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ABSTRACT This article presents an open-switch fault detection method for a hybrid active neutral-point
clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level
output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open
fault in switching devices increases because of the large number of switches of the entire power converter.
The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising
several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN
network was trained using three-phase current information to determine the location of the open-switch
fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without
requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The
feasibility and effectiveness of the proposed method are verified by experimental results.

INDEX TERMS Open-switch fault detection, hybrid active neutral-point inverter, silicon carbide, deep
learning, convolution neural network.

I. INTRODUCTION
The application of renewable energy-based distributed gen-
eration systems for electrical power supply to inhabitants of
islands or remote areas has increased in recent years [1]–[2].
Battery energy storage systems (BESSs) are gaining impor-
tance because these help to ensure the continuity of energy
supply in distributed generation systems. Three-level invert-
ers are generally used in BESSs. These inverters are typ-
ical topologies that generate three-level AC output voltage
by using high DC voltage sources [3]. Among the many
types of three-level inverters, a hybrid active neutral point
clamped (HANPC)-type inverter displays high performance
during bidirectional operation [4]. The HANPC-type inverter
is fabricated with two types of switching devices: Si and SiC
power semiconductors [5]. A phase of an HANPC inverter
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is composed of four Si insulated gate bipolar transistors
(IGBTs) and two SiCmetal-oxide-semiconductor field-effect
transistors (MOSFETs). The HANPC inverter has several
advantages including high efficiency, low harmonics, and
improved cost-effectiveness.

Notwithstanding these advantages of HANPC invert-
ers, switch failures are likely because of the large num-
ber of active switches. The number of active switches in
an HANPC inverter is significantly larger than those in
other three-level topologies such as neutral-point clamped
(NPC)-type, Conergy-NPC-type, or flying capacitor-type
inverter [6]–[8]. The use of a larger number of active
switches implies a higher probability of switch failure
from the perspective of a whole power conditioning system
(PCS). The survey on reliability has revealed the percent-
age distribution of failures in PCSs, and that the probabil-
ity that all the components of a power device would fail
is 31% [9].
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Two types of failures are likely in power devices: a short-
circuit fault and an open-circuit fault. A short-circuit fault is
a state wherein the power transistors maintain the conduction
states and are unable to turn off [10]. It causes a rapid increase
in the failed phase current and undesirable damage to the
other component of the PCS. In contrast, an open-circuit fault
implies that the switching device is permanently turned off
and the current flow is terminated through a faulty transistor.
An open fault results in distortion of the three-phase output
currents, i.e., the inverter becomes out of control. This is less
dangerous than a short-circuit fault, which needs to be ter-
minated immediately. Thus, it is possible to identify the fault
switch in an open-fault scenario and to address the problem
by post-fault control. An open switch fault is different from a
single current sensor fault. A failure which is occurred in the
phase current sensor makes erroneous feedback in an aspect
of the entire phase current like a gain drop, miscue in DC
offset, or null output. But, an open circuit in single leg leads
to a disconnect in switching state level and causes smaller
distortion than sensor fault.

Severalmethods have been proposed to realize open-circuit
fault detection in multilevel inverters. In [11], an open-circuit
fault detection method for standard NPC inverters was pro-
posed. The pole voltage and duration time can be measured
using a comparator circuit to determine the switching state
and failure, and failure can be detected within two sampling
intervals. Another study proposed a method for fault detec-
tion by attaching a current sensor to each ANPC neutral-
point branch [12]. A short-circuit or open-circuit fault can
be identified by sensing the overcurrent or load current of the
circuit using the current sensor. These studies have a problem
in that additional sensors or circuits are required for fault
detection. To solve this, in a previous study, we proposed a
technique to detect open-switch faults in HANPC inverters by
observing the distortion of the output current in a stationary
reference frame without additional circuitry [13]. To extract
the characteristics of the current data, Park’s transformation
was used to express the three-phase output current as a
direct-quadrant (dq) axis current and Park’s vector [14] was
calculated. The Park’s vector rotates about the dq-axis and
represents a circular current pattern. The failure of the switch
was identified by comparing the radius of the circular pattern
drawn by the current and the location of the center point to
a specific threshold in the flowchart. However, the failure
detection criteria of the flowchart can vary depending on the
output current level. Furthermore, an additional switching
injection is required to detect the failure of a specific switch,
which burdens the circuit.

