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ABSTRACT Driving intention prediction is one of the key technologies for the development of advanced
assisted driving systems (ADAS), which could greatly reduce traffic accidents caused by lane change and
ensure driving safety. In this paper, an advanced predictive method based on Multi-LSTM (Long Short-Term
Memory) is proposed to predict lane change intention effectively. First, the training data set and test set based
on real road information data set NGSIM (Next Generation SIMulation) are built considering ego vehicle
driving state and the influence of surrounding vehicles. Second, the Multi-LSTM-based prediction controller
is constructed to learn vehicle behavior characteristics and time series relation of various states in the process
of lane change. Then, the influences of prediction model structure change and data structure change on
test results are verified. Finally, the verification tests based on HIL (Hardware-in-the-Loop) simulation are
constructed. The results show that the proposed prediction model can accurately predict the vehicle lane
change intention in highway scenarios and the maximum prediction accuracy can reach 83.75%, which is
higher than that of common method SVM (Support Vector Machine).

INDEX TERMS Intelligent vehicle, lane change, driving intention prediction, advanced assisted driving

systems, multi-LSTM.

I. INTRODUCTION

With the development of advanced sensor technology and
artificial intelligence method, ADAS have been studied a lot
in recent decades, which can effectively ensure driving safety,
avoid traffic accidents, reduce energy consumption and
improve ride comfort [1]-[4]. For example, collision avoid-
ance system (CA) [5], [6], adaptive cruise control (ACC)
[71-[9], active front steering (AFS) [10], [11], autonomous
emergency brake system (AEB) [12], [13] and lane keeping
assistance (LKA) [14], [15]. Driving intention prediction
is one of the core technologies of the next generation of
ADAS products, which have the ability to infer the future
intentions of drivers to predict the likelihood of potential
collisions and take measures in advance to avoid accidents
[16]. Among all kinds of driving maneuvers, the change of
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traffic way, including lane changing, lane merging and lane
turning, involved a relatively high percentage (27%) [17].
Lane change, as a common driving behaviour, is one of the
main causes of vehicle collision and how to accurately predict
lane change intention has drawn a lot of interest of many
foreign universities, research institutes and vehicle factories.

Lane change refers to the driver’s driving behavior of
driving away from the current lane and merging into the
target lane according to the driving demand after analyzing
the traffic information of surrounding vehicles. In general,
lane change intention recognition methods can be divided
into two types: driver behavior data based on prediction and
vehicle trajectory data-based prediction. At the driver level,
we mainly test the facial expression information and body
movement of the driver through the cameras installed in front
of the driver and then analyze the characteristics of drivers
before lane change process, which is suitable for the pre-
diction of ego vehicle intention. Meanwhile, the lane change
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process is a continuous process with temporal characteristics,
which means the running state of vehicle has the characteris-
tics of continuity. Thus, we can analyze the driving trajectory
data of vehicle to predict lane change intention.

A personalized LCPM based on deep learning method, was
constructed to predict the lane change intention of the driver
through analyzing the ego vehicle dynamics data and driver
physiological data [18]. A novel driver monitoring algorithm
was proposed to monitor the driver’s facial expression and
then decided which operation would be performed, which
could improve the performance of ADAS [19]. However,
in order to predict the lane change intention of other vehi-
cles, the driver physiological data is not available. Before
the large-scale application of artificial intelligence technol-
ogy, the rule-based lane change intention recognition method
was proposed in [20], which determines the vehicle motion
maneuver by calculating lateral velocity cue and lateral posi-
tion cue. Through the rule-based method has advantages of
low computational complexity and flexibility, it has no ability
to predict lane change intention.

