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ABSTRACT Among various biometric methods, palm vein authentication has taken significant attention
because of its uniqueness, stability and non-intrusiveness. In this paper, we propose a palm vein authentica-
tion model using convolutional neural networks (CNN), which is the most popular deep learning architecture
and Bayesian optimization. First and foremost, region of interest (ROI) of the palm vein is extracted as
an image and filtered by Jerman enhancement filter to enhance the gray levels of the vein patterns. The
proposed CNN model allows different numbers of convolutional layers to be added to optimize the network
structure. Furthermore, the model is trained with training data to extract the highly representative features
of the different classes. The training process is performed at every objective function evaluation, each with a
different network structure and training options using a Bayesian optimization algorithm to find the optimal
network structure and training options in a search space of possible solutions. The CNN model serves as the
palm vein template creator or feature extractor for our identification and verification experiments. Receiver
operating characteristic (ROC) curve and equal error rate (EER) were plotted for evaluating the performance
of the proposed model. Our proposed method attained an average identification accuracy of 99.4 % and
average EER of 0.0683%, which outperforms state-of-the-art palm vein authentication approaches.

INDEX TERMS Biometrics, palm vein, Jerman filter, feature extraction, deep learning, convolutional neural
networks, Bayesian optimization.

I. INTRODUCTION
In recent years, there has been a high demand for biometric
systems, for personal verification and identification. This has
led to the evolution of many applications, such as access
control systems, biometric time and attendance systems and
law enforcement systems. Palm vein authentication tech-
nology is a type of biometric authentication based on the
characteristics of the palmar hand veins. Compared with
conventional technologies based on biological traits, such as
fingerprint [1], iris [2], face [3] and palmprint [4] authenti-
cation, the characteristic pattern of the veins inside the palm
region of the hand has several advantages. Firstly, owing to
the complexity of the veins, it forms a unique shape. Even
between twins there are differences within the structure of
the pattern. Secondly, the vein pattern remains unchanged
throughout one’s lifetime. Thirdly, it is difficult to forge, since
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it needs a special camera to capture the vein pattern and the
pattern disappears when the person dies, since it relies on
continuing blood flow. The last advantage is that the vein
pattern lies internallywithin the body, whichmakes it difficult
to deform or damage. Therefore, the technique of palm vein
authentication offers great research potential and wide appli-
cation prospects. Recently, the majority of studies in this field
have employed a large number of feature extraction methods,
which can be classified into two main categories, global
feature extraction, and local feature extraction. However, the
results from these studies have so far not been very satisfac-
tory. Hence, there is much space for subsequent researchers
to come up with additional improvements. Numerous studies
on palm vein authentication have been undertaken. Shape-
based approaches have focused on the segmentation of the
blood vessels in the palm before feature extraction using
spatial techniques such as adaptive Gabor filter [5], Gabor
Wavelet features [6] and maximal intra-neighbor difference
(MIND) [7]. The main drawback of such methods lies in
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the difficulty in obtaining accurate segmentation of the blood
vessels, due to the non-uniform illumination and the low con-
trast ratio, which in turn affects performance. Statistically-
based methods represent the textural properties of vein
images in the pixel space of the image. Typically, these meth-
ods include Local Binary Patterns (LBP) [8]–[10], modified
local binary patterns [11], Local Texture Pattern (LTP) [12],
Local Tetra Patterns (LTrP) [13], local directional texture
pattern (LDTP) [14] and different variants of local derivative
pattern (LDP) [15]. Usually, performance is critically affected
by the method used, since pixel-to-pixel processing is highly
susceptible to noise in the image. Subspace-based techniques
are also used for reduction of dimensionality by projecting
the data onto a new, lower-dimensional space created on the
training dataset. These methods include Linear Discriminant
Analysis (LDA) [16], [17], Principal Component Analysis
(PCA) [18], [19], and Fisher Linear Discriminant (FLD) [20],
while in [21] the identification accuracy was improved using
the Radon transform to extract the principal directions of the
veins. Other techniques employ local invariant features, e.g.
SURF [22], [23], SIFT [24], and RootSIFT [25], as a way
to deal with variations in scale, orientation, and translation
between images. All these techniques are non-training-based
methods. However, training-based methods have also been
adopted, such as in [26], [27].

As reported in literature, almost all methods focus on
extracting the low-level features, which are the minor details
in the image, such as corners, edges, curves, and lines.
Higher-level features make use of low-level features to detect
objects and larger shapes in the image. Moreover, feature
extraction and selection methods are performed manually,
which, in turn, can result in low performance if those fea-
tures are not carefully picked out and, consequently, will not
be very representative. Existing approaches that use deep
CNN for palm vein verification and identification, includ-
ing [27]–[30], are very few and they employ fixed struc-
tures and training options for their CNN models. Moreover,
studies that employ convolutional neural networks for similar
applications with Bayesian optimization, such as [31], [32],
use fixed structures or pretrained CNN models, and consider
optimizing only the training options, such as learning rate and
momentum, while ignoring the possibility of optimizing the
network structure, such as the number of convolutional layers.
To learn the features perfectly by themselves, CNN archi-
tectures have several layers. Hyperparameters are significant
as they directly control the behavior of a machine learning
model and have a crucial impact on the model performance.
However, due to the high dimensionality of the data, it is
impossible to tune the hyperparameters by human expertise.
Thus, relying on arbitrarily chosen or fixed hyperparame-
ters or recommended structures of CNN does not guarantee
obtaining an optimum model.

In this paper, we automate the process of hyperparameter
selection using Bayesian optimization and focus on opti-
mizing the number of convolutional layers as well as the
training options to obtain the best CNN model, in the hope

that the final model will improve the matching results of palm
vein authentication. Our motivation and contributions can be
summarized as follows:

1. The existing feature-based approaches of palm vein
authentication rely on manual feature extraction and
selection, which is a time consuming and error-prone
process. Here, we automate the feature extraction pro-
cess using an optimized structure of a deep convolu-
tional neural network.

