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ABSTRACT In the image processing pipelines of digital cameras, one of the first steps is to achieve
invariance in terms of scene illumination, namely computational color constancy. Usually, this is done
in two successive steps which are illumination estimation and chromatic adaptation. The illumination
estimation aims at estimating a three-dimensional vector from image pixels. This vector represents the
scene illumination, and it is used in the chromatic adaptation step, which aims at eliminating the bias in
image colors caused by the color of the illumination. An accurate illumination estimation is crucial for
successful computational color constancy. However, this is an ill-posed problem, and many methods try
to comprehend it with different assumptions. In this paper, an iterative method for estimating the scene
illumination color is proposed. The method calculates the illumination vector by a series of intermediate
illumination estimations and chromatic adaptations of an input image using a convolutional neural network.
The network has been trained to iteratively compute intermediate incremental illumination estimates from
the original image. Incremental illumination estimates are combined by per element multiplication to obtain
the final illumination estimation. The approach is aimed to reduce large estimation errors usually occurring
with highly saturated light sources. Experimental results show that the proposed method outperforms the
vast majority of illumination estimation methods in terms of median angular error. Moreover, in terms
of worst-performing samples, i.e., the samples for which a method errs the most, the proposed method
outperforms all other methods by a margin of more than 18% with respect to the mean of estimation errors
in the third quartile.

INDEX TERMS Chromatic adaptation, color constancy, convolutional neural networks, illumination
estimation, image color analysis.

I. INTRODUCTION
In digital photography, any illumination present in the scene
of interest significantly impacts the colors of the objects in
digital images. According to the image formation model [1],
the value of a pixel in an image is determined by three
functions: the spectrum of the light source, the reflectance of
the object surface, and the spectral sensitivity of the camera
sensor. If the same scene is captured with the same camera
(i.e., the reflectance of the object surface and the spectral sen-
sitivity of the camera sensor are constant) whereas the spec-
trum of the light source changes, the colors in the captured
images will most likely differ. The reason for this behavior is
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that the camera sensor is a device that can only capture the
incident light but cannot detect changes in illumination itself.
Therefore, for most digital cameras, one of the first steps
in the image processing pipeline is dedicated to achieving
illumination invariance. This process can be associated with
the ability of the human visual system to adapt to changes
in scene illumination, namely color constancy [2]. Achieving
computational color constancy has proven to be beneficial in
many image-related areas such as object recognition, scene
comprehension, digital photography, and image reproduc-
tion [3]. In order to achieve computational color constancy,
two steps are usually required. First, the scene illumination
color is estimated based on the image pixel values, and
then, in the second step, its influence on the image colors is
eliminated. Color constancy is not yet fully understood and
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modeled, and estimating the scene illumination from the
image pixels is an ill-posed problem, which is regularized by
various assumptions. During the last few years, many meth-
ods for estimating the illumination color have been proposed,
with the general assumption that the illumination is uniform
in the scene [1]. Since only one illumination vector per image
is estimated, a simple diagonal matrix with reciprocal illu-
mination values on the diagonal is usually used to eliminate
color distortion.

For a successful computational color constancy, both illu-
mination estimation and chromatic adaptation should be as
accurate and similar to the image formation model as pos-
sible. However, even though the simple diagonal matrix for
chromatic adaptation is computationally efficient and suffi-
cient for a somewhat satisfactory computational color con-
stancy, it is still an approximation. Illumination estimates can
be either imprecise or out of the range of illuminations for
which color images can be properly corrected using the cur-
rent chromatic adaptation model. It is expected that the error
in computational color constancy is higher for images that
are captured in scenes illuminated with highly colored light
sources than for scenes affected by near-white illuminations.
Such illuminations can corrupt object colors, and if their
estimates are imprecise high errors in corrected images can
be expected. In [4], it was shown that camera manufacturers
bound illuminations to a narrow region in chromaticity space
so that chromatic adaptation is never performed with highly
colored illuminations. It can be speculated that the cause
for this is the inadequacy of the chromatic adaptation model
that is unfit for the highly colored illuminations. Therefore,
in this paper, a multistage illumination color estimation com-
bined with the current simple chromatic adaptation model is
proposed. The individual stages’ estimations are restricted
from highly colored estimations so that the used chromatic
adaptation model is operating in the range of slightly colored
illuminations. The final illumination estimation is obtained
by combining all of the stage illuminations so that the final
illumination estimations can still be highly colored. With this
approach, the occurrence of high estimation errors should be
alleviated, as shown in experimental results.