Several methods for automatically extracting current or
voltage characteristics using deep learning have been pro-
posed in recent studies involving open-fault detection. In [15],
a method for detecting open-circuit faults using a deep learn-
ing approach to the current data output from an AC–DC
rectifier has been proposed. First, features of the current data
are extracted using a deep belief network (DBN) in which
several restricted Boltzmann machines (RBMs) are stacked.

The extracted feature finally detects an open-circuit fault
through a least-square support vector machine (LSSVM).
In [16], the authors studied the detection of open-circuit
faults in three-phase full-bridge rectifiers by using sparse
autoencoder-based deep neural networks. A failure detection
rate of 100%was displayedwhen the voltage data was learned
by constructing a network with two hidden layers.

Convolution neural networks (CNNs), which are among
the many learning methods employed for fault detection,
extract features of adjacent data using convolution layers.
Therefore, learning the three-phase current data together with
them is effective for fault detection in HANPC inverters
wherein one switch fault affects the current of another circuit.
In [17], a deep CNN was trained using the voltage signal as
the input data to detect open-circuit faults in the sub-modules
of a modular multilevel converter. The average accuracy of
the trained model was 98.16%. In addition, the data with
white noise were over 20% better than those from previous
methods such as support vector machines using a radial basis
function (RBF) kernel. In previous studies [13] on fault detec-
tion, Park’s vector was calculated and the characteristics of
the fault signal were extracted through switching injection.
However, the neural network assumed that role in [15]–[17].
Furthermore, it could automatically extract features of non-
linear data. However, in [15]–[17], there was a problem in
that it does not consider the scenario in which various levels
of current are inputted.

In this article, the open-switch fault detection method is
proposed. It is based on a CNN algorithm using three-phase
current data. The current waveforms are analyzed for each
case of open-switch fault in the three-phase HANPC inverter.
The current data is acquired in the open-fault scenario of
each switching device of the three-phase inverter for various
current levels. The learning process primarily involves two
steps: 1) pre-processing to determine the normalized patterns
of various current levels and 2) training of the fault detection
model using CNNs. The trained CNN model can classify the
features of each fault case with an accuracy of over 99%.
Finally, the validity of the proposed method is demonstrated
with the experimental results of a grid-tied HANPC inverter.

II. CIRCUIT CONFIGURATION AND OPERATION OF
HANPC INVERTER
A. CIRCUIT CONFIGURATION
Fig. 1 shows representative circuit configurations of the three-
level DC–AC inverter. Fig. 1a is a conventional NPC inverter
topology with four Si IGBTs and two clamping diodes.
The conventional NPC inverter was proposed in the 1980s
to reduce the harmonics of motor drive systems. Exten-
sive research has yielded NPC inverters displaying improved
DC-link voltage balance and operation in the overmodulation
region [18]–[21]. NPC inverters exhibit the disadvantage of
unequal power loss during bidirectional operation [22].When
the energy is transformed from DC to AC, the switching
losses of the four Si IGBTs are significantly higher in the
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FIGURE 1. Typical circuit types of three-level inverters, (a) NPC-type,
(b) ANPC-type, (c) HANPC-type.

outer switching devices (S1 and S4) than in the inner switch-
ing devices (S2 and S3) [23]. In contrast, when the energy is
transformed from AC to DC, the inner switching devices dis-
play high switching losses. The unbalanced power loss causes
unequal heat dissipation from the individual power device
of a PCS and degrades the device’s characteristics. Thereby,
the maximum permissible temperature limits the switching
frequency and the entire output power of the PCS [24].

