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ABSTRACT This paper introduces a new methodology aimed at comfort for the driver in-the-wild
multimodal corpus creation for audio-visual speech recognition in driver monitoring systems. The presented
methodology is universal and can be used for corpus recording for different languages.We present an analysis
of speech recognition systems and voice interfaces for driver monitoring systems based on the analysis of
both audio and video data. Multimodal speech recognition allows using audio data when video data are
useless (e.g. at nighttime), as well as applying video data in acoustically noisy conditions (e.g., at highways).
Our methodology identifies the main steps and requirements for multimodal corpus designing, including the
development of a new framework for audio-visual corpus creation. We identify the main research questions
related to the speech corpus creation task and discuss them in detail in this paper. We also consider some
main cases of usage that require speech recognition in a vehicle cabin for interaction with a driver monitoring
system. We also consider other important use cases when the system detects dangerous states of driver’s
drowsiness and starts a question-answer game to prevent dangerous situations. At the end based on the
proposed methodology, we developed a mobile application that allows us to record a corpus for the Russian
language. We created RUSAVIC corpus using the developed mobile application that at the moment a unique
audiovisual corpus for the Russian language that is recorded in-the-wild condition.

INDEX TERMS Driver monitoring, automatic speech recognition, multimodal corpus, human–computer
interaction.

I. INTRODUCTION
Last years, modern smartphones became perspective multi-
functional powerful devices intended not only for calls and
text messages, but also for a variety of different tasks includ-
ing informational, multimedia, productivity, safety, lifestyle,
accessibility related applications, and many others. Most
modern smartphones already have a set of built-in sensors,
sensing environment with readings of physical quantities.
Essentially, they include a video-based camera, accelerom-
eter, gyroscope, magnetometer, GPS, lightness, microphone,
and proximity sensors. Because of their affordable low price,
wide set of embedded sensors, and small sizes, smartphones
are gaining popularity for building driver monitoring systems
at a large scale.

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

Driver monitoring systems have become more and more
popular in the last decades [1]. Such systems implement the
functionality of dangerous states detection in vehicle cabin
as well as driver style analysis based on the current situ-
ation and/or external factors [2]. Since such systems have
to interact with the driver during the vehicle control the
speech recognition based on human-computer interfaces has
to be used to interact with the driver without distracting
him/her from the road. In case the driver monitoring system
detects drowsiness dangerous state we propose to use ques-
tion/answer games to prevent the driver from sleeping. The
smartphone that determines drowsiness dangerous state can
be used for question/answer game implementation with the
driver.

Modern speech recognition technologies [3] allow using
of smartphone capabilities for the creation of human-
computer interfaces that communicate with the human-based
on speech commands. At the same time, some methods
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provide possibilities of emotional classification based on
human speech analysis [4]. Modern smartphones have built-
in graphics processing unit (GPU) modules and together with
the sensors include all required functionality to implement
these functions. We implemented a related work analysis in
the topic of driver monitoring systems based on smartphone
sensors to identify the main scenarios the designed speech
recognition system should support.

In the paper, we review speech recognition approaches
based on audio and video data that allow us to identify meta-
parameters we should support our corpus creation. In recent
years, automatic speech recognition by using both audio and
video information streams has become a very active research
topic, due to the ability of such approach to improving the
accuracy and robustness of recognizing uttered speech.Multi-
modal speech recognition allows using of audio data at night-
time when the video data cannot be used as well as video
data in noisy conditions (e.g., highways).We analyze existing
at the moment accessible corpora for audio-visual speech
recognition and identify requirements for the corpora that can
be used for speech recognition system development in vehicle
cabin for the driver monitoring system. We identify the main
use cases for a drivermonitoring system that requires a speech
recognition interface and discusses the vocabulary for the
corpus. We discuss the mobile application design that we
developed to record the corpora using several smartphones.
Based on a related research review we concluded that we
expected to record a corpus similar to AVICAR dataset [5].
This dataset is more related to the task of speech recognition
based on human-computer interaction interface development
in the vehicle cabin. Contrasting toAVICARwe identified the
limited vocabulary and we will record the corpus in Russian
language. AVICAR dataset supports only the English one.
We expect that limited vocabulary will allow increasing the
accuracy of speech recognition. In addition, we offer the use
of various audio tools to prevent the driver from falling asleep.
Based on the software and hardware that is available to us,
we describe the prevention of falling asleep through word
games.