For the evaluation of illumination estimation methods,
the angular error is used. It is calculated as the angle between
the ground-truth illumination vector and the estimated illu-
mination vector. Usually, the RGB color space is used so
that both vectors have three components corresponding to the
red, green, and blue image channels. The median error value
of a test dataset is usually considered the most representa-
tive statistic. Nowadays, illumination estimation methods can
achieve median error values of less than 2◦, which can be
regarded as a threshold for a sufficiently accurate illumination
estimation [5]. However, even such accurate methods in terms
of median or mean error value tend to be flawed in some
cases. The maximum error values can be as large as 10◦ or
more. Correcting an image with a highly incorrect illumi-
nation color vector can distort the image colors to such an
extent that the actual information they carry is effectively lost.

FIGURE 1. Chromatic adaptation example with highly inaccurate
illumination vector: (a) original raw image with the influence of
illumination; (b) the result of the chromatic adaptation of image (a) with
ground-truth illumination vector (0.1624 0.4533 0.3843)T ; (c) the result
of the chromatic adaptation of image (a) with inaccurate illumination
vector (0.0001 0.6528 0.3471)T . The angle between the ground-truth
vector and inaccurate illumination vector is 19.54◦. For display purposes,
images were tone mapped by using the Flash tone mapping operator [6].

An example of a chromatic adaptation with a highly incorrect
illumination vector is shown in Fig. 1.
In this paper, an illumination estimation method that

reduces maximum estimation errors, which can occur when
highly colored illuminations are present in the scene, is pro-
posed. The proposed method combines both illumination
estimation and chromatic adaptation, which are usually two
distinct steps in the image processing pipeline, to obtain more
precise illumination estimates. The global illumination vector
is estimated through a series of consecutive intermediate
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illumination estimations, and chromatic adaptations of an
input image. In each step, intermediate illumination estima-
tion is forced to a subset of illuminations that are close to
the white light, i.e., a light that does not alter image colors.
Chromatic adaptation of the input image with an estimated
intermediate illumination vector is performed, and such a
corrected image is then passed as a new input. This procedure
was embedded in a deep neural network which uses convo-
lutional architecture for the estimation of intermediate illu-
minations, and simple matrix multiplications for chromatic
adaptation of input images and aggregation of intermediate
estimates into one final illumination estimate.

The rest of the paper is structured as follows: In
Section II, an overview of related methodology is given,
Section III describes the proposed illumination estimation
method, experimental results are presented and discussed in
Section IV, and in Section V, the conclusion is given.

II. RELATED WORK
The image formation model, commonly used in com-
putational color constancy, which assumes Lambertian
reflectance can be formulated as

fc(x) =
∫
ω

I (λ, x)R(λ, x)ρc(λ)dλ, (1)

where each pixel x in the image f with three color channels
c ∈ {R,G,B} is computed as the integral of the product of
light source spectrum I (λ, x), surface reflectance R(λ, x), and
camera sensor sensitivity ρc(λ) across all wavelengths λ in the
visible light spectrum ω.

