-loop control
sequence {u(t) : t ∈ N \3} = {u(0) = δi02m , · · · , u(t1 − 2) =

δ
it1−2
2m , u(t1) = δ

it1−1
2m , · · · }, for any given positive integer s,

by iteration, one can summarize

Ex(s) = M̄sx(0),

where

M̄s =



tk−1−k+1∏
q=tk−1−k+j

M1,iqM2

tk−2−k+2∏
q=tk−1−k

M1,iq · · ·

M2

t1−1∏
q=t2−3

M1,iqM2

0∏
q=t1−2

M1,iq ,

when s = tk−1 + j,
1 ≤ j ≤ tk − tk−1 − 1;

M2

tk−1−k+1∏
q=tk−k−1

M1,iq · · ·M2

t1−1∏
q=t2−3

M1,iq

M2

0∏
q=t1−2

M1,iq , when s = tk ,

(4)

and k ∈ Z+.
Lemma 1: Consider system (1). Given x0 = δi2n ∈ 12n ,

xd = δ
j
2n ∈ 12n and

{
u(t) : t ∈ {0, · · · , s− 1} \3

}
, it holds

that

P{x(s; x0, u) = xd } = (M̄s)j,i. (5)

For any k ∈ Z+, set

Q̄s =



2m∨
is−k ,··· ,i0=1

M̄s, when s = tk−1 + j,

1 ≤ j ≤ tk − tk−1 − 1;
2m∨

is−k−1,··· ,i0=1
M̄s, when s = tk .

It is evident that for any given open-loop control sequence{
u(t) : t ∈ {0, · · · , s − 1} \ 3

}
, we have Q̄s ≥ M̄s.

From the above construction, all the controllability infor-
mation is contained in Q̄s. Since we are concerned about
only the reachability with probability one, using the floor
function, we obtain bQ̄sc ∈ B2n×2n , which is called the s-step
reachability matrix with probability one.

Based on Definition 1, Lemma 1 and the construction of
bQ̄sc, we have the following result.
Theorem 1: Consider system (1). Given x0 = δi2n and

xd = δ
j
2n .

(i) xd is reachable with probability one from x0 at the s-th
step, if and only if (bQ̄sc)j,i = 1.

(ii) xd is reachable with probability one from x0, if and
only if there exists a positive integer s such that
(bQ̄sc)j,i = 1.

(iii) System (1) is finite-time controllable with probability
one at x0, if and only if there exists a positive integer s
such that

s∨
τ=1

Coli(bQ̄τ c) = 12n . (6)

(iv) System (1) is finite-time controllable with probability
one, if and only if there exists a positive integer s such
that

s∨
τ=1

bQ̄τ c = 12n×2n . (7)

Proof: We firstly prove conclusion (i). Conclusion (ii)
can be directly obtained from conclusion (i).

From Definition 1, xd is reachable with probability one
from x0 at the s-th step, if and only if there exists an open-loop
control sequence

{
u(t) : t ∈ {0, · · · , s− 1} \3

}
⊆ 12m such

that

P{x(s; x0, u) = xd } = 1,

which together with Lemma 1 implies that

1 = P{x(s; x0, u) = xd } = (M̄s)j,i ≤ (Q̄s)j,i. (8)

Thus, (Q̄s)j,i = 1, that is, (bQ̄sc)j,i = 1.
Next, we prove conclusion (iii). Conclusion (iv) can be

easily obtained from Definition 1 and conclusion (iii).
According to Definition 1 and conclusion (ii), the

sufficiency part of conclusion (iii) is straightforward.We only
need to prove the necessity part. Assume that system (1) is
finite-time controllable with probability one at x0 = δi2n .
From conclusion (ii), for any xd = δ

j
2n , one can find a positive

integer sj such that (bQ̄sjc)j,i = 1. Hence, there exists a
positive integer s = max

j∈{1,··· ,2n}
sj such that (6) holds. This

completes the proof. �
Remark 1: Although system (1) has 2n different states,

the upper bound of s satisfying (6) may be greater than 2n

because of the influence of impulse and randomness.
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B. FINITE-TIME SET CONTROLLABILITY OF IPBCNS
In this section, we investigate the finite-time set controllability
with probability one of system (1).