Fig. 1b shows the active NPC (ANPC) inverter topology
with six Si IGBTs. The ANPC inverter was proposed in [23]
by replacing two diodes with active switches (IGBTs) to
overcome the non-uniform loss distribution of each switch.
The ANPC inverter can combine current commutations with
various switching states. However, it is controlled using an
intricate modulation strategy [23]–[25].

Fig. 1c shows a single-phase circuit configuration of
HANPC inverters. As shown in Fig. 2, the grid-tied HANPC
inverter can transfer electrical energy from a DC battery to
a three-phase grid and vice versa. The HANPC inverter is
a good solution for achieving low power loss and uniform
loss distribution during bidirectional operation. This result
is attained by incorporating a SiC transistor in the HANPC
inverter. SiC is one of the prominent wide bandgap (WBG)
materials that enable operation at a higher voltage and tem-
perature with increased efficiency [26]–[27]. However, the
application of SiC devices to each switch is uneconomical
because of the high price of WBG devices [5]. A leg of the
HANPC inverter consists of two SiC MOSFETs and four
Si IGBTs. The switching loss can be limited to two SiC
MOSFETs of the HANPC inverter by using an appropriate

FIGURE 2. Circuit configuration of grid-tied HANPC inverter.

modulation method. The fundamental modulation method of
the HANPC inverter is introduced in the following section.

B. MODULATION METHOD
Fig. 3 presents two switching frequency waveforms that are
utilized in HANPC inverters: low frequency (LF) and high
frequency (HF). LF/HF pulse width modulation (PWM) is
implemented for an HANPC inverter in a few steps. As shown
in Fig. 3a, a reference voltage (V ∗xs) is set for each phase of
an HANPC inverter, and an offset voltage (Voffset ) is injected
to realize space vector PWM. After generating the refer-
ence pole voltage (V ∗xn), the reference signal is normalized
(V ∗xn(norm)) to be compared with a triangular carrier signal
(Vtri), as shown in Fig. 3b. Fig. 3c and Fig. 3d show the LF/HF
PWM signals (VGE , VGS ) that are produced by comparing
the reference and carrier signals in the previous step. The
LF and HF PWM signals are used to turn on and off the Si
IGBTs and SiC MOSFETs, respectively. Finally, as shown in
Fig. 3e, the output pole voltage (Vxn) is generated as a three-
level waveform (+VDC / 2, 0, and –VDC / 2).

TABLE 1. Switching states and output pole voltage (1: turn on, 0: turn off).

Fig. 4 and TABLE 1 present the output pole voltages and
current flows for each switching state of an HANPC inverter.
In Fig. 4, the red highlighted switch refers to the turned-on
states whereas the black ones refer to the turned off states.
Meanwhile, the blue dotted line illustrates the current flow
for each switching state. The HANPC inverter is presented
as four switching states depending on the turned on and off
states of each switch. As illustrated in Fig. 4a and TABLE 1,
the output voltage is +VDC/ 2 when the switching state is
positive (P). The phase current is conducted through the two
upper switches in the P switching state. Fig. 4b and Fig. 4c
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FIGURE 3. Modulation method of HANPC inverters, (a) Reference voltage
and offset voltage for SVPWM, (b) Triangular carrier waveform and
normalized reference voltage, (c) LH PWM signal for Si IGBTs, (d) HF PWM
signal for SiC MOSFETs, (e) Output pole voltage.

show that there are two zero switching states (O+, O–) for
zero output voltage. In the O+ state, the output current flows
from the DC neutral point to the AC side via the neutral
point IGBT (S3) and downside MOSFET (M2). In the other
zero state (O–), the conduction direction is opposite, and the
neutral point IGBT (S2) and upsideMOSFET (M1) are turned
on. Finally, Fig. 4d represents a negative (N) switching state
for a negative output voltage. In the N switching state, the
two lower switches and neutral point switch turn on, and a
negative current flows down from the AC side to the DC side.