A. ILLUMINATION ESTIMATION
The first step in computational color constancy is illumination
estimation, which aims to estimate the vector of the scene illu-
mination from image pixels. From (1), it can be observed that
illumination can be determined by knowing the light source
spectrum I (λ, x) and camera sensor sensitivity ρ(λ). In the
case of global illumination estimation methods, i.e., when it
is assumed that there is one dominant light source present
in the scene, spatial information x is disregarded, and the
illumination vector is defined as

e =

eReG
eB

 = ∫
ω

I (λ)ρ(λ)dλ. (2)

The estimation of e is an ill-posed problem as usually there is
no prior knowledge about I (λ) and ρ(λ) values.

To make the problem of illumination estimation feasible,
illumination estimation methods are often based on some
assumptions. One group of illumination estimation methods
are methods such as White-Patch [7], [8] and its improve-
ments [9]–[11], and gray world assumption-based methods
that include Gray-World [12], Shades-of-Gray [13], Gray-
Edge [14], Weighted-Gray-Edge [15]. Although simple and
do not generalize well, these methods are suitable for hard-
ware implementation since they use simple image features

and statistics, which are fast to calculate and have insignif-
icant computational complexity.

On the other hand, there are machine-learning based
illumination estimation methods that require computational
models to be trained on data. The most recent examples are
methods based on deep learning. These methods achieve the
most accurate estimates of scene illumination but are highly
dependent on training data distribution. Large and diverse
datasets are prerequisites for creating deep learning methods
that can generalize well. In comparison with illumination
estimationmethods in the first group, learning-basedmethods
require more computational resources and have more com-
plex structures. The earliest deep learning architectures for
illumination estimation were very shallow, containing only
a few convolutional and fully connected layers [16], [17].
Content-based convolutional neural networks that combine
weighted local illumination estimations have been proposed
in [18]–[20]. In [21], [22], illumination estimation was cast
into a deep learning classification problem. In [23], from an
image, two illuminations were estimated using one convolu-
tional neural network, and then using another convolutional
neural network, a more probable one was chosen. The prob-
lem of dependency of illumination estimation methods on the
camera sensor was tackled in [24], where two convolutional
networks were used for sensor space mapping and illumina-
tion estimation, respectively. Other learning-based methods
use Bayesian learning [25], color moments [26], gamut map-
ping [27]–[29], spatial localizations [30], [31], visual infor-
mation of high level [32], illumination space restrictions [4],
[33]–[35], gray pixel detection [36], regression trees with
simple color features [37], and others.

B. CHROMATIC ADAPTATION
The second step in computational color constancy is chro-
matic adaptation, which is used to change the color cast in
images due to the illumination color. It was shown that using
a diagonal matrix can be sufficient for a successful chro-
matic adaptation [38]. Namely, following this simplification,
which is also known as the von Kries model [39], camera
sensor responses are considered independent. Then, for an
image pixel p =

(
pR pG pB

)T , a new color corrected pixel
p̂ =

(
p̂R p̂G p̂B

)T can be computed as

p̂ = Cp, (3)

whereC denotes the correction matrix. In general, the correc-
tion matrix C can be computed as

C =

eR/eR 0 0
0 eG/eG 0
0 0 eB/eB

 , (4)

where e =
(
eR eG eB

)T denotes the illumination vector that
should be removed from an image, and e =

(
eR eG eB

)T
denotes the vector of the desired illumination. In compu-
tational color constancy, the input image should be pro-
cessed so that it appears as it was captured while illuminated
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with a white light source, i.e., the light source for which
eR = eG = eB. Therefore, e =

(
1 1 1

)T is used.

III. PROPOSED METHOD
The proposed method estimates the illumination vector from
a raw input image in multiple iterations. In each iteration,
a restricted intermediate illumination vector is computed
from the input image. The estimated vector is then used for
chromatic adaptation of the input image according to (3).
In the next iteration, the corrected image is used as input.
In the end, intermediate illumination vectors estimated in the
iterations are element-wise multiplied to produce the final
illumination vector that corresponds to the scene illumination
captured in the original raw input image. The pseudocode
of the proposed illumination estimation method is given in
Algorithm 1.