Given a nonempty set W ⊆ 12n , denote the transition
probability from x0 ∈ 12n to W in s steps by P{x(s; x0, u) ∈
W }. Before presenting the main result of this part, we firstly
give the concept of finite-time set controllability with
probability one.
Definition 2: Consider system (1). Given a nonempty ini-

tial set A0 ⊆ 12n and a nonempty target set Ad ⊆ 12n .
System (1) is said to be finite-time set controllable fromA0 to
Ad with probability one, if for any initial state x0 ∈ A0, there
exist a positive integer s and a control sequence

{
u(t) : t ∈

{0, · · · , s−1}\3
}
⊆ 12m such that P{x(s; x0, u) ∈ Ad } = 1.

Given the nonempty initial set

A0 = {δ
α1
2n , · · · , δ

αφ
2n } := {δ

i
2n : i ∈ �0} (9)

and the nonempty target set

Ad = {δ
β1
2n , · · · , δ

βϕ
2n } := {δ

j
2n : j ∈ �d }, (10)

where φ = |A0|, ϕ = |Ad |, �0 = {α1, · · · , αφ}, 1 ≤ α1 <
· · · < αφ ≤ 2n and �d = {β1, · · · , βϕ}, 1 ≤ β1 < · · · <

βϕ ≤ 2n.
In what follows, we study how to verify the finite-time set

controllability from A0 to Ad with probability one.
For the z-th control sequence {uz(t) : t ∈ {0, · · · , s −

1} \ 3}, based on (4), the set controllability probability
distribution vector is defined as follows:

H̄ z
s =

∑
j∈�d

Rowj(M̄ z
s ), (11)

where M̄ z
s is the probabilistic transition matrix under the

control sequence {uz(t)}.
From Lemma 1, given x0 = δi2n ∈ A0, one has

P{x(s; x0, u) ∈ Ad }

=

∑
j∈�d

P{x(s; x0, u) = δ
j
2n}

=

∑
j∈�d

(M̄ z
s )j,i = (H̄ z

s )i, (12)

where (H̄ z
s )i represents the i-th entry of H̄

z
s . Notice that (H̄

z
s )i

represents the probability from any initial state δi2n ∈ A0
to the set Ad . Thus, the set controllability information is
contained in H̄ z

s . We define the s-th step set controllability
index as follows:

hs =



2m(s−k+1)∨
z=1

hzs, when s = tk−1 + j,

1 ≤ j ≤ tk − tk−1 − 1;
2m(s−k)∨
z=1

hzs, when s = tk ,

where hzs =
∏
i∈�0

(bH̄ z
s c)i and k ∈ Z+.

Based on Definition 2 and the construction of hs, we can
obtain the following result.
Theorem 2: Let A0 and Ad be given in (9) and (10),

respectively. System (1) is finite-time set controllable from
A0 to Ad with probability one, if and only if there exists a
positive integer s such that hs = 1.

Proof: (Necessity) Assume that system (1) is finite-time
set controllable from A0 to Ad with probability one. From
Definition 2 and (12), for any initial state x0 = δi2n ∈ A0, one
can find a positive integer s and a control sequence

{
uz(t) :

t ∈ {0, · · · , s− 1} \3
}
such that

1 = P{x(s; x0, uz) ∈ Ad } = (H̄ z
s )i. (13)

From the construction of hzs, we have h
z
s = 1, that is, hs = 1.

(Sufficiency) Assume that hs = 1 holds for some positive
integer s. From the construction of hs, there exists a control
sequence

{
uz(t) : t ∈ {0, · · · , s − 1} \ 3

}
such that hzs = 1.

For any x0 = δi2n ∈ A0, from the construction of hzs, we have
(bH̄ z

s c)i = 1, which together with (12) shows that

1 = (H̄ z
s )i = P{x(s; x0 = δi2n , u

z) ∈ Ad }.

Hence, from Definition 2, system (1) is finite-time set
controllable from A0 to Ad with probability one. �
Remark 2: One can use the finite-time set controllability

with probability one to study the finite-time set stabilization,
output tracking and synchronization of IPBCNs.
Remark 3: Especially, when φ = ϕ = 1, the finite-

time set controllability with probability one from A0 to
Ad degenerates to the Part A: Finite-time controllability of
IPBCNs.