2. There are only a few deep learning-based feature
extraction approaches for palm vein authentication and
these approaches depend on fixed structures and train-
ing options for their CNN models. Using fixed struc-
tures and training options is an error-prone procedure,
since it is impossible to predict the correct hyperparam-
eters using human expertise. This is due to the high
dimensionality of the hyperparameters and the wide
range of each hyperparameter, which in turn will have a
negative impact on the performance of the authentica-
tion process. To avoid this, we present a new method-
ology for palm vein authentication using CNN with
both the structure and training options optimized by a
Bayesian optimization algorithm. The use of Bayesian
optimization to find the optimal structure also helps
to obtain a model that brings better performance in
terms of generalizing the test data. It manages to do
this by taking into consideration information on the
hyperparameter combinations it has seen so far when
selecting the next set of hyperparameters.

3. In the experiments, it was found that the optimumCNN
model obtained by Bayesian optimization significantly
improves both identification and verification results
compared to state-of-the-art methods.

This paper is organized as follows. Section 2 introduces
the dataset used in this work. Section 3 describes in detail
the main preprocessing steps. Section 4 introduces the
deep learning-based automated feature extraction method.
Section 5 presents an overview of Bayesian optimization.
In section 6, the proposed CNN structure as well as the
hyperparameters involved in the optimization process with
Bayesian optimization are discussed. Section 7 presents and
discusses the experimental results of this work. Section 8 is
devoted to the discussion of our approach and main results.
Finally, conclusions are drawn in section 9.

II. DATA COLLECTION
To validate the performance of the proposed method, 1200
left-palm vein images from the CASIA Multi-Spectral Palm-
print Image Database [33] were used in our experiment.
These images were captured in two sessions separated by
an interval of more than a month from 100 different volun-
teers, using self-designed multiple spectral imaging devices
operating at wavelengths of 850 and 940 nm. All images
in this database were the same size (768 × 576) and were
8-bit gray level in the JPEG format. In order to simulate an
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actual application, a certain degree of hand posture variation
is allowed during image capturing to create variance among
intra-class samples.

III. PALM VEIN PREPROCESSING
Palm vein pre-processing involves two main procedures. The
first procedure is to set up a coordinate system based on the
key points between fingers to align palm vein images and
segment the central part of the palm vein image for feature
extraction.

The second procedure aims to highlight the low contrast
vein pattern. Since the vein pattern we are interested in is
located in the central part of the hand, the palm vein images
have to undergo a segmentation process to extract this ROI.
Here, the segmentation process involves five main steps:
binarizing the palm vein images, locating the centroid and
the contour of the hand, detecting key points, establishing a
coordinate system, and, finally, extracting the ROI. Before
initializing the actual segmentation of the palm, the wrist part
is located on the right-hand side of the palm vein image. Fig. 1
(a) should be excluded due to the irregular illumination in this
area. Thus, this area is zero-padded, and the resulting image
is converted into binary form using the Otsu thresholding
method, as shown in Fig. 1 (b).

After locating the centroid (C) and the boundary points
of the hand, as shown in Fig. 1(c), the Euclidean distance
between C and every boundary point is estimated to obtain
the radial density function, RDF, as shown in Fig. 1 (d).

The 4 maxima and 3 minima correspond to the 4 fingertips
and the 3 valleys, respectively, as shown in Fig 1 (e). Let θ
be the angle between the line ¯P1P2 and the vertical line L,
as shown in Fig. 1 (f). The hand image needs to be rotationally
normalized to vertically align the 2 points: P1 and P2. This is
done by rotating the palm to the left by angle θ , as shown in
Fig. 1 (g).

θ = tan−1
((
YP2 − YP1

)
/
(
XP2 − XP1

))
, (1)

where
(
XP1 ,YP1

)
and

(
XP2 ,YP2

)
are the coordinates of points

P1 and P2, respectively. For ROI extraction, some methods
rely only on points P1 and P2 to define the boundaries of the
ROI. However, these methods do not take into consideration
the additional information existing along the borders of the
palm. Thus, we need to define a new set of points: P3, P4, P5,
and P6 to extract a larger ROI encompassing the additional
information-rich area at the boundaries of the palm. On the
little finger, we define a point P6, which is located behind
P8 at a boundary distance equal to that between P2 and P8.
Similarly, P3 is located behind P7 at a boundary distance
equal to that between P1 and P7. Next, we need to determine
P4 and P5 to define the boundaries of the ROI. The X and Y
coordinates of P4 are located in themidpoint between those of
P1 and P3, respectively. Similarly, P5 coordinates are located
at the midpoint between those of P2 and P6. Finally, The
ROI is defined by the square outlined in yellow, as shown in
Fig. 1 (h), whose side length is equal to the vertical distance

FIGURE 1. (a) Raw palm vein image, (b) Thresholding using Otsu’s
method, (c) Locating boundary points and the centroid, (d) RDF
distribution (e) Peak and valley points, (f) The angle θ between ¯P1P2 and
vertical line L, (g) Locating p4 and p5 and defining the ROI boundaries,
(h) The segmented ROI.

between P4 and P5. More raw palm vein images and their
corresponding ROIs are shown in Fig.2.