The four switching states are separated by a reference volt-
age value. The switching states of the HANPC inverter when
the reference voltage is positive are P or O+. This implies
that the output pole voltage is +VDC / 2 or 0. Meanwhile,
when the reference voltage is negative, the switching state of
an HANPC inverter is N or O–, and the output pole voltage
is –VDC / 2 or 0. The changeover from the P state to the O+

FIGURE 4. Switching states and current path of HANPC inverter,
(a) P state, (b) O+ state, (c) O– state, (d) N state.

states occurs when the two MOSFETs are turned on and off
complementarily while the other switches (IGBTs, S1 and S3)
maintain their states. The relationship between the N states
andO– states also involves similar complementary operations
of MOSFETs. In the HANPC inverter, the neutral clamped
switches (S2 and S3) are turned on even P or N state. These
IGBT switches are used in two zero (O+ and O–) states
according to turning on and off by the MOSFET switches.
In this way, the HANPC inverter operates in reduced switch-
ing loss in IGBT switches.

III. OPEN FAULT DETECTION BY CONVOLUTION NEURAL
NETWORK
A. ANALYSIS OF OPEN FAULT HANPC INVERTER
Fig. 5 shows the open-switch fault in an HANPC inverter
for each single switching device. If the open fault occurs in
the upper switches (IGBT S1 or MOSFET M1) as shown in
Fig. 5a, the P state is not viable, and the positive current is
not generated completely as an A-phase current. Fig. 5b and
Fig. 5c show the failure of neutral point switches. In this case,
it is incapable of creating O switching states. The current path
is disconnected because of the open fault of the inner-side
IGBTs, as shown in Fig. 5b and Fig. 5c. The absence of an
O+ or O– state distorts the positive or negative side current
flow, respectively. As shown in Fig. 5d, the open failure of
the lower switches (IGBT S4 or MOSFET M2) results in the
incapability of creating an N switching state, which, in turn,
results in the aspect opposite to that of the upper switch
fault. The negative current cannot be generated entirely by the
open circuit of the faulty leg of the HANPC inverter without
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FIGURE 5. Open fault states in A-phase and three-phase current
waveforms of HANPC inverter, (a) when the fault occurred in IGBT S1 or
MOSFET M1, (b) when the fault occurred in IGBT S3, (c) when the fault
occurred in IGBT S2, (d) when the fault occurred in IGBT S4 or MOSFET M2.

affecting the positive current of the A-phase. Thus, six open
fault cases are considered for single switches, and eighteen
cases are feasible for a three-phase HANPC inverter.

As listed in Fig. 5, the output phase current waveforms are
classified into four cases for a single open fault in each phase
of an HANPC inverter. A single open fault that occurs in the
IGBT S1 or MOSFET M1 causes a similar current distortion
as shown in Fig, 5a. Meanwhile, a single fault in the IGBT S4
or MOSFETM2 generates similar features of output current.
A special switching scheme for identifying faults in S1 and
M1 (or S4 and M2) was proposed in [13] and [28]. Previous
works used delicate detection methods because of the uncer-
tainty of open-switch faults. As mentioned in [28], the forced
switching state is necessary for identifying faulty switches.
However, the forced switching state causes the generation
of the peak current, which can impair the switching devices.

Thus, the proposed open fault detection is accomplished for
each switches’ fault by a deep learning approach and without
other switching skills.