C. SWITCHING TOPOLOGY CASE
In this part, as an extension, we consider the finite-time set
controllability of IPBCN (1) with switching topology:{

x(t + 1) = Lσ (t)1 u(t)x(t), t ∈ N \3;
x(tk ) = L2x(tk − 1), k ∈ Z+,

(14)

where σ : N → {1, · · · , v} is the switching signal, Lz1 ∈
{Lz1,1, · · · ,L

z
1,l} with probability P{Lz1 = Lz1,i} = p1,i, i =

1, · · · , l, z = 1, · · · , v, and L2 ∈ {L2,1, · · · ,L2,r } with
probability P{L2 = L2,j} = p2,j, j = 1, · · · , r .

Set σ (t) = i ∼ δiv and denote the switching control
by ū(t) = σ (t) n u(t) ∈ 1v2m . We give the following
concept of finite-time controllability and set controllability
for system (14).
Definition 3: System (14) is said to be finite-time control-

lable with probability one, if for any x0, xd ∈ 12n , there exist
a positive integer s and a switching control sequence {ū(t) :
t ∈ {0, · · · , s − 1} \ 3} ⊆ 1v2m such that P{x(s; x0, ū) =
xd } = 1.
Definition 4: Let A0 and Ad be given in (9) and (10),

respectively. System (14) is said to be finite-time set control-
lable from A0 to Ad with probability one, if for any x0 ∈
A0, there exist a positive integer s and a switching control
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sequence {ū(t) : t ∈ {0, · · · , s − 1} \ 3} ⊆ 1v2m such that
P{x(s; x0, ū) ∈ Ad } = 1.

Based on the construction of ū(t), one can get the following
expected system:{

Ex(t + 1) = F1ū(t)Ex(t), t ∈ N \3;
Ex(tk ) = F2Ex(tk − 1), k ∈ Z+,

(15)

where F1 = [F1
1 · · · F

v
1 ], F

z
1 =

l∑
i=1

p1,iL
z
1,i ∈ 02n×2n+m ,

z = 1, · · · , v, and F2 =
r∑
j=1

p2,jL2,j ∈ 02n×2n .

We split each F z1 into 2m equal blocks as F z1 =

[F z1,1 F
z
1,2 · · · F

z
1,2m ], z = 1, · · · , v. Then, F1 is divided into

v2m equal blocks. For any positive integer s, given x(0) ∈ 12n

and {ū(0) = δz0v nδi02m , · · · , ū(t1−2) = δ
zt1−2
v nδ

it1−2
2m , ū(t1) =

δ
zt1−1
v n δ

it1−1
2m , · · · } ⊆ 1v2m , through a similar procedure

to (4), we have

Ex(s) = F̄sx(0),

where

F̄s =



tk−1−k+1∏
q=tk−1−k+j

F
zq
1,iq

F2
tk−2−k+2∏
q=tk−1−k

F
zq
1,iq
· · ·

F2
t1−1∏

q=t2−3
F
zq
1,iq

F2
0∏

q=t1−2
F
zq
1,iq
,

when s = tk−1 + j,
1 ≤ j ≤ tk − tk−1 − 1;

F2
tk−1−k+1∏
q=tk−k−1

F
zq
1,iq
· · ·F2

t1−1∏
q=t2−3

F
zq
1,iq

F2
0∏

q=t1−2
F
zq
1,iq
, when s = tk ,

(16)

and k ∈ Z+.
For any k ∈ Z+, set

Q̂s =



2m∨
is−k ,··· ,i0=1

F̄s, when s = tk−1 + j,

1 ≤ j ≤ tk − tk−1 − 1;
2m∨

is−k−1,··· ,i0=1
F̄s, when s = tk .

Based on Definition 3, Theorem 1 and the construction of
Q̂s, we have the following result.
Corollary 1: System (14) is finite-time controllable with

probability one, if and only if there exists a positive integer s
such that

s∨
τ=1

bQ̂τ c = 12n×2n . (17)

Similarly, given a switching control sequence {ūz(t) : t ∈
{0, · · · , s − 1} \ 3}, based on (16), we define the switching
set controllability probability distribution vector as follows:

Ĥ z
s =

∑
j∈�d

Rowj(F̄ zs ). (18)

Based on which, the s-th step switching set controllability
index is defined as follows:

ĥs =



2m(s−k+1)∨
z=1

ĥzs, when s = tk−1 + j,

1 ≤ j ≤ tk − tk−1 − 1;
2m(s−k)∨
z=1

ĥzs, when s = tk ,

where ĥzs =
∏
i∈�0

(bĤ z
s c)i and k ∈ Z+.