The second step in image preprocessing involves rendering
the ROI more suitable for feature extraction and matching.
As shown in Fig. 1 (h), the distribution of gray levels within
the palm region is excessively concentrated and the contrast
between the veins and the background is very low. This makes
feature extraction a strenuous task. We thus need to amplify
the local intensity of the veins with respect to the background.
The Jerman multiscale vesselness filter [34] is adopted to
perform this task. This is an improved version of the filters
proposed in preceding related work by Frangi et al. [35],
Satos et al. [36], and Li et al. [37], for example. All these
filtering techniques are Hessian-based methods in which the
enhancement function uses the Hessian eigenvalues to boost
the intensity values of elongated structures such as veins. The
eigenvalues are sorted in ascending order according to their
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FIGURE 2. Raw palm vein images (first row) and their corresponding ROIs (second row).

absolute values: λ1 < λ2. Let I (X)denote the 2-dimensional
palm vein image at coordinate X = [x1, x2]. The Hessian
value of I (X) at X and scale s is then represented by a 2× 2
matrix:

Hij (X , s)=s2I (X) ∗
∂2

∂xi∂xj
G (X , s) for i, j=1, 2, (2)

where G (X , s) =
(
2πs2

)−1
exp(−XXT /2s2) is a bivari-

ate Gaussian filter and ∗ denotes convolution. The Jerman
enhancement function is computed as:

v =


0 if λ2 ≤ 0 ∨ λρ ≤ 0,
1 if λ2 ≥ λρ

/
2 > 0,

λ22
(
λρ − λ2

)
(

3
λ2 + λρ

)
3

otherwise

(3)

where

λρ (s) =


λ3 if λ3 > τ maxxλ3 (X , s)
τ maxxλ3 (X , s) if 0 < λ3 ≤ τ maxxλ3 (X , s)
0 otherwise

(4)

λ3 is equal to λ2 in case of 2D images and τ is a parameter
between 0.5 and 1 that controls the uniformity of the filter
output, where choosing a small τ results in more intense
output values. The Jerman filter was applied to all the ROIs
with τ set to 1 and different Gaussian scales were used,
ranging from 1 to 3 with a step size of 0.5. The maximum
filter response values of all the 5 scales (Fig. 3 (a) to (e)) are
taken to form the final output, as shown in Fig. 3 (f). It is
now clear that that the contrast is very high between the veins
and the background compared with the unprocessed ROI in
Fig. 1 (h). In order to speed up the training of the CNNmodel,
the filtered image is scaled down to 40× 40 before passing it
as input to the CNN.

FIGURE 3. Example of Jerman filtering being applied on the ROI in Fig.1.
(a) to (e) showing the filter output using five different scales from 1 to 3
with a step size of 0.5. (f) The result of taking the maximum value
obtained from the different scales.

To demonstrate the importance and effectiveness of the
preprocessing step using the Jerman filter, the raw ROIs
which have not been preprocessedwere tested formatching in
our experiment against the preprocessed ones with the Jerman
filter.

IV. FEATURE EXTRACTION AND MATCHING USING CNN
Deep learning [38]–[40] is a subset of machine learning in
artificial intelligence. It allows computational models that
comprise several processing layers to learn representations of
data with multiple levels of abstraction. These methods have
shown remarkable improvements in state-of-the-art applica-
tions such as visual object identification, speech recogni-
tion, object detection, drug discoveries, and genomics. Deep
learning utilizes the backpropagation optimization algorithm
to learn about the complex structure in large data sets by
evaluating the amount of parameter change a machine should
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Algorithm 1 Palm Vein Preprocessing
Segmentation:
Input: palm vein image
Output: ROI

1. Remove the irregular illumination region by setting
pixel values in the rectangular region with X values >
650 to 0, Fig.1 (b)

2. Apply Otsu’s thresholding, Fig.1 (b)
3. Locate the centroid c and boundary points pnof the

hand, Fig.1 (c).
4. Compute the Euclidean distance between the centroid

and every boundary point to obtain the RDF as follows:

dn =
√(
(Xc,Yc)−

(
Xpn ,Ypn

))2, Fig.1 (d)
5. Locate the minima and maxima of the RDF to locate

the hand valleys and peaks, respectively, Fig.1 (e).
6. Draw a line between the two valley points p1and p2 to

compute the angle θ between p1p2 and the vertical line
L using Equation (1), Fig.1 (f).

7. Rotationally normalize the hand by rotating it to the left
by θ , Fig.1(g).

8. Find p3 and p6, where the boundary distance between
p8 and p6, db(p8, p6) is set to be equal to db(p8, p2) and
db(p7, p3) is set to be equal to db(p7, p1)

9. Find p4 and p5 as follows: p4 =
(
Xp1 ,Yp1

)
+
(
Xp3 ,Yp3

)
2 ,

p5 =
(
Xp2 ,Yp2

)
+
(
Xp6 ,Yp6

)
2

10. Locate the ROI by identifying the square region whose
length is equal to the distance between p4 and p5

ROI vein enhancement:

Input: unprocessed ROI image, I (X).
Output: vein-enhanced ROI, v.

11. For each image pixel location, X , compute the
Hessian matrix Hij (X , S) , i, j = 1, 2 using Equa-
tion (2) with 5 different Gaussian filter scales rang-
ing from 1 to 3 with a step size equal to 0.5, S =
{1, 1.5, 2, 2.5, 3}.

12. Compute the eigenvalues (eigH ij (X , S) −→ λ1,2) of
each Hessian matrix in each scale.

13. Sort the eigenvalues in an ascending order according to
their magnitude (i.e., |λ1| < |λ2|)

14. For each scale, s, use the Jerman enhancement function
vsτ=0.5 (Equation (3)) and set τ to 0.5 in Equation (4) to
compute the response of the Jerman filter at every pixel
location to finally obtain 5 different responses (Fig.3
(a-e))

15. Compute the final filtered image (Fig.3 (f)) by taking
the maximum filter response values of all the 5 scales
as follows: vτ=0.5 = max

s=1,1.5,2,2.5,3
{vsτ=0.5}

apply to determine the level of representation in each layer
from that in the preceding layer. A convolutional neural
network is a widely recognized deep learning method. Deep

CNNs have shown success in problems of classification and
recognition [41], [42]. They learn to perform classification
tasks directly from image pixels, without the need for manual
feature extraction prior to presenting the training examples.
A CNN is made up of two main sections: The first section
performs feature extraction using a series of convolutional
layers, followed by pooling and activation of the function
layers. The second section does the job of a normal classifier
with a fully connected layer, softmax layer, and a classifi-
cation output layer. In this work, the output classification
layer consists of 100 neurons, corresponding to the number of
clients participated in this experiment. These neurons enable
100 different possible binary vectors, each with all zeros,
except in the place of the client it represents, which is 1.