B. FAULT DETECTION MODEL CONSTRUCTION
1) PRE-PROCESSING TO DETERMINE THE NORMALIZED
PATTERNS FROM VARIABLE CURRENT LEVELS
The three-phase current data are shown in a repetitive pattern
in Fig. 5, and this pattern can appear at various current levels.
Even when a failure occurs in a switch in the same position,
the current data may display different patterns owing to the
current level. This can adversely affect learning. In addition,
it is necessary to transform the raw current data measured in
the inverter into a form that can be input to the learning net-
work. In this study, the raw current data are transformed into a
form that can be used for learning through two pre-processing
steps. The raw data in Fig. 6 are of the three-phase current
and the phase angles of the A-phase current. These undergo
a conversion process that identifies a normalized current pat-
tern such that it is unaffected by the current level and divides
the data according to the period.

a: DATA NORMALIZATION
The first pre-processing step is the normalization of current
data obtained from experiments with different current levels.
The three-phase current data are normalized through division
by the current level in each experiment. Two examples of the
current levels (5 A, 9 A) are shown in Fig. 6, and the current
data are divided according to the respective current levels.

b: DATA GENERATION FOR LEARNING
The second pre-processing step divides the current data show-
ing repetitive patterns into one cycle unit. The phase angle
of the A-phase current increases from –Pi to +Pi for one
period. Therefore, the three-phase current data can be divided
into units of one cycle each if the division is based on the
point where the phase angle of the A-phase becomes –Pi. The
divided current data is in the form of a 3 × N matrix, and are
used as input data for an open-switch fault detection network.
Here, N represents the number of current data measured
during one cycle.

2) CNN-BASED FAULT DETECTION MODEL
There are 18 open-switch fault cases to be detected in this
study. The proposed method detects whether the three-phase
circuits composed of six switches (S1−4, M1−2) have failed.
Nineteen cases (the 18 switch failure cases and the case of
normal operation) were set as the classification result of the
learningmodel, i.e., the class labels. The proposed CNN auto-
matically extracts the characteristics of the three-phase cur-
rent from the input data and classifies it as one of the 19 labels.
The CNN consists of two convolution layers and two fully
connected layers, as shown in Fig. 7. The three-phase current
data are input in the form of a 3× 100matrix when the current
data are measured 100 times in one cycle. The input matrix
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FIGURE 6. Determination of the normalized patterns from three-phase current waves (time unit: s, angle unit: rad, current unit: A).

passes through two convolution layers using a 3 × 3 kernel.
The numbers of channels in the convolution layers are 32 and
64. Furthermore, these are set to identical stride (1, 1) and
padding. It passes through a max pooling layer with a kernel
size of 1 × 2, after each convolution layer.

Next, it passes through two fully connected layers to deter-
mine the location of the faulty switch. After it passes through
the first fully connected layer, 1,024 hidden units are created
from the feature map. Nineteen values are generated as out-
puts while it passes through the second fully connected layer.
These outputs indicate the probability of normal operation
and the 18 switch failure labels. The label with the highest
probability among the outputs is the classification result of
the input data. The dropout was set to 0.5 to prevent over-
fitting of the learning model, and a rectified linear unit was
used as an activation function. Learning was performed using
a backpropagation method that calculates the error of the
actual correct answer and inference and feeds the weight of
the network in the direction in which the error decreases. The
cross entropy is used as the loss function.

TABLE 2. Experimental parameters.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
Fig. 8 and TABLE 2 present an experimental set-up and
parameters, respectively, of the grid-tied three-phase HANPC
inverter. Several experiments were performed to demonstrate
the effectiveness of the proposed method for identifying open
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FIGURE 7. Convolution neural network structure for three-phase current data learning.

FIGURE 8. Experimental setup of HANPC inverter.

fault switches in the HANPC inverter. The experimental
set-up comprises the following parts: the three-phaseHANPC
inverter, a control board DC power source (TC.P.20.600.400
of REGATRON), and AC grid simulator (MX30 of California
Instruments). The HANPC inverter is composed of three
Si IGBT modules (SK75GBB066T of Semikron) and six
discrete-type SiC MOSFET switches (C2M0040120D of
CREE) with appropriate gate driver units. The control board
is based on a digital signal processor (TMS320F28377S of
Texas Instruments), which has the functionalities of PWM
and analog-to-digital conversion (ADC). An oscilloscope
(HDO6104 of Teledyne LeCroy) was used to capture and save
the instantaneous current values of the three-phase HANPC
inverter.