According to Definition 4, Theorem 2 and the construction
of ĥs, we have the following conclusion.
Corollary 2: Let A0 and Ad be given in (9) and (10),

respectively. System (14) is finite-time set controllable from
A0 to Ad with probability one, if and only if there exists a
positive integer s such that ĥs = 1.

III. ILLUSTRATIVE EXAMPLES
In this section, we give two examples to illustrate the
effectiveness of the obtained results.
Example 1: Consider the following IPBCN:{

x(t + 1) = L1u(t)x(t), t ∈ N \3;
x(tk ) = L2x(tk − 1), k ∈ Z+,

(19)

where t0 := 0, the impulsive time sequence tk = 2k + 1,
k ∈ Z+. L1 ∈ {L1,1,L1,2}, L1,1 = δ4[1 2 2 4 3 1 4 3],
L1,2 = δ4[1 3 2 4 2 1 4 3]. L2 ∈ {L2,1,L2,2}, L2,1 =
δ4[4 1 2 2],L2,2 = δ4[4 3 2 1]. P{L1 = L1,1} = p1,1 = 0.4,
P{L1 = L1,2} = p1,2 = 0.6, P{L2 = L2,1} = p2,1 = 0.2, and
P
{
L2 = L2,2

}
= p2,2 = 0.8.

It is easy to obtain M1 =
2∑
i=1

p1,iL1,i, M2 =
2∑
j=1

p2,jL2,j,

that is,

M1 = [δ14, 0.4δ
2
4+0.6δ

3
4, δ

2
4, δ

4
4, 0.6δ

2
4+0.4δ

3
4, δ

1
4, δ

4
4, δ

3
4],

M2 = [δ44, 0.2δ
1
4 + 0.8δ34, δ

2
4, 0.8δ

1
4 + 0.2δ24].

Split M1 into 2 equal blocks as M1 = [M1,1 M1,2], where

M1,1 = [δ14, 0.4δ
2
4 + 0.6δ34, δ

2
4, δ

4
4],

M1,2 = [0.6δ24 + 0.4δ34, δ
1
4, δ

4
4, δ

3
4].

Let x(0) = δ44 , after a straightforward calculation, one can
obtain

bQ̄1c = bM1,1 ∨M1,2c =


1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1

 ,

bQ̄2c = b

2∨
i1,i0=1

M1,i1M1,i0c =


1 1 1 0
0 0 0 1
0 0 1 1
0 0 1 1

 .
Notice that

(
bQ̄2c

)
2,4 =

(
bQ̄2c

)
3,4 =

(
bQ̄2c

)
4,4 = 1.

From Theorem 1 (i), x(s) ∈
{
δ24, δ

3
4, δ

4
4

}
is finite-time con-

trollable with probability one from x(0) = δ44 at time s = 2.
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Now, we consider the finite-time controllability with
probability one of system (19).

Continuing the above calculation procedure, we have

bQ̄3c =

⌊ 2∨
i1,i0=1

M2M1,i1M1,i0

⌋

=


0 0 0 0
0 0 1 1
0 0 0 0
1 1 1 0

 ,
bQ̄4c =

⌊ 2∨
i2,i1,i0=1

M1,i2M2M1,i1M1,i0

⌋

=


0 0 1 1
0 0 0 0
1 1 1 0
1 1 1 0

 ,
bQ̄5c =

⌊ 2∨
i3,i2,i1,i0=1

M1,i3M1,i2M2M1,i1M1,i0

⌋

=


0 0 1 1
1 1 1 0
1 1 1 0
1 1 1 0

 .
Hence,

s∨
τ=1
bQ̄τ c = 14×4 holds for s = 5. From Theorem 1,

system (19) is finite-time controllable with probability one.
Finally, given the initial setA0 = {δ