For each client, 8 images were randomly chosen for train-
ing the CNN, so a total of 800 imageswere used in the training
phase. The remaining 400 images were split equally into
validation and test sets to evaluate the model hyperparame-
ters and the performance of the optimized fine-tuned CNN,
respectively.

V. AN OVERVIEW OF BAYESIAN OPTIMIZATION
Almost all optimization problems in machine learning are
black-box optimization problems, in which the objective
function for which we are trying to find the absolute minima
cannot be expressed in closed form and its derivative cannot
be evaluated [43], [44]. The only possible way to evaluate the
function is to sample at a point x and obtain a possibly noisy
output.

The aim of the research reported in this paper is to find
the CNN hyperparameters that yield the minimum validation
error, in the hope that the final model generalizes well to
the test data. Hyperparameter optimization for an unknown
function f (x) is represented in the form:

x∗ = argmax f (x) (5)

whereX refers to the search space of x. Bayesian optimization
is an approach derived from Bayes’ theorem to guide the
search towards the minimum of an objective function. Bayes
theory states that a given observation point E, the posterior
probability P(M |E) of a modelM is proportional to the like-
lihood P(E|M ) of observation E, given modelM , multiplied
by the prior probability of the model P(M ):

P (M |E) ∝ P (E |M)P (M) (6)

The idea behind Bayesian optimization is that it uses the
prior distribution of the objective function f (x) as well as the
observation points obtained from the previous trials of train-
ing the model to obtain a posterior distribution of the model.
The posterior information is then utilized to select the next
sample points that are expected to minimize f (x) [45]. The
selection of these new sample points is performed according
to criteria represented by an acquisition function, A, to locate
the new points where the expected improvement is most prob-
able. To reduce the number of total sampling points before the
end of the optimization process, the acquisition function takes
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into consideration both exploitation (sampling points that are
expected to yield low output value) and exploration (sampling
points from areas of a high degree of uncertainty) [46].The
search space in a Bayesian optimization algorithm is realized
by using a Gaussian process. A Gaussian process (GP) is a
process in which any subset of observations is assumed to
follow a Gaussian distribution, with mean m : x → R and
covariance function k : x × x → R. The Gaussian process
can be formulated as:

f (x) ∼ GP(m (x) , k
(
x, x ′

)
) (7)

In the Gaussian process, f (x) is not just an estimate for that
point but a one-dimensional Gaussian distribution function
over all possible values of f (x). For convenience, we assume
that the Gaussian process mean functionm(x) = 0 and that its
covariance matrix is the commonly used squared exponential
covariance function, denoted as:

k
(
xi, xj

)
= e

(
−

1
2‖xi−xj‖

2
)

(8)

where xi and xj are the ith and jth samples. The closer xi and xj
are to one another, the higher their covariance k

(
xi, xj

)
. The

posterior distribution of f (x) is computed as follows:
1. Given a set of observations D1:t = {xn, fn}tn−1 , fn =

f (xn) assume the function f values are samples from a mul-
tivariate normal distribution f ∼ N (0,K ), where

K =


k (x1, x1) k (x1, x1) . . . k (x1, xt)
k (x2, x1) k (x2, x2) . . . k (x2, xt)

...
...

. . .
...

k (xt , x1) k (xt , x2) . . . k (xt , xt)

 (9)

2. At the newly computed sample point xt+1, compute
f (xt+1) as follows:[

f1:t
ft+1

]
∼ N

(
0,
[
K k
kT k (xt+1, xt+1)

])
(10)

where f1:t = [f1, f2, · · · , ft ] and
k = [k (xt+1, x1) k (xt+1, x2) · · · k (xt+1, xt)]
According to the Gaussian process, [f1:t , ft+1] follows

the t + 1 multivariate normal distribution, i.e. ft+1 ∼
N (µt+1, σ 2

t+1) where,

µt+1 (xt+1) = −kTK−1f1:t (11)

σ 2
t+1 (xt+1) = −k

TK−1k + k(xt+1, xt+1) (12)

The mean and variance of ft+1 indicate that the Gaussian pro-
cess does not estimate an exact value but a one-dimensional
probability distribution for ft+1. There are different kinds
of acquisition functions, such as the lower confidence
bound [47], the probability of improvement [48], and the
expected improvement [49]. For example, the degree of
improvement, I , according to the expected improvement
acquisition function, is defined as:

I (x) = max{0,max{0, ft+1 − f (x+)} (13)

where ft+1 is the function value at the next sampled point
that is expected to improve the pproximation of the function

and f (x+) is the maximum observed point after obtaining t
samples. The next sampled point, xt+1, is given by:

xt+1 = argmax
x
E(max{0, ft+1 − f (x+)}) (14)

Consequently, the probability density function of I follows
the normal distribution, with meanµ (x)−f (x+) and standard
deviation equal to σ 2(x) and is given by:

f (I ) =
1

√
2πσ (x)

e

(
−
µ(x)−f (x+)−I

2σ2(x)

)
, I > 0 (15)

The expected improvement E(I ) is the integral over the func-
tion in equation 15:

E (I ) =
∫
∞

I=0
I f (I ) dI = σ (x) [Z∅ (Z )+ ϕ (Z )] (16)

Z =
µ (x)− f

(
x+
)

σ (x)
(17)

where ∅ (·) and ϕ (·) are the cumulative distribution function
and probability density function of the standard normal dis-
tribution, respectively. Algorithm 2 summarizes the steps of
the Bayesian optimization algorithm.

Algorithm 2 Bayesian Optimization Algorithm
1. For t = 1, 2, . . .
2. Find xi by optimizing the acquisition function A over

function f, xi = argmin
x

A (x|D1:t−1)

3. Sample the objective function yt = f (xt)
4. Augment the dataD1:t =

{
Dt−1

(
xt, yt

)}
and update the

posterior of function f
5. End for.

VI. HYPERPARAMETER TUNING WITH BAYESIAN
OPTIMIZATION
The CNN architecture as well as the training options need to
be estimated ahead of the training process. Figuring out these
hyperparameters to minimize the matching error and avoid
overfitting is not a straightforward task and it can consume a
lot of computational time if we decide to use a brute-force
search before obtaining satisfactory matching results. Our
plan is to automate the process of tuning the hyperparam-
eters with the help of Bayesian optimization, in which the
optimal values are reached within a limited number of search
attempts, hence guaranteeing the best CNN model will be
obtained. Bayesian optimization uses an n-dimensional mul-
tivariate Gaussian model to construct a posterior distribution
over the objective function, given a set of observations. In this
work, n is the number of hyperparameters that need to be opti-
mized, while the observation is the validation error computed
after training the CNN using the newly sampled hyperparam-
eters for each iteration (objective function evaluation).

A typical CNNmodel consists of an input layer and classi-
fication output layer, in addition to a number of hidden layers.
The hidden layers comprise a series of convolutional layers
which are followed by batch normalization layers, and the
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FIGURE 4. The proposed structure of the CNN model for optimization.

batch normalization layers are followed by a ReLU layers and
then the pool layers come at the end. To optimize our network
model, we need to decide the optimum number of these
convolutional layers. The first set of convolutional layers
learn the low-level features and the following convolutional
layers learn the mid-level and high-level features.

Thus, we propose dividing the network into three main
parts, where each part is followed a max pool layer and is
made up of a number of blocks. Each block has one convo-
lutional layer, one batch normalization layer and one ReLU
layer. Fig. 4 shows the structure of the proposed model, with
n1, n2, and n3 blocks defining the number of blocks or part
depth which equals the number of convolutional layers in that
part. The optimization algorithm takes the number of blocks
in each part (part depth) as well as the hyperparameters of
the training options as input to optimize the network. Thus,
the first 3 hyperparameters that need to be optimized are the
number of blocks or convolutional layers in each part of
the network. The number of convolutional kernels (filters)
in each part is set to be inversely proportional to the square
root of the part depth. Consequently, for each iteration, the
number of parameters and the computational time are almost
equal, regardless of the differences in part depths between
the network models evaluated by Bayesian optimization. The
number of convolutional layer filters is increased by a factor
of 2 each time the spatial size is scaled down by a factor
of 2 according to the max pool layer. This ensures a nearly
equal amount of computation in each convolutional layer.
This is also important since the deeper the convolutional layer
is, the more features the network needs to learn. The number
of convolutional layer filters in each part of the network can
be formulated as follows:

No.conv filters = floor
(

β
√
part depth

× 2part number−1
)
(18)

where the value of β is arbitrarily set to 10 and the part
number is either 1, 2, or 3, depending on the part where the

convolutional layer is located. The other 3 hyperparameters
control the training process. These parameters are:

A. LEARNING RATE
During training of a CNN model, each convolutional layer’s
weight is updated to minimize the loss, with a step size
referred to as the learning rate [50]. In deep convolutional
neural networks, the stochastic gradient descent (SGD) is
used as an optimizer to update the weights of the convolu-
tional layers. It updates the weights in the opposite direction
to the gradient of the loss function [51]. The new value of a
learnable parameter (weight and bias) at iteration no. l + 1
for a single update, according to the SGD, is formulated as
follows:

θl+1 = θl − α∇E(θl) (19)

where l is the iteration number, α is the learning rate and
∇E(θl) is the gradient of the loss function. α takes on values
between 0 and 1. In this experiment we defined a range
between 10−6 and 1 for this hyperparameter. We did not
include values lower than 10−6 within the range, since a
learning rate that is too small causes the network to either
train very slowly, never converge, or get stuck on a suboptimal
solution [52].

B. WEIGHT DECAY
Adding a weight decay term to the loss function E(wl) in
order to penalize large weights is a way to mitigate overfitting
and improve generalization [53], [54]. The most commonly
used weight decay techniques in machine learning are l1
and l2 regularization. These techniques are also referred to
as weight decay methods, since they work on shrinking the
weights to smaller values. l2 regularization forces the weights
to drop towards 0 but not exactly zero, while l1 encourages
most weights to drop to exactly 0 [55]. For this reason, l2
is adopted as a regularizer for our network model. The new
regularized loss function with the regularization term is given
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as follows:

ER (θ) = E (θ)+ λ� (w) (20)

where w is the weight vector, λ is the regularization factor
(coefficient), and the regularization function �(w) is

�(w) =
1
2
wTw (21)

λ takes on values on the logarithmic scale between 0 and 0.1,
for example 0.1, 0.001, 0.0001 [56]. Studies in the literature
have assigned values for λ between 10−3 and 10−6 [57]–[59]
on the logarithmic scale. We considered these values in the
range we selected for this hyperparameter and defined the
range to be between 10−10 and 10−1 on the logarithmic scale.
This wide range gives the BO a large search space to pick
up the most accurate value for this hyperparameter without
being fully dependent on the recommended values or ranges
obtained from previous studies.

C. MOMENTUM
The SGD algorithm can exhibit high-frequency oscillations
along the path towards the minimum error [53], [60]. Adding
a momentum term to the weight update is an effective way
to damp these oscillations and, as a result, minimize the
number of iterations and speed up convergence. The SGD
with momentum (SGDM) is formulated as follows:

θl+1 = θl − α∇E(θl)+ γ (θl − θl−1) (22)

where γ is the momentum factor, which determines the influ-
ence of the previous gradient step on the current iteration.
In this experiment with BO, we decided not to depend only
on the values of γ recommended in the literature, but to cover
the whole range of γ lying between 0 and 1.

Regarding the part depth, the minimum value of the part
depth is 1 while the maximum number can take on any integer
value. Thus, we run Bayesian optimization multiple times
with different ranges of part depths for each run. This helps
to obtain an intuition about the CNN behavior with various
ranges of part depth. Thus, we can find the optimum range
that yields the minimum test error.

Let M denote our CNN model with the 6 (N = 6)
hyperparameters to be optimized, where Mn, denotes the
domain of the nth hyperparameter. We denote the space of the
hyperparameter configuration as X = X1×X2× . . .X6. The
six-dimensional vector of hyperparameters is denoted by ν ∈
X:ν = {n1, n2, n3, α, λ, γ } andM, with its hyperparameters
represented by ν, is denoted asMv.
Given the training and validation data,D, our goal is to find

ν∗ = argmin
v∈X

E(Dtrain.Dvalid ) ∼ V (L,Mv,Dtrain.Dvalid )

(23)

where V (L,Mv,Dtrain.Dvalid ) is the validation protocol
used to measure the loss (L) of Mv on the validation data
at the output of the softmax layer. The holdout method is
used as the validation protocol to measure the loss on the

Algorithm 3 Optimization of CNN Hyperparameters Using
Bayesian Optimization
Input: some observations, D (CNN hyperparameters and the
corresponding validation error, (Xt ,Yt ))
Hyperparameters: part1 depth n1, part2 depth n2, part3
depth n3, learning rate α, momentum γ , weight decay λ
Output: validation error Yt

1. Initialize 6 random hyperparameters
X1 =

{
n11, n

1
2, n

1
3, α

1, γ 1, λ1
}

2. For t = 1 −→ 40 (max number of objective function
evaluations)

3. Use the proposed CNN structure in Fig.4
to create a CNN using the
hyperparameters Xt

4. Set the number of convolutional kernels in each
convolutional layer according to Equation (18)

5. Train the CNN using SGD algorithm with a
mini-batch size of 100 samples and max
number of epochs of 40.

6. Compute the validation error on the
validation set as follows:

Yt =
number of misclassified samples

200
7. If Yt = 0 then
8. Stop the optimization process.
9. Go to step 15.
10. Else
11. Update the 6-D surrogate model Dt =

using Equation (10),

{D1:t−1 ∪ (Xt ,Yt)}

12. Sample 6 new hyperparameter
Xi+1values by optimizing
the expected improvement function
A,Xi+1 = argA (X |D) using
Equation (16)

13. End if
14. End for
15. Select the CNN with hyperparameters that yield the

lowest validation error, Yt
16. Return Yt

validation data. The softmax and cross-entropy loss functions
are defined as follows:

yi =
ezi∑J=100

j=1 ezj
(24)

L =
−1
N

∑N=200

n=1

∑J=100

j=1
Ti log yi (25)

where zi is the output of the final max pool layer, yi is the
output of the softmax layer, Ti is the target value, J repre-
sents the total number of elements in y, and N is the total
number of validation examples (N = 200). The next set of
hyperparameter values is computed according to the expected
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improvement, as follows:

E [I (v)] = E [max (fmin − ε, 0)] (26)

E [I (v)] = (fmin − µ (v))8
(
fmin − µ (v)

σ

)
+ σφ

(
fmin − µ (v)

σ

)
(27)

where fmin is the best observed validation error so far that
has been obtained from training the CNN with the selected
hyperparameters, and ε is the predicted mean function value
of the surrogatemodel at the next v that is expected to improve
the validation error of the CNN. The validation error can be
expressed as:

validation error=
No. of misclassified validation samples
Total number of validation samples

(28)

Thus, we defined an optimization problem with a six-
dimensional (6-D) objective function using the palm vein
training and validation data as fixed inputs with a mini-batch
size equal to 100 images. The maximum number of epochs
was set to 40. For each objective function evaluation, the
objective function performs the training of the CNN using
the SGD algorithm as an optimizer with the newly sampled
hyperparameters and returns the matching error on the val-
idation data. Experimental settings are shown in Table 1,
encompassing the parameter settings for both the training and
optimization.

The optimizer is set to terminate when the validation error
equals 0 or if the number of iterations (function evaluations)
reaches 40. The optimizer starts with a Gaussian model as
an approximation estimate of the objective function and then
updates this model after every iteration towards the shortest
path to the minimum value of the validation error. A flow
chart of the CNN hyperparameter optimization process is
shown in Fig. 5.

VII. EXPERIMENTAL RESULTS
The results of the optimum fine-tuned CNN model hyperpa-
rameters obtained from running the optimizer five times are
shown in Table 2, in which each experiment has a different
range of part depths. The first experiment, with a range
between 1 and 3 for each part depth, yielded the best CNN
model. This model converged faster than the other models in
the remaining four experiments and had the lowest validation
and test error. Although the training accuracy reached 100%
in all five experiments, adding more convolutional layers
through increasing the part depth range did not improve the
performance but instead caused the network to overfit to the
training data.

After 34 objective function evaluations in the search space
of possible solutions using Bayesian optimization, the best
CNN model defined by the minimum validation error was
finally obtained when the Jerman filter was applied in the
preprocessing step, as shown in Table 4 in the last raw.

Table 4 records the hyperparameters and validation errors
reported from 34 function evaluations. The Bayesian opti-
mizer starts by generating six random hyperparameters,
recorded in the first row in Table 4, which are the depth
of each part, and the three training option hyperparameters.
The objective function then trains a CNN model using these
hyperparameters and returns the validation error on the vali-
dation data. The validation error, which is recorded in the first
column in Table 4, is then used to update the 6-D surrogate
model created by the optimization algorithm. The optimizer
then samples six new hyperparameters, which are recorded
in the second row in Table 4, performs the training and
reports the validation error. This iterative process continues
with different hyperparameters for each iteration until the
optimizer stops searching for new hyperparameters when the
validation error reaches exactly 0. This occurred at the 34th
iteration, as shown in the last raw in Table 4. In the experi-
ment conducted without the preprocessing step, the optimizer
had to stop once it completed the last function evaluation,
according to the stopping criterion. The minimum validation
error was obtained at the 38th objective function evaluation
and it reached a minimum value equal to 0.025. In Fig. 8
and Fig. 9, the values of the minimum observed objective and
the estimated minimum objective curves are plotted for both
experiments. The estimated min objective refers to the lowest
estimated mean value according to the latest approximate
model of the objective function, while the min observed
objective refers to the lowest returned validation error value
resulting from evaluations of the objective function. It can be
noticed from Fig. 8 that at the 34th iteration, the validation
error reached exactly 0, which means that all samples in
the validation data were correctly classified. On the other
hand, the validation error reached 0.025 at the 38th itera-
tion when removing the preprocessing step with the Jerman
filter, as shown in Fig. 9. It can be seen in Fig. 6 that the
optimal network architecture obtained from the optimization
problem in the first experiment, using the Jerman filter, has
one convolutional layer in each part, while in the second
experiment, without the Jerman filter, the optimal structure
is more complex, as shown in Fig. 7. It has two convolutional
layers in the first part and one convolutional layer in each of
the other two parts. The detailed structure of the fine-tuned
CNN of the proposed method with Jerman filter is illustrated
in Table 5. The optimal part depths and training options for
both experiments are shown in Table 3. Both models were
then tested for the palm vein template creator, which is the
feature extractor, for the two subsequent experiments:

A. PALM VEIN IDENTIFICATION
This is the process of questioning the biometric system
regarding who a certain palm vein image belongs to. There-
fore, this process involves comparing this image against every
other image in the database and finding the correct match.
Identification accuracy is obtained by computing the percent-
age of correctly classified samples as given in the following
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FIGURE 5. Flow chart of the CNN hyperparameter optimization process.

TABLE 1. Experimental settings.

equation:

Ident.Acc. =
(
1−

No. of misclassified test samples
Total no. of test samples

)
(29)

The proposed model with the Jerman filter correctly clas-
sified 199 out of the 200 images of the test set, implying
that the features learned by our CNN model with Bayesian
optimization are highly relevant and representative. The first
experiment with Jerman filter preprocessing yielded a lower
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TABLE 2. The optimum CNN hyperparameters evaluated using Bayesian optimization and different ranges of part depth.

TABLE 3. The optimized hyperparameters of the two fine-tuned cnns obtained from both experiments.

FIGURE 6. The optimized structure of the fine-tuned convolutional neural network of the proposed
method with Jerman filter.

FIGURE 7. The optimized structure of the fine-tuned convolutional neural network of the
proposed method without Jerman filter.

test error and hence higher identification accuracy than that
of the second experiment without the preprocessing step,
as shown in Table 3. The identification accuracies of the
first and second experiments are 99.5 % and 96.5 % respec-
tively, which reflects the importance of the Jerman filter in
preprocessing.

B. PALM VEIN VERIFICATION
This is the process of asking the biometric system whether
a palm vein image belongs to a specific person or not. It is

called a one-to-one matching problem. In our experiment, the
softmax layer real output values were used for distance cal-
culation and computing both genuine and impostor matching
scores.

For genuine matching, the number of matching scores is
(the number of test palm vein images per palm-1) × (the
number of classes). As a result, there will be 100 (1 × 100)
genuine matching scores. For impostor matching, the number
of matching scores equals (the number of test palm vein
images per palm) × (total number of test images-number of
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TABLE 4. The optimized hyperparameters and validation error values at every objective function evaluation.

test images per palm) × total number of palms. As a result,
therewill be 39,600 (2×198×100) impostormatching scores.

Cosine similarity was utilized in this experiment for dis-
tance matching score calculation. The cosine similarity score
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TABLE 5. The detailed structure of the fine-tuned CNN network model for the first experiment with Jerman filter.

TABLE 6. Ablation experiment on the optimum hyperparameters of fine-tuned cnn model with Jerman filter.

FIGURE 8. Min objective vs. number of function evaluations for the
experiment with Jerman filter.

between two feature vectors x and y with an angle θ between
them is:

similarity (x, y) = cos (θ) =
xT .y
‖x‖ . ‖y‖

(30)

FIGURE 9. Min objective vs. number of function evaluations for the
experiment without Jerman filter.

The EER value can also be determined as the FAR value
at the intersection point between the ROC curve and the EER
line, as shown in Fig. 10 and Fig. 11. The first part of this
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FIGURE 10. ROC curve for the experiment with Jerman filter.

FIGURE 11. ROC curve for the experiment without Jerman filter.

FIGURE 12. Histograms of genuine and impostor match distance using
Jerman filter.

experiment, with the Jerman filter, achieved a lower EER than
that without the Jerman filter, as shown in Table 3. Fig. 12
and Fig. 13 show the distribution of both genuine and impos-
tor matching scores for the first and second experiments,

FIGURE 13. Histograms of genuine and impostor match distance without
using Jerman filter.

TABLE 7. EER for each training/test fold.

respectively. As shown in Fig. 12, the relative separation
between both scores reflects the independence between them
and the robustness of the proposed model. However, there is
still a small intersection area in the distribution due to to the
deformation or blurring of the palm vein ROIs. Table 6 shows
the ablation experiment on the fine-tuned CNN model with
a Jerman filter for the palm vein identification task. In the
first stage, we trained the CNN with only the first part of
the network and the following max pool layer, as well as
the softmax layer, the fully connected layer, and the clas-
sification output layer, which is located at the end of the
network. The identification accuracy dropped to 95%. In the
next experiment, we added the second part of the network,
to which we connected the max pool layer. This resulted
in a significant improvement in the identification accuracy,
by 2.5%. However, adding the last part and the followingmax
pool layer achieved a relatively small improvement, of 1%.
Adding the momentum had no impact on the identification
accuracy, while adding the weight decay improved the identi-
fication accuracy by 1%. To obtain some robust and unbiased
estimates of the final CNN model’s performance on new
test samples, K-fold cross validation [61] was adopted. This
technique is commonly employed for either model selection
or evaluation in machine learning problems. The 1000 images
assigned for training and testing were divided into k (k=5)
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TABLE 8. Accuracy rate for palm vein identification.