Meanwhile, A driver intention recognition system was
proposed in [21]. Continuous Hidden Markov Model is
applied to recognize drivers’ lane change maneuver by col-
lecting time information about car velocity, car acceleration,
and steering angle. Reference [22] studied the lane change
prediction problem by using the support vector machine com-
posed of feature variance and Simulation results verified the
effectiveness of the method. Meanwhile, [23] constructed
Relevance Vector Machine controller, a Bayesian extension
of support vector machine, to predict the lane change inten-
sion. As we all know, the lane change process is sequential
process and lane changing operation is continuous. However,
the mentioned methods above don’t take into account this
characteristic. With the achievement of LSTM in speech
recognition and machine translation, LSTM becomes the
main method to solve the timing problem. For example,
[24] proposed a DBN-based LCD (Lane-changing decisions)
model and LSTM-based LCI (Lane-changing implementa-
tion) model to predict LC process and testing results indicated
that it had a good performance on accurately predicting lane
change intention, and a meaningful conclusion is conducted
that relative positions of the surrounding vehicles have an
greater impact on driver decision making than relative speed.
Moreover, a novel car-following method with lane change
intention estimation was presented in [25], which can esti-
mate vehicle’s behavior by a threshold-based classification
method and optimize the car-following acceleration through
MPC method, meanwhile, the accuracy of lane change pre-
diction based on this method is compared with that of SVM
in this paper.

In this paper, an advanced lane change intention prediction
method based on Multi-LSTM is presented. The method uses
real traffic information data set (NGSIM) to train the predic-
tion model, which has the ability to predict left turn intention,
right turn intention and going-straight intention. The first
LSTM network is used to extract the lane changing feature,
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FIGURE 1. Road segments of NGSIM. (a) Interstate 80 (b) U.S. Highway
101.

and the second network has the ability to judge the intention.
The remainder of this paper is organized as follows: How to
make training data set and test data set accurately through
NGSIM is presented in Section II. Section III describes the
construction of prediction model based on LSTM. The influ-
ence of prediction model structure change and data structure
change on test results is proposed in Section IV. The perfor-
mance of proposed prediction method is tested by simulation
experiments in Section V. Then, conclusions are provided in
Section VI.

Il. DATA SET CONSTRUCTION

A. NGSIM INTRODUCTION

In this paper, the real traffic trajectory data of NGSIM
project conducted by the Federal Highway Administration
is used to construct the training data set and test data set
for lane change intention prediction, which contains traf-
fic data on the segment of southbound U.S. Highway 101
(Hollywood Freeway) in Los Angeles, CA, and the segment
of Interstate 80 in San Francisco, CA. U.S [26], as shown
in Figure 1. The recording time on each segment is 45 min-
utes (Interstate 80: 4:00 P.M. to 4:15 P.M. and 5:00 P.M. to
5:30 PM. / U.S. Highway 101: 7:50 A.M. to 8:35 A.M.),
which can be divided into two processes: the first 15mins
for building up congestion and the last 30mins for traffic
congestion [27].
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NGSIM data includes Vehicle ID, Position X, Position Y,
Vehicle Speed and Lane ID etc. Because the state data is mea-
sured by the camera installed in the roadside, the measured
values of vehicle speed and location exhibit measurement
noise [28]. In order to improve the data quality, symmetri-
cally exponentially weighted moving average filter is used
to smooth vehicle trajectories. The smoothing method is
presented as follows:

1+D ikl
Z Xo(tx)e™ 3
_ k=i—D
falt) = 0 M
e A
k=i—D

where, X, (#;) denotes state value after filtering at t;, D is size
of sliding window and A is average window of intermediate
data.

B. INPUT VARIABLES

Lane change means that the vehicle drives from the current
lane to the adjacent lane without collision, which will cause
the changes of Lane ID and Lateral Speed. In order to build
the training data set and test data set for lane change, we need
to select the vehicles with lane change behavior and deter-
mine their corresponding lane change starting points, which
can be obtained by the rule-based method. First, we traverse
the entire NGSIM data set to find the vehicle whose Lane ID
has changed and record the time stamp when lane changing.
A right turn means an increase of lane ID and a left turn
denotes a decrease. If a vehicle has multiple lane changes,
each lane change is recorded separately. Then, the starting
points of lane change can be determined when the change of
lateral velocity is greater than a certain threshold value. The
selected data set is crucial for the accuracy of neural network
model. If the network model is trained with inaccurate data
set, the incorrect features will be learned by the model and
then the accuracy of identification will not be guaranteed.
Thus, all data must be reviewed manually. The upper figure
in Figure 2 shows the rule-based data set making method
produces inevitable errors. The starting point of lane change
appears in the process of driving on the lane line, which is
obviously not consistent with normal driving behaviour. The
real process is to change lane before driving on the lane line
and the reason for driving on the lane is to wait to ensure the
complete safety of the target lane. Thus, the real starting point
of lane change is shown in the below figure in Figure 2.