Algorithm 1 Iterative Illumination Estimation
Input: image I, convolutional neural network CNN , iter-

ation number N
Output: illumination vector e

1: e←
(
eR eG eB

)
←
(
1 1 1

)
2: for k ← 1 to N do
3: e(k)← CNN .estimate(I)
4: e← e ◦ e(k)

5: C← diag(1/e(k)R , 1/e
(k)
G , 1/e

(k)
B ) F Eq. (4)

6: Ix,y← CIx,y ∀x, y F Eq. (3)
7: I← 1

maxx,y I · I
8: end for
9: e← 1

eR+eG+eB
· e

In each iteration, an intermediate illumination vector is
estimated using the convolutional neural network. Network
parameters are the same in each iteration. Convolutional
blocks of the VGG16 [40] network architecture were used
as a feature extractor,1 on top of which one additional con-
volutional layer was placed. This layer has three filters with
a kernel of size 1 × 1. Each filter corresponds to one of
three color channels in the RGB image: red, green, and blue.
Output activation was a sigmoid function. Global average
pooling, which calculates the average across feature maps,
was used to accumulate feature maps computed by the last
convolutional layer, thus producing one value for each color
channel. Global average pooling yields the intermediate illu-
mination vector. On top of this, chromatic adaptation was
implemented, which uses the current network input and illu-
mination estimate to compute the network input in the next
iteration.

1It was experimentally determined to use the VGG16 network as a feature
extractor. The architecture of SqueezeNet [41] convolutional neural network
was also considered, which matches the accuracy of AlexNet [42] architec-
ture but with fewer weights. However, the VGG16 network outperformed
such simpler architectures.

A. DATA NORMALIZATION
The last convolutional layer in the proposed network archi-
tecture uses a sigmoid activation function that ensures that
intermediate illumination estimates are all in the first octant
in three-dimensional illumination solution space. However,
the codomain of a sigmoid function is in the range from zero
to one. When such values are used for chromatic adapta-
tion, due to the division, the values in the corrected image
may span in a different range than original image values.
Therefore, in each iteration, the input image is normalized by
dividing every image value by the image maximum. More-
over, input normalization was shown beneficial for efficient
backpropagation [43].

Estimated intermediate illumination vectors in each itera-
tion were not normalized using the standard normalization in
computational color constancy research, i.e., the division of
illumination vector with its sum. The reasoning behind this
is that the proposed method combines illumination estima-
tion, chromatic adaptation, and the abovementioned image
normalization. Namely, if chromatic adaptation is performed
with normalized illumination vector and the resulting image
is then normalized as well, the factor which would be used
to normalize the illumination would be canceled out. There-
fore, normalizing intermediate illumination vectors would
not have any effect.

B. NETWORK TRAINING
For the training of the proposed illumination estimation net-
work architecture, a custom loss function was used. It is based
on the cosine of the angle2 between two vectors and consists
of two parts. The first part of the custom loss function is
dedicated to computing the error between ground-truth illu-
minations and the end-result of the network. The second part
is used to control the behavior of intermediate illumination
estimates in each iteration by forcing them to be close to
the white light. This is achieved by minimizing the angle
between intermediate illumination estimates and the vector of
the white light. However, the extent of bounding to the white
light is not the same in each iteration. With each subsequent
iteration, intermediate illuminations have to be closer to white
light. That is achieved by assigning the weight to the loss
value in each iteration as

wk =
2k−1∑N−1
j=0 2j

, (5)

where k ∈ {1, . . . ,N } denotes the current iteration, and N
denotes the number of iterations.

2The most direct measure of error in illumination estimation is the angle
between the ground-truth illumination value and the estimated illumination
value. Taking into account that both the ground-truth and the estimation
are vectors, the angle between them, once they are both normalized to
unit length, is computed as the inverse cosine (cos−1) of their dot product.
According to [44], using cos−1makes the derivative of the loss functionmore
complex and infinite when the absolute value of the dot product is equal to
one, and therefore, using 1− cos θ as loss function is more appropriate.
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FIGURE 2. The illustration of the forward pass of the proposed method for three iterations. Arrows are enumerated in the order of execution, starting
from 1. Different line styles denote different iterations: − − − denotes the first iteration steps, · · · denotes the second iteration steps, and − · − denotes
the third iteration steps. The final estimation in step 11 is computed in parallel once the last iteration ends.