FIGURE 9. Three-phase current waveforms of HANPC inverter for the
open fault in A-phase, (a) Fault occurred at switch S1 (or M1), (b) Fault
occurred at switch S3, (c) Fault occurred at switch S2, (d) Fault occurred at
switch S4 (or M2).

Fig. 9 shows the three-phase current waveforms of the
HANPC inverter after the open fault had occurred in the
A-phase. The output current of the A-phase started to distort
after the occurrence of the open fault. As presented in Fig. 9a,
when the open fault occurred in S1 or M1, the positive range
of the A-phase current disappeared, whereas the other phase
currents fluctuated. In contrast, the lower switch fault (S4
or M2) worsened the negative currents, as shown in Fig. 9d.
In the other cases, the neutral point switches (S2 or S3) causes
a marginal distortion in the A-phase current as shown in
Fig. 9c and Fig. 9d, respectively.
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B. FAULT DETECTION OF SINGLE-LEVEL CURRENT
First, the trained model was evaluated using the failure detec-
tion result of a single-level current wherein the current is
not normalized. It was trained with an output current level
of 5 A. The current was measured for 100 cycles with either
normal operation or a specific switch failure from among
the 18 switches. A hundred three-phase current data matrices
were obtained in each experiment, and a total of 1,900 (1 ×
19 × 100) matrices were generated. The dimensions of each
current data matrix were 3 × 100. The ratio of the train and
test data was set to 9:1 with reference to the general 10-fold
cross validation method, and 1,710 and 190 matrices were
used as the training and test data, respectively, for learning.
The batch size was set to 500, and the model was trained for
10,000 iterations.

TABLE 3. Accuracy of three-phase current data (multi-level) using CNN.

TABLE 3 presents the training and test accuracy for the
detection of open-switch faults from single-level current data
according to the number of iterations. The training accuracy
represents the fault detection performance of the model that
was evaluated with the training dataset used for the model
training. The test accuracy represents the fault detection
accuracy evaluated using a test dataset that was not used
for learning. The model takes 1.027ms on average time for
open-switch fault detection of pre-processed test data and has
training and test accuracy of 1.000 even with 1,000 itera-
tions, i.e., it accurately detects all three-phase switch failures.
However, underfitting (where the training and test accuracies
are lowered) was observed for 8,000 or more iterations (in
TABLE 3). The model validation related to this problem is
discussed toward the end of this section.

C. FAULT DETECTION OF MULTI-LEVEL CURRENT
The learning data were generated by experimenting
with 11 current levels from 5 A to 15 A. The current was
measured for 100 cycles with normal operation or a specific
switch failure from among the 18 switches, as described in
the previous section. This was repeated for each current level.
A hundred three-phase current data matrices were obtained in

an experiment, and a total of 20,900 (11× 19× 100) matrices
were generated. The ratio of the training and test data was set
to 9:1, and 18,810 and 2,090 matrices were used as training
and test data, respectively, for learning. The batch size was set
to 500, and the model was trained for up to 10,000 iterations.

TABLE 4. Performance of open-switch fault detection using CNN
(Iteration 5,000).

TABLE4 presents the open-switch fault detection accuracy
of the multi-level current data according to the number of iter-
ations. The model displays a high training accuracy of 0.972
even with 1,000 iterations, and the highest training accuracy
of 0.998 at 5,000 iterations. The highest test accuracy was
0.994 at 5,000 iterations, and this corresponded to the highest
training accuracy. TABLE 5 presents the performance of the
trained model with 5,000 iterations. Precision, recall, and
F1-score, which were used as the performance verification
indicators, are illustrated in Fig. 10.