We identify that the main contribution of the paper is
to develop a methodology for corpus design as well as a
software prototype for multimodal corpus creation for audio-
visual speech recognition in driver monitoring systems.

We formulate the following research questions (RQ) that
we answer in the paper.
• RQ1: What modern technologies are used for audio-
visual speech recognition?

• RQ2:Which parameters are important to corpus creation
for audio-visual speech recognition in a vehicle cabin?

• RQ3: How can the dialog-based interaction with the
drowsy driver be used in the driver monitoring system
to avoid sleepiness?

• RQ4: Which vocabulary should be supported for corpus
creation?

The proposed methodology is convenient for the driver and
provides for him/her a simple and effective way to record

the data in-the-wild conditions. In the scope of the software
prototype for the corpus recording system, one smartphone
guides the driver what he/she needs to say and another one
is synchronized with the first one and both of them are
recorded the audio & video. Together with the audio/video
data, we keep in the corpus driver monitoring data that allows
us to recognize the context situation the driver pronounces the
phrase.

The rest of the paper is organized as follows. Related
research in the topics of driver monitoring systems based
on smartphone sensors, speech recognition systems in the
vehicle cabin, and corpora for audio-visual speech recogni-
tion are presented in Section 2. We divide them into several
groups according to the data they use for monitoring driver
behavior: visual-based data utilizing data obtained from a
video camera; non-invasive data-based approach focused
on measuring motion and position data; physiological data
describing human behavior while driving (see subsection
2.1). In Subsection 2.2 we highlighted that more and more
researchers are interested in a wide range of applications for
automatic speech recognition (ASR) connecting humans and
computers. In this regard, ASR in automotive voice naviga-
tion systems is highly popular and important. Modern reliable
voice navigation systems allow providing additional safety
for the driver by reducing the probability of driver distraction.
Moreover, the dialogue system has the ability to interact with
the driver in case of drowsiness to prevent sleepiness. In Sub-
section 2.3 we analyze a total of 50 databases accessible in
modern research papers and highlight the top 10 for detailed
review. The amount of acoustic-only speech datasets exceeds
the number of audio-visual datasets multiple times. However,
they are out of the scope of the presented study. Authors of the
most considered papers record speech corpora in quiet office
conditions. Such situation practically eliminates their useful-
ness for training models designed for deployment in noisy
vehicle cabin conditions. We discuss the speech recognition
vocabulary in Section 3.We define vocabulary both to support
voice commands the driver uses to interact with the system
and to support dialog-based question/answer games that the
system proposes to the driver in order to detect the dangerous
drowsiness state. We propose a corpus creation methodology
in Section 4. It includes two smartphone and cloud services.
The smartphone allows recording the audio and video data
from different angles. We synchronize the data and send it
to the cloud service for further processing. We discussed the
corpus creation in Section 5 and shows the corpus structure
as well as provide the link to the corpus portal. We discuss the
research questions in Section 6. The conclusion summarizes
the paper and contains the main discussion of the results.

II. RELATED WORK
We consider modern research has been done in the following
main topics that are related to the problem domain: driver
monitoring systems based on smartphone sensors, speech
interfaces in the vehicle cabin, and available audio-visual
speech recognition corpora recorded in the vehicle cabin.
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A. SMARTPHONE-BASED DRIVER MONITORING
The research study [6] utilizes different sources of visual-
based information to detect a driver’s drowsiness state as
well as, to predict when he/she reaches a given threshold
of drowsiness. Authors explore a combination of measured
behavioral and physiological indicators such as head and eye-
lid movements, percentage of time the driver’s eyes remain
closed (PERCLOS), heart rate, as well as recorded driv-
ing behavior, including speed of the vehicle, steering wheel
angle, and position on the road lane. This kind of parame-
ters may potentially affect dangerous state recognition and
improve accuracy and prediction of drowsiness evaluation.
Authors developed two models built on utilizing neural net-
works to determine and predict a person’s drowsiness rate
every minute. Data for these models were provided during
the experiments conducted with participants who drove a
car simulator under certain conditions. Summarizing study
outputs, gaze, and head movements, including other kinds of
information, including driving time, showed the best results
in the prediction of the time when the driver will become
distracted, as well as detection of the current drowsiness level.