TABLE 9. Eers for palm vein verification.

TABLE 10. Structure and processing time of different methods.

partitions of equal size. The final model was trained on four
partitions and tested on the remaining partition. This process
was repeated for each unique group so that each sample was
used once in the test set and four times in the training set.
Finally, the identification accuracy and EERs were averaged.
The identification accuracy and EER for each fold are shown
in Table 7.

VIII. DISCUSSION
The experimental results shown in Table 8 and Table 9
demonstrate the high performance of our proposed approach.

Strikingly, it can be seen that the final CNNmodel obtained
from Bayesian optimization can achieve high identification
accuracy and low EER for all the five folds shown in Table 7.

Even when the EER value is relatively high for the third
fold, it is still lower than those of related state-of-the-art
methods. This is a strong indication that the final CNNmodel
generalizes well to new data. Moreover, it can be seen that it
attained an average EER of 0.0683 and identification accu-
racy of 99.4%, which makes it superior in comparison with
state-of-the-art methods.

FIGURE 14. ROC curves for all training/test folds.

Such good performance may be explained as follows:
1) the complex features (both low-level and high-level fea-
tures) learned by the proposed CNN model are highly rep-
resentative and relevant enough to successfully discriminate
between 100 different classes. Since nearly all methods for
segmentation of the palm rely on the valley points between
fingers, the pixel locations of these valley points vary slightly
from one scan to another for the same identity. This is
attributed to the difference between hand poses with respect
to the scanner, for each scan. Due to these variations, the
segmented ROI’s for the same personwill differ in the amount
of translation. However, the proposed approach has proven
to be translation invariant. 2) the use of the Jerman filter to
enhance the vein pattern contributes to improving the model’s
performance, as demonstrated in both experiments (with and
without Jerman filter), as shown in Table 3, Fig.10, and
Fig.11. 3) Since the performance of a CNN is sensitive to the
selection of hyperparameters and these hyperparameters can-
not be manually set according to human expertise, the use of
Bayesian optimization to automate the selection of the model
structure as well as training options also contributes in finding
the best model, hence improving the model’s performance.

It is worth mentioning that existing approaches such as
those in [28], [62]–[66] did not use an optimization algorithm
to automate the selection of the hyperparameters. As a result,
an excessive amount of computation time was invested in
randomly training multiple models in the hope of finding a
fit model for palm vein authentication. Bayesian optimization
avoids unnecessarily training models and, hence, finds the
best model in a few iterations. Thus, our proposed approach is
more computationally efficient when compared to the previ-
ously mentioned works. Moreover, the existing deep learning
based-approaches, including those mentioned above, used
fixed or pretrained deep learning structures, without taking
into consideration the impact of unnecessary convolutional
layers on the model’s performance. In the present work, the
impact of adding unnecessary layers causes the network to
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overfit to the training data, as shown in Table 2. To solve this
problem, optimization of the convolutional neural network
structure (i.e., the number of convolutional layers) is per-
formed to avoid adding unnecessary convolutional layers to
the network structure. As shown in Table 10, these models not
only take into consideration the impact of unnecessary convo-
lutional layers on the overfitting problem but also the amount
of time the model takes to identify one palm vein image, since
adding multiple convolutional layers as well as too many
convolutional kernels comes at the expense of processing
time. The proposed model is computationally fast compared
to the other methods shown in Table 10, since the time needed
to identify one palm image is only about 0.0076 seconds.
This is attributed to incorporating Bayesian optimization into
the structure of the CNN, hence, building a model with the
smallest, yet optimum number of convolutional layers. All
experiments were conducted using MATLAB R2019a on a
laptop with Windows 10 (x64), Intel(R) core (TM) i7-4510
U CPU (2.0 GHz), and 6GB RAM.

In order to conduct a completely fair and representative
comparison with the existing approaches, the comparison
must include studies with similar approaches and the same
database. We considered that issue when comparing our pro-
posed approach with the existing ones shown in Table 8 and
Table 9. However, the training, validation and test divisions
are not the same, even between the existing approaches them-
selves. Otherwise, any other comparison in this paper was
conducted under the same testing conditions. Moreover, the
proposed model is still sensitive to a large amount of rotation
but this problem was solved with the robust segmentation
method we employed. A model that is robust to large rota-
tions would be more efficient for palm vein authentication.
We plan to direct our future research in this direction encom-
passing a larger database with a larger number of identities.
We also plan to implement an accurate and robust segmen-
tation method to accurately extract the vascular pattern of
the palm and use this pattern as input to a CNN to measure
the performance of the model in this case compared to the
existing works.

IX. CONCLUSION
In this paper, we have investigated the problem of palm
vein authentication with trained models and proposed a fine-
tuned deep CNN-based paradigm for palm vein authentica-
tion using Bayesian optimization. At the image preprocessing
stage, the ROI was extracted from the palm vein image and
then passed through a Jerman vessel enhancement filter to
highlight the vein pattern in the ROI. To automate the pro-
cess of manual selection of model hyperparameters, it was
important to optimize both the structure and training options.
Therefore, we proposed dividing the structure of our network
model into three main parts. Each part comprised a number of
blocks. We defined a 6-D objective function to take the num-
ber of blocks in each part as input to optimize the structure
as well as the training options. The objective function returns
the validation error to minimize it. A stopping criterion was

set based on the validation error and maximum number of
iterations. The optimization algorithm successfully found
the optimal network structure and training options in a few
numbers of iterations. The final CNN model achieved an
average identification accuracy of 99.4% and average EER
of 0.0683%, which outperformed other state-of-the-art palm
vein authentication techniques.
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