FIGURE 10. Indicators used to evaluate learning performance- precision,
recall, F1-score.

Precision refers to the ratio of data that are actual failures
from among those that were predicted to be failures by the
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TABLE 5. Performance of open-switch fault detection using CNN
(Iteration 5,000).

algorithm. Recall refers to the ratio of data that were predicted
to be failures from among the actual failure data. In general,
the precision and recall are inversely proportional, and the
F1-score is calculated as the harmonic mean of the two indi-
cators. Of the 2,090 sets of test data, 13 faults were incorrectly
detected, i.e., the test accuracy was 0.994. From among the
switches of the A-phase circuit that failed detection, the
lowest recall was that of S4 (0.909). However, the precision,
recall, and F1-score of the A-phase circuit were 0.9 or higher.
All the failures were successfully detected in the case of
the B·C-phase circuit. Furthermore, the performance was
1.000 for all the indicators. Similarly, to single-level current,
underfitting was observed for 6,000 or more iterations (in
TABLE 4). The model validation pertaining to this problem
is discussed in the following section.

D. MODEL VALIDATION
Underfitting can be observed in the case of 8,000 iterations
in TABLE 3 or 6,000 iterations in TABLE 4. To examine the
effect of the ratio of training and test data on the learning
performance, a stability validation experiment was also per-
formed by setting the ratio of the two datasets differently.
In the validation experiment, the ratio of test data was var-
ied from 10% (training data 90%, test data 10%) to 50%

TABLE 6. Number of first occurrences of underfitting in a specific
iteration according to the test ratio (experiment repeated 20 times).

FIGURE 11. Accumulated number of underfitting occurrences according
to the test ratio and iteration.

(training data 50%, test data 50%). Learning was performed
20 times independently, and the instances at which underfit-
ting occurred were recorded.

Fig. 11 shows the cumulative value of the experiment (from
among the 20 experiments) in which underfitting appeared
in each iteration, for the different test ratios. Underfitting
occurred from 4,000 iterations for a test ratio of 30%. Fur-
thermore, underfitting always occurred when the number of
iterations was over 5,000 in the experiments for all the test
ratios. In particular, the occurrence of underfitting rapidly
increased from 5,000 to 7,000 iterations. TABLE 6 presents
the sum of the iterations at the first occurrence of underfitting,
when the accuracy is measured for every 1,000 iterations. The
number of iterations at which underfitting occurred for the
first time in each experiment varied from 4,000 iterations to
9,000 iterations. It appears that underfitting is not caused by
an imbalance of data because iterations that correspond to
underfitting are not skewed even when the ratio of test data
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is varied. In addition, 3,000 iterations without underfitting
displayed a test accuracy of at least 0.979 (average precision
= 0.986, average recall = 0.986, and average F1-score =
0.986) and a high performance with fewer iterations.

The average test accuracy was higher than 0.996 for all the
ratios when the highest accuracy was calculated before under-
fitting occurred. Therefore, when learning for fault detection,
the performance of the network is not significantly affected
by the test ratio. In addition, a suitable performance is guar-
anteed even with a stable 3,000 iteration model displaying
underfitting problems.

V. CONCLUSION
This article proposes a neural network approach about open-
switch failure of grid-tied HANPC inverters. The HANPC
inverter generates high-quality sinusoidal output currents
with remarkable efficiency during bidirectional operation.
The open-switch fault of the HANPC inverter resulted in the
distortion of the three-phase output current. There are six
types of single fault for each phase of an HANPC inverter
and eighteen cases for the three-phase system. In each case,
a CNN was applied to train the feature of the current wave-
form. The trained neural network displayed a high average
detection accuracy of 99.6% for multi-level current open-
switch faults within an average time of 1.027ms. The exper-
iments were conducted to verify the performance of the
proposed fault detection method.
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