In other researches, the authors of the paper [7] propose
a method for recognizing a driver’s drowsiness state based
on analyzing driving actions utilizing audio devices inte-
grated into smartphones. This method can detect a dangerous
driver’s behavior, including nodding, yawning, and abnormal
operating of the steering wheel on the device in real-time.
In this case, the proposed approach uses smartphone micro-
phones to collect audio signals generated by speakers in real-
time and splits audio-signals into separate frames. In order
to identify different levels of drowsiness state, the authors
analyzed unique patterns of Doppler shift with the aid of the
sliding window algorithm. The outcome of the research study
showed that different drivers demonstrate similar patterns
based on the data collected in natural driving situations. This
research proposed two separate classifiers, where the first one
is responsible for short-term prediction, including nodding
and yawning, while the other one is for long-term prediction,
utilizing the steering wheel. One of the most distinctive fea-
tures of this work is the usage of long short-term memory
networks, which in its turn considers not only the current
frame but also several previous frames to make a prediction.

A study [8] describes the monitoring of abnormal driv-
ing behavior and recognizing drowsiness, distraction, and
gaze direction states. The presented approach utilizes facial
landmarks to detect eye closure through eye aspect ratio and
PERCLOSmeasurements as well as yawns with the aid of the
ratio of the height of the mouth to its width. Authors propose
to recognize the distraction state when the driver uses the
smartphone while driving. They propose to use a pre-trained
deep neural network YOLOv2 on the COCO dataset. This
approach was tested using a smartphone camera solution.

Authors of the paper [9] researched the impact of the
smartphone-based driver assistance system on driving behav-
ior while the driver is impaired by the use of mobile social
networking applications. The developed approach uses the

driving simulator that replicates the car structure and its parts
and includes the following modules. For a driver’s behav-
ior analysis, the researchers utilized the eye-tracking system
Tobix X120 in order to show what people are looking at
exactly. Authors use a smartphone to continuously analyze
images from the front-facing camera to detect the presence
of the head and eyes of the driver in the scene and alert
him/her by a single beep of 1250 ms. Authors use a smart-
phone to track a driver’s behavior, avoid distracting tasks and,
thereby, increase driving performance. The data for the study
describes a driver’s behavior obtained with the aid of a video
camera and eye-tracking system.

The study [10] considers the driver’s behavior classifi-
cation tasks for advanced driver assistance systems. In this
research, the authors presented the neuro-fuzzy system to
evaluate driving behavior based on their similarities to fuzzy
patterns. The authors propose to use sensor fusion for deter-
mining types of driver maneuvers, including lane change,
left/right turns, and U-turn. Accelerometer, gyroscope, and
magnetometer provided initial data source for these maneu-
vers in a form of raw data readings, which are measurements
of velocity, magnetic field, and rotation velocity, respectively.
The output results of the proposed approach are two distinct
scores, which are safe and aggressive driving scores. The
results of this study demonstrate that the estimation of driving
behavior plays an important role in increasing a driver’s
safety.

In other recent work [11] researchers propose an approach
utilizing smartphone sensor data (acceleration in m/s2 with
an accelerometer, angular velocity in rad/sec with gyroscope,
and speed and vehicle position with GPS) recognizing unsafe
driving styles based on a two-stage clustering approach and
using the information on harsh events occurrence, acceler-
ation profile, mobile usage, and speeding. This approach
consists of the following steps: initially, clustering is applied
in order to separate aggressive from non–aggressive trips;
a second level clustering aided to distinguish normal trips
from unsafe trips; thereby, trips were classified into six dis-
tinct groups ranked by the importance of driving safety:
safe, aggressive, risky (speeding), distracted (mobile usage),
aggressive/risky, and aggressive/distracted behavior. The fur-
ther analysis of driver behavior in relation to the grouping of
their trips indicated that drivers cannot maintain a stable driv-
ing profile through time, or, in other words, drivers behave
differently every time.