As we all know, drivers decide whether to change
lane or not according to real-time traffic information. The
traffic situation of current lane and the target lane will directly
affect the decision of the driver on lane change. So, nine
normal factors are considered as the inputs of prediction
model to train the model:

Vier_cr - The speed difference between the ego vehicle and
the lead vehicle in the current lane. V,.r means the ego vehicle
speed and V. is the lead vehicle speed in the current lane.

Vreffcf = Vref - ch 2
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FIGURE 2. Data review process.

Dyer_cr: the gap distance between the ego vehicle and the
lead vehicle in the current lane. D,,; means the absolute
position of the ego vehicle and D is the absolute position
of the lead vehicle in the current lane.

Dref_cf = Dref - Dcf (3)

Vrer_cr: The speed difference between the ego vehicle and
the lag vehicle in the current lane.

Dyer_¢r: the gap distance between the ego vehicle and the
lag vehicle in the current lane.

Vyer_yr: The speed difference between the ego vehicle and
the lead vehicle in the target lane.

Dyer_y: the gap distance between the ego vehicle and the
lead vehicle in the target lane.

Vrer_sr: The speed difference between the ego vehicle and
the lag vehicle in the target lane.

Dy, - the gap distance between the ego vehicle and the
lag vehicle in the target lane.

Vyer : the ego vehicle speed.

In order to verify the influence on the intention of lane
change of vehicles in the adjacent lane of the target lane,
the following four factors are constructed:

Vref_tar: The speed difference between the ego vehicle and
the lag vehicle in the adjacent lane of target lane.

Dy _1ar: the gap distance between the ego vehicle and the
lag vehicle in the adjacent lane of target lane.

Vrer_1af : The speed difference between the ego vehicle and
the lead vehicle in the adjacent lane of target lane.

Dyer_1qf: the gap distance between the ego vehicle and the
lead vehicle in the adjacent lane of target lane.

Ill. MODEL

A. REVIEW OF LSTM

At present, the widely used classification method in the field
of artificial intelligence is the deep learning model based on
CNN (Convolutional Neural Networks), which easily lead
to vanishing gradient problem due to gradient update infor-
mation decaying exponentially. In order to overcome the
vanishing gradient problem, LSTM based on gate structure
is proposed, which is consisted of three gates, i.e., the input
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FIGURE 4. The architecture of Multi-LSTM.

gate, the forget gate, and the output gate [29], [30], as shown
in Figure 3. The inputs can be divided into the cell state c;—|
att — 1 time, the output 4;_; and the input x; at the current
time and the out-puts are ¢; and h;.The functions of gates can
be described as: forget gate determines the influence of the
cell state ¢, at the last moment on ¢;, the input gate defines
the share of the current input x; reserved to c;, and the output
gate determines the amount of cell unit ¢; transferred into the
output /. The calculation process can be constructed as [31]:

fi = o(Wyrx; + Wighi—1 + by) 4)
ir = o (Wyixs + Wyihi—1 + b;) %)
0r = 0 (Wyoxy + Wiohs—1 + by) (6)
¢t = fr O cr—1 +i; © tahn(Wyexy + Wiehi—1 +be)  (7)
h; = o; © tahn(cy) (8)

where, o(x) means sigmoid function, © is element wise
product, and f;, i;, o; are gating vectors.

B. MULTI-LSTM MODEL

Inspired by the LSTM encoder-decoder architecture
[32]-[34], a Multi-LSTM prediction model is proposed in
this paper, as shown in Figure 4. At ¢ time, the sequence
Xt—i = [Vref,tfiv Vreffzjf,tfia Tty Drefftaf]v i=01,...T-1
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is fed into the first LSTM network to classify lane chang-
ing characteristics. T means length of time series and is a
variable. [34] has proven that the traffic condition around
vehicle is very difficult to analyze since it is influenced by
various latent factors and these factors change dynamically in
all real-time, e.g., driver’s intention and improper operation.
Therefore, the first LSTM network is constructed to extract
lane changing features as many as possible.