3
4, δ

4
4} and the target set

Ad = {δ
1
4, δ

2
4}, we discuss the finite-time set controllability

with probability one.
For the control sequence {uz(0) = δ22, u

z(1) = δ22}, after a
simple calculation, we have

M̄ z
3 = M2(M1,2)2 =


0.32 0.12 0 0.8
0.08 0.4 1 0.2
0 0.48 0 0
0.6 0 0 0

 ,
which implies that

∑
j∈{1,2}

Rowj(M̄
z
3) = [0.4 0.52 1 1]. From

the construction of hs, it holds that h3 = 1. Hence, from
Theorem 2, system (19) is finite-time set controllable with
probability one from A0 to Ad .
Remark 4: In order to make some comparisons, we con-

sider the finite-time controllability of system (19) with-
out impulsive effects. In this case, bQ̄1c and bQ̄2c remain
unchanged, but bQ̄ic, i = 3, 4, 5 are changed to

bQ̄3c = bQ̄4c = bQ̄5c =


1 1 1 1
0 0 1 1
0 0 1 1
0 0 1 1

 .
Therefore,

5∨
τ=1
bQ̄τ c 6= 14×4. Hence, the finite-time

controllability of system (19) is affected by impulsive effects,

which shows that impulsive effects play an important role in
the finite-time controllability analysis of PBCNs.
Example 2: Consider the following IPBCN with switch-

ing topology:{
x(t + 1) = Lσ (t)1 u(t)x(t), t ∈ N \3;
x(tk ) = L2x(tk − 1), k ∈ Z+,

(20)

where t0 := 0, the impulsive time sequence tk = k2 + 1,
k ∈ Z+. L11 ∈ {L

1
1,1,L

1
1,2}, L

1
1,1 = δ8[1 3 5 3 4 4 4 8 2 5 5 3

5 6 6 7], L11,2 = δ8[1 7 5 3 3 4 4 8 2 4 5 3 3 3 6 8];
L21 ∈ {L

2
1,1,L

2
1,2}, L

2
1,1 = δ8[3 3 6 3 2 1 3 5 1 4 6 7 7 5 3 1],

L21,2 = δ8[3 1 6 8 2 1 4 5 1 1 6 1 7 8 3 1]; L2 ∈ {L2,1, L2,2
,L2,3}, L2,1 = δ8[4 3 3 4 2 5 8 1], L2,2 = δ8[4 3 8 1 3 2 5
1], L2,3 = δ8[4 3 6 6 3 7 5 8]. P{L i1 = L i1,1} = p1,1 = 0.4,
P{Lz1 = Lz1,2} = p1,2 = 0.6, i = 1, 2. P{L2 = L2,1 } = p2,1
= 0.1, P{L2 = L2,2} = p2,2 = 0.2, and P{L2 = L2,3} =
p2,3 = 0.7.
Now we investigate the finite-time set controllability from

A0 to Ad with probability one, where A0 = {δ
1
8, δ

2
8, δ

5
8} and

Ad = {δ
3
8, δ

4
8, δ

6
8, δ

8
8}.

Consider the control ūz(0) = δ34 . According to F2
1 =

2∑
i=1

p1,iL21,i, F2 =
3∑
j=1

p2,jL2,j and F2
1 = [F2

1,1 F
2
1,2], one can

obtain that

F2
1,1 =



0 0.6 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0.4 0 0.4 0 0 0.4 0
0 0 0 0 0 0 0.6 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0.6 0 0 0


,

F2 =



0 0 0 0.2 0 0 0 0.3
0 0 0 0 0.1 0.2 0 0
0 1 0.1 0 0.9 0 0 0
1 0 0 0.1 0 0 0 0
0 0 0 0 0 0.1 0.9 0
0 0 0.7 0.7 0 0 0 0
0 0 0 0 0 0.7 0 0
0 0 0.2 0 0 0 0.1 0.7


.

Based on (16), we have Ĥ z
2 =

∑
j∈{3,4,6,8}

Rowj(F̄
z
2) =

[1 1 0 0.82 1 1 0.88 0.9]. Obviously, ĥs =
∏

i∈{1,2,5}
(bĤ z

2c)i

= 1. Hence, by Corollary 2, system (20) is finite-time set
controllable with probability one from A0 to Ad .

IV. CONCLUSION
In this paper, we have investigated the finite-time controlla-
bility and set controllability with probability one of IPBCNs.
We have constructed the finite step reachability matrix
with probability one, and proposed several criteria for the
finite-time controllability with probability one of IPBCNs.
By constructing the set controllability probability distribution
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vector, we have obtained a criterion for finite-time set con-
trollability with probability one of IPBCNs. Moreover, as a
generalization, we have studied the finite-time controllability
and set controllability of IPBCNs with switching topology.
The study of two examples has shown that impulsive effects
may prohibit the finite-time controllability with probability
one of IPBCNs.
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