In both parts of the loss function, for a mini-batch of M
input samples, the loss L was calculated as

L(E, Ê) =
1
M

M∑
m=1

(
1−

E(m)
· Ê(m)

‖E(m)‖2‖Ê(m)‖2

)
, (6)

where E and Ê denote batches of ground-truth and estimated
illumination vectors, respectively, mth ground-truth and esti-
mated illumination vectors in the mini-batch are denoted as
E(m) and Ê(m), respectively, ’·’ is the vector dot product, and
‖.‖2 is vector L2 norm.

The total loss for a mini-batch of images is the sum of the
end-result loss and weighted intermediate estimation losses
as follows

L(E, Ê)+
N∑
k=1

wkL(U, Êk ), (7)

where U and Êk denote batches of white illumination vec-
tors and illumination vectors estimated in k th iteration,
respectively.

The forward pass in the proposed approach follows the
steps in Algorithm 1. It is crucial to emphasize that the for-
ward pass consists of multiple iterations and that the weights
of the network are shared across iterations, i.e., the same set
of network weights is used in each iteration in the forward
pass. This method of the forward pass can be thought of
as recurrent since the network is gradually computing the
solution from multiple variations of the input image while
keeping the set of weights unchanged. Each iteration results
in an image with a slight modification of colors obtained
by performing the chromatic adaptation of the input in that
iteration with illumination estimate, which is also computed
in that iteration. The modified image is the input for the
succeeding iteration. An illustration of the flow of the pro-
posed method for three iterations is shown in Fig. 2. The only

form of supervision during network training is imposed with
the loss function, and, in each iteration, in the forward
pass, the network estimates intermediate illuminations, which
result in a more accurate final estimate.

With the complex form of the forward pass, the backward
pass in the proposed approach is complex as well. This is
because the final illumination estimate in the forward pass is
the product of intermediate estimates, the loss function penal-
izes each intermediate estimate, and network weights are
shared across iterations. Therefore, the gradients propagating
through a network layer consist of the gradients induced
by the error of the final estimate and by the error of each
intermediate estimate with respect to the white light.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
Cube+ dataset [45] was used to train and test the proposed
illumination estimation network and the iterative procedure.
It is a dataset containing 1707 images labeled for global
illumination estimation. It consists of images of outdoor
scenes in day and night and images of indoor scenes with
artificial illuminations. Raw images in the Cube+ dataset are
2601 pixels wide and 1732 pixels high. For the reduction of
the computational cost and to utilize as many resources as
possible, all images have been resized to the size of 224×224
pixels. Additionally, by resizing the images to the specified
shape, the input shape of the pre-trained VGG16 network was
matched. Apart from image resizing, standard pre-processing
steps for the Cube+ dataset were applied. Pre-processing
steps include calibration object masking, black level subtrac-
tion, and overexposed pixel removal.

The angular error was used to evaluate the network accu-
racy. It is computed as the angle between the ground-truth
illumination vector and the estimated illumination vector as
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follows

A(e, ê) = cos−1
(

e · ê
‖e‖2‖ê‖2

)
(8)

For comparison with existing methods, a standard evalua-
tion procedure for the evaluation of illumination estimation
methods was followed. Mean, median, trimean, best 25%,
worst 25%, and average [30] error statistics were computed
on the test set. However, the focus of this paper is on reduc-
ing maximum estimation errors which can occur in cases
of images with highly colored illuminations. By forcing the
intermediate illumination estimates to be as close to the white
light as possible, the reduction of maximal errors is expected.
Therefore, the worst cases were additionally explored. Since
other illumination estimation methods do not have maximal
estimation errors reported, comparison with them could only
be conducted by using the worst 25% statistic.