After feature extraction network processing, 726 lane
changing features are identified and then transmitted to the
intention recognition network. As a representation of a spe-
cific traffic phenomenon, lane changing features also have
continuity in time sequence. Thus, the intention recognition
network is designed as federation of LSTM to capture the
temporal relations between successive lane changing fea-
tures. In order to suppress overfitting, prediction outputs
are not directly connected to intention recognition network
but transferred from an output layer, which can increase
nonlinearity of the whole network.

Note that the outputs of the Multi-LSTM network are the
probabilities of left turn, right turn and going-straight and the
operation with the maximum probability value will be con-
sidered as the prediction intention. The proposed recognition
model separates feature extraction from intention prediction,
i.e., a specified feature extraction network is designed, which
extends the network capacity enough to capture the com-
plex structure of the trajectory data to predict lane change
intension more accurately. Compared with traditional LSTM,
our proposed Multi-LSTM method can not only take into
account the sequential and continuous characteristics of lane
changing process, but also extract deeper lane changing
features.

IV. INFLUENCE OF NETWORK STRUCTURE

AND DATA SRCTURE

Model network structure and data structure have fundamental
impact on effect of lane change intention recognition. The
number of hidden layers, one of basic parameters of LSTM
network structure, represents the number of nodes used to
remember and store the past state, which determines how
much information is remembered and how much is forgotten.
In terms of the principle of neural network construction,
the more hidden layers, the more data features will be mas-
tered, and the higher adaptability of network. However, too
many hidden layers will lead to the overfitting phenomenon
of neural network, which will result in the failure of classifi-
cation task. 2 seconds traffic state data set is used to test the
impact of different number of hidden layers on recognition
accuracy, as shown in Figure 5.

In Figure 5, we can conclude that the recognition accuracy
increases from 0.764 with 10 hidden layers to 0.81164 with
400 hidden layers as the network structure becomes more and
more complex, which shows more lane change features are
found and mastered for more specific understanding of lane
change operation. However, over complex network structure
will lead to overfitting phenomenon, which means that some
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characteristics of random motion are wrongly learned and
results in the decrease of the robustness of intention recogni-
tion. The accuracy of intention judgment is decreasing when
the number of hidden layers is greater than 400. In sum-
mary, 200-400 hidden layers are appropriate for ensuring
the recognition accuracy and the calculation pressure of the
network.

The lane change process is time continuous and the time
length before lane change is one of important factors in
making training data set. On the one hand, data set with small
time span cannot guarantee that it covers all the preparation
stages before lane change. On the other hand, data set with
too large time span will not only increase the pressure of
network computing, but also introduce some interference
features affecting prediction of lane change intention. Thus,
data sets with different time span with 200 hidden layers
are trained to verify the effect of data structure on network
performance, as shown in Figure 6. Extracted datasets from
NGSIM include 1363 samples of left turn change, 280 sam-
ples of right turn change and 1687 samples of going-straight.
70% of the data samples are used to train the model, and
the remaining 30% are used to test the accuracy of the
prediction model. Comparing the left turn change intention
recognition and right turn change in Figure 6, we can draw
the conclusion that the more data samples are, the higher the
accuracy of model recognition is. When the number of data
samples is small, e.g., the right turn change, increasing the
time span of data appropriately can increase the judgment
characteristics and the prediction accuracy. The reason why
the accuracy of 5 seconds data set reduces is that the time
span is so long that the interference characteristics are also
learned.
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FIGURE 7. Hardware-in-the-Loop platform.

TABLE 1. The settings of the Multi-LSTM network model.

Item Value
Hidden layer 400
Epoch 200

Iteration 7400
Iterations per epoch 37

Learning rate 0.001

V. EXPERIMENT VERIFICATION

In order to verify the accuracy of the proposed model,
rule-based method and SVM (Support Vector Machine) are
introduced to predict the lane change intention using the
dataset constructed in Section 2. SVM is a machine learning
method to find the maximum classification interval, which is
applied to lane change intention recognition, lane departure
warning and collision avoidance [35], [36].