One of the main causes of road accidents is drunk driving.
Authors [12] propose a driver monitoring system intended for
recognizing road dangerous situations and increasing driver’s
safety. The developed monitoring system of driver’s health
utilizes physiological parameters, including blood pressure,
body temperature, heart rate, and other kinds of information
obtained from vehicle sensors, and the ones that are inte-
grated inside the smart band that the driver wears. Basically,
the developed system includes the pressure sensor on the
driver’s seat, a non-contact infrared temperature sensor, and
humidity sensor on the left side of the rearviewmirror, a video

34988 VOLUME 9, 2021



A. Kashevnik et al.: Multimodal Corpus Design for Audio-Visual Speech Recognition

camera, and a MQ-3 alcohol sensor component integrated
inside the steering wheel. It also includes a smart band worn
by the driver that uses the photoplethysmography method
focused on the reading of heartbeat information, and the
ARM control board responsible for analyzing and uploading
data to it. AnAndroid-based application shows different types
of the driver’s health data, monitors conditions of dangerous
situations and transmits information to the remote server. In
the situation when a drunk or fatigue state is found, a driver
receives audible alerts and reminders. The authors of the
paper demonstrate low power consumption and low price of
their system.

Another study [13] presents a non-invasive method for
recognizing precise cues in the voice allowing to describe
the state of a driver and measure sleepiness state. Exper-
iments were conducted with the aid of patients having a
suspicion of excessive daytime sleepiness who were required
to read six different texts at a different time of the day.
Along with it, the patients filled the Karolinska Sleepiness
Scale [14] after reading texts. The audio files recorded during
these sessions were divided into segments with length in a
range of 50 seconds to 2 minutes. Following audio features
were directly extracted from each recording to measure the
patient’s sleepiness: the duration of voiced parts, the percent-
age in the duration of voiced parts, the duration of vocalic
segments, the percentage in the duration of vocalic segments.
Other features were calculated on each voiced segment to
characterize harmonic sounds and include descriptive values
(frequency, power, bandwidth) of harmonics and formants;
fundamental frequency and intensity; cepstral peak promi-
nence; and Harmonics-to-noise ratio.

There are certain research studies leveraging cloud tech-
nologies in human behavior monitoring. One of them [15]
presented a cloud-based vehicle data acquisition and analytic
system intended for real-time driver behavior monitoring,
trip analysis, and vehicle diagnostic. It consists of Blue-
tooth on-board diagnostics port, a mobile application on the
driver’s smartphone, and a cloud-based service. Authors use
the developed complex event processor at both smartphones
and the cloud platform to recognize unsafe driving and dan-
gerous situations. Also, the system notifies a driver about
such situations. Vehicle data are collected via OBD port and
sent to the cloud using a smartphone connected to 3G/4G
cellular network. The cloud platform is mainly responsible
for recognizing reckless driving behavior based on the driver
sensor data obtained from the vehicle OBD port. At the same
time, it utilizes historical data to identify abnormal driving
behavior. Underneath, it uses speed parameters to classify
drivers into 3 groups: 20 km/h and below, 20-80 km/h, and
greater than 80 km/h; and acceleration and de-acceleration
counts. The developed mobile application is responsible for
visualizing real-time sensor data, as well as alerting a driver
about unsafe situations via textual and audible signals.

Vehicular Ad hoc Networks (VANETs) gained huge pop-
ularity due to the rapid development of mobile internet and
Internet of Things applications. It utilizes dedicated short-

TABLE 1. Comparison of functionality of driver monitoring systems.

range protocol either on-board units already integrated into
some vehicles to transmit information messages between
vehicles or infrastructure at a predefined rate. To provide safe
driving, the authors of the study[16] proposed an intelligent
Fuzzy-based Driver Monitoring System, integrating Cloud,
Fog and Edge computing [17] in VANETs, and focused on
the vehicle in-