The following convolutional neural network parameters
were used: learning rate 1 × 10−4, number of epochs 200,
min-batch size 8. The feature extraction part that corresponds
to the VGG16 network was initialized with weights from the
Keras Applications module [46] which were pre-trained on
the ImageNet [47] dataset. The newly added convolutional
layer was initialized by using the Xavier initialization [48].

B. DETERMINING THE NUMBER OF ITERATIONS
The optimal number of iterations for the proposed method
was experimentally determined. Cube+ dataset was used for
this purpose. It was split into three parts: train, test, and
validation. The train part of the dataset was used to train
the proposed network architecture for a different number of
iterations. In each experiment, training parameters were the
same, as described in subsection IV-A. The optimal number
of iterations was obtained by evaluating the trainedmodels on
the validation part of the dataset and looking for the one with
the lowest median angular error. Once determined, the model
with the optimal number of iterations was evaluated on the
test part of the dataset, and these results are reported in
subsection IV-C.

An important role in determining the optimal number of
iterations is the model complexity, which increases in accor-
dance with the number of iterations. The higher the number
of iterations is, the more computational memory is needed.
Since the proposed method was trained and tested by using
the GPU, the size of the GPU memory was a limiting factor
for the conducted experiments.

Taking into account method accuracy and GPU memory
limits, models with the number of iterations in the range
from one to nine were considered, and, as the optimal one,
the model with seven iterations was chosen. Therefore in
the proposed method and experimental results the number of
iterations and, thus, the number of intermediate illumination
estimations is set to seven. For comparison, the model perfor-
mances for a different number of iterations on the test part of
the dataset are shown in Fig. 3.

FIGURE 3. Performance of the proposed method for a different number
of iterations with respect to the median and mean error statistics.

The proposed multistage approach aimed to achieve
the asymptotic convergence of the illumination correction
towards no correction. In other words, the preliminary limit-
ing factor was only the amount of the available GPUmemory.
However, from the experiments, it can be seen that such con-
vergencewas not achieved since bothmean andmedian errors
start to increase after seven iterations. There are several pos-
sible factors for such behavior, with the main one being the
imperfection of the simple chromatic adaptationmodel. Other
possible factors include floating-point arithmetic round-
ing and neural network capacity. Therefore, the proposed
search for determining the optimal number of iterations was
conducted.

C. METHOD PERFORMANCE
1) COMPARISON WITH EXISTING ILLUMINATION
ESTIMATION METHODS
In Table 1, the illumination estimation methods’ accuracy on
the Cube+ dataset is shown. For evaluation and comparison
of the proposed method, final network estimation, i.e., the
product of intermediate illumination estimates is used. It can
be seen that the proposed method outperforms all other meth-
ods on average and in worst-case scenarios. Additionally,
both the proposed method and Color Beaver [4] have com-
parable median and average error statistics that outperform
other methods by a notable margin.

The proposed method was tested on a system with Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz central processing
unit. The average execution time on the test set using only
one core was 2.04 seconds per input image. The proposed
model has 14,716,227 weights which is less compared to
deep learning-based illumination estimations methods eval-
uated on the Cube+ dataset in [19], [20], [22], which all
use VGG16 network structure for feature extraction, but have
more complex additional layer structures, such as attention
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FIGURE 4. Examples of cumulative estimation trajectories with respect to the ground-truth in rb-chromaticity space for the proposed approach with
seven iterations: (a) cumulative estimation trajectories in comparison to all ground-truth chromaticities; (b), (c), and (d) magnified trajectories for
examples 1, 2, and 3 in (a), respectively.

FIGURE 5. Examples of intermediate illumination estimation trajectories with respect to the white light in rb-chromaticity space for the proposed
approach with seven iterations: (a) estimation trajectories in comparison to white light chromaticities; (b), (c), and (d) magnified trajectories for
examples 1, 2, and 3 in (a), respectively. Trajectories correspond to the same examples as in Fig. 4.

TABLE 1. The comparison of angular error statistics of different color
constancy methods on the Cube+ dataset [45] (sorted by Avg., lower is
better).

blocks, or have multiple instances of the same network struc-
ture with different weights.

2) METHOD BEHAVIOR VALIDATION
For the rest of the paper, it is important to define the term
cumulative estimate. A cumulative estimate in iteration k is
the element-wise product of all intermediate estimates up
to and including the iteration k . In other words, cumulative

estimate in the iteration k can be thought of as the final output
of the network if the total number of iterations is equal to k .

The proposed method introduces iterative illumination
estimation which forces intermediate illumination estimates
computed in each iteration to be close to the white light and
when multiplied element-wise altogether to be equal to the
scene illumination. By the construction of the method, it is
expected for intermediate estimates to be closer to the white
light with each iteration. Also, it is expected for cumula-
tive estimates to be closer to the ground-truth as iterations
progress. Neither intermediate estimates nor cumulative esti-
mates should fluctuate in illumination space. Such behavior
can be verified in Fig. 4, and Fig. 5 where few examples of
estimation trajectories for different input images with respect
to the ground-truth and white light are shown. A trajec-
tory represents the path enclosed by either intermediate or
cumulative estimates through iterations. In Fig. 4 cumulative
estimations with respect to the ground-truth are considered,
and in Fig. 5 intermediate estimations with respect to the
white light are considered.

Since the proposed method uses estimates from multiple
versions of an input image to compute the color of scene
illumination, naturally, a question of the benefit of using
more estimations compared to a single estimate arises. There-
fore, the proposed network architecture was also trained for
one iteration only. The same set of parameters was used
as described in subsection IV-A: learning rate 1 × 10−4,
epoch 200, and mini-batch size 8. When only one iteration
is used, chromatic adaptation is not performed, and the first
intermediate estimate is actually the final network estimate.
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TABLE 2. The comparison of angular error statistics of the proposed
method and the baseline (lower is better).

TABLE 3. The comparison of angular error statistics of the proposed
method and the baseline on worst-performing samples for the baseline
on the test set (lower is better).

TABLE 4. The comparison of angular error statistics of the proposed
method and the baseline on worst-performing samples for the proposed
method on the test set (lower is better).

In other words, illumination is estimated from the original
image directly. Consequently, calculating the loss during the
network training consisted only of the first part of the loss
calculation, which is based on the cosine of the angle between
the ground-truth and final illumination estimation. In further
text, this experiment with one iteration will be referred to
as the baseline. In Table 2, the comparison of the angular
error statistics of the baseline with the proposed method is
shown. It can be seen that the proposed method outperforms
the baseline, especially in the case of the mean statistic and
worst-performing samples.

To further validate the benefit of the proposed method,
additional comparisons were made. In Table 3, estimation
error statistics for the proposed method and the baseline
method on worst performing samples for the baseline are
shown. Worst performing samples are samples with estima-
tion angular error higher than the value of the worst 25%
statistic on the whole test set. For the baseline method, that
value is 3.73◦, and 33 samples have a higher error value.
For 90.01% of such samples, the proposed method outper-
forms the baseline. Considering only the samples for which
the proposed method is more accurate, the mean absolute
error difference between estimates of the proposed method
and estimates of the baseline is 2.43◦, and when only the
samples for which the baseline is more accurate are con-
sidered the difference is 0.73◦. The same experiment was
repeated with a different set of worst-performing samples.
In Table 4, estimation error statistics for the proposed method
and the baseline method on worst performing samples for
the proposed method are shown. Worst performing samples
were sampled using the same criterion as in the previous

TABLE 5. The comparison of angular error statistics of the proposed
method and the baseline on the worst-performing samples for both the
proposed method and the baseline on the test set (lower is better).

FIGURE 6. The distribution of highly colored ground-truth illuminations
and slightly colored ground-truth illuminations in the test set.

example. This time the threshold value was 3.20◦ since that
is the value of the worst 25% statistic on the whole test
set for the proposed method. Even though these samples
were the ones for which the proposed method had the low-
est accuracy, for 45.71% of samples the proposed method
outperformed the baseline. The mean absolute error dif-
ference between proposed method estimates and baseline
estimates when considering only the samples for which the
proposed method was more accurate was 1.45◦, and 2.04◦

when considering only the samples for which the baseline
was more accurate. Finally, estimation error statistics for the
proposed method and the baseline method on the intersection
of worst-performing samples for both the proposed method
and the baseline are given in Table 5. It can be seen that the
proposed method outperforms the baseline by a significant
margin.

Further method validation includes the comparison of
method performance on images in two extrema. One extreme
is images of scenes in artificial illuminations where scene
illumination significantly differs from white illumination (in
further text highly colored images). The second extreme
contains images in daylight where the illumination was near
white, i.e., illumination did not have a significant effect on
image colors (in further text slightly colored images). To sam-
ple highly and slightly colored images, firstly, the angular
distances between the ground-truth illuminations in the test
set and a white illumination were computed according to (8).
Then, highly colored images were sampled by taking images
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FIGURE 7. Box plot of angular errors of the proposed method and the
baseline on highly colored images and slightly colored images.

FIGURE 8. Mean angular error between cumulative estimates in each
iteration and ground-truth illuminations for highly colored images and
slightly colored images.

with corresponding angular distance within the 5% highest
values, and slightly colored images were sampled by taking
images with corresponding angular distance within the 5%
lowest values. In Fig. 6, rb-chromaticities of ground-truth
illuminations separated based the classification of highly and
slightly colored images are shown.

In Fig. 7, the box plot of angular errors for the pro-
posed method and the baseline on highly colored images and
slightly colored images is given. For both groups of images,
the proposed method outperforms the baseline with median
angular errors 0.88◦ and 1.78◦ for highly colored images and
slightly colored images, respectively. Median angular errors
for the baseline were 1.15◦ for highly colored images and
2.01◦ for slightly colored images.

Since the proposed method reduces maximal estimation
errors by forcing the intermediate illumination estimations to

FIGURE 9. Mean angular error between intermediate estimates in each
iteration and a white light illumination for highly colored images and
slightly colored images.

be close to the white light, it is expected that the convergence
to the ground-truth illumination is slower on highly colored
images than on slightly colored images. Such behavior is
shown in Fig. 8 and Fig. 9. In Fig. 8, it can be seen that
for slightly colored images cumulative illumination estimates
approach close to ground-truth values much faster than for
highly colored images and, what is more important, after the
convergence the angular error does not increase in remaining
iterations. In Fig. 9, the same trend can be observed with
respect to the convergence of intermediate illumination esti-
mates on highly colored images and slightly colored images
towards the white light.

V. CONCLUSION
Illumination estimation is an ill-posed problem and as such,
it can not be explicitly solved. Moreover, in computational
color constancy, it is usually followed by a chromatic adap-
tation that uses an illumination estimation expressed as a
diagonal matrix which assumes independence of image color
channels. Both processes are simple and may fail in some
cases but when combined together in a controlled manner
they could be used for iterative illumination estimation. In this
paper, such an illumination estimation method is proposed.
It combines illumination estimation and chromatic adaptation
in a sequence. The convolutional neural network is used to
compute multiple intermediate illumination estimates from
an input image, which, when multiplied, correspond to the
real scene illumination. By forcing the intermediate illumi-
nation estimates to be close to the white light, the proposed
method avoids the estimation of highly inaccurate illumi-
nations. The experimental results successfully validate the
proposed method and its accuracy, especially in the case
of worst-performing samples. Future research will include
looking for an early stopping mechanism that should stop the
method from entering further iterations if it already converged
to the best solution it can calculate.
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