In the experiment, we select 2231 data samples from
NGSIM as training set (1125 for non-lane change, 919 for
left lane change and 187 for right lane change) and 1118 data
samples from HIL simulation as test set (562 for non-lane
change, 444 for left lane change and 112 for right lane
change) as shown in Fig. 7. 0.5 seconds, 1seconds, 2seconds,
3seconds, and 4seconds time span datasets are proposed
to compare the performance of the proposed intention pre-
diction controller and that of SVM. The settings of the
Multi-LSTM network model are shown in Table 1. Based
on the conclusion in Section 4, in order to achieve the
higher accuracy, 400 hidden layers are selected to construct
the memory neural network. Then, the whole network is
trained for 7400 iterations with a learning rate of 0.001. With
the increase of training iterations, the accuracy for training
dataset approaches 100% and the loss of the whole network
reaches the minimum value of 0.00012. Meanwhile, a large
learning rate will cause the loss function to ignore the mini-
mum loss and too little learning rate means that the training
will progress very slowly. Based on former researches and
experiences, the learning rate is set as 0.001.

Figure 8, 9, 10, and 11 show the overall performance of
lane change intention prediction and the individual effects of
three different intentions between the proposed Multi-LSTM
model, SVM model and rule-based method. Figure 8 presents
the prediction accuracy of Multi-LSTM is gradually raising
from 0.7962 to 0.838, and 0.7435 to 0.8141 for SVM as the
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time length of data set increasing, but the performance of
rule-based method is decreasing from 0.81563 to 0.37042,
which indicates it has no ability to predict lane change
intention. In general, our proposed Multi-LSTM network
has a better prediction performance than that of SVM and
rule-based method. As shown in Figure 9, the three intention
prediction models are very accurate for the recognition of
non-lane change, with an average accuracy more than 80%.
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Meanwhile, SVM recognizer can achieve more than 90%
recognition accuracy for non-lane change. In Figure 10,
the maximum accuracy for left turn intention recognition
using SVM is less than 70%, while the maximum accuracy
of Multi-LSTM network model is more than 80%. And the
rule-based method can achieve a similar performance com-
pared with that of our proposed model with short length
data set (0.5s and 1s), but the accuracy of rule-based method
decreases deeply with prediction time increasing. What’s
more, the maximum recognition accuracy of SVM for right
turn intention is less than 30% and the minimum value of
recognition accuracy is only 12.82%, which means SVM
has a completely poor ability to predict right turn intention.
However, the maximum recognition accuracy for right turn
using Multi-LSTM model exceeds 70%.

Based on the above analysis, our proposed Multi-LSTM
model can not only get high overall lane change prediction
accuracy, but also has advantages in the recognition for each
lane change intention. compared with the recognition per-
formance of SVM and rule-based method, the Multi-LSTM
model can explore deeper features of data set to make up
for the lack of samples because of the strong nonlinear
characteristics of the model, which proves that the model is
more robust to the influence of sample number on prediction
results. On the contrary, as the number of single intention
samples decreases, the prediction accuracy of SVM model
declines rapidly, which means the model is highly dependent
on the number of samples.

VI. CONCLUSION

In this paper, a vehicle lane change intention recognition
controller based on LSTM network is proposed, which can
not only get high recognition accuracy for three lane change
intensions, but also show high robustness to the number of
data samples. First, the lane change data set is established
by extracting from NGSIM, which consists of three intention
recognition samples: non-lane change, left lane change and
right lane change. Then, based on the temporal characteristics
of the lane changing data set, we establish a Multi-LSTM
network to learn the lane changing characteristics and predict
the lane change intention. the first LSTM network is con-
structed to extract lane changing features as many as possible
and the second LSTM is proposed to predict the lane change
intention, which can increase the nonlinear components of
the model and improve the robustness for the number of
samples. Furthermore, the influence of the number of hidden
layers and the time length of data sample on the recognition
accuracy is presented. Finally, by comparing with the lane
change prediction performance of SVM, it is proved that the
Multi-LSTM model is more suitable for vehicle lane change
intention recognition. Applying the Multi-LSTM model to
the field test will be the focus of the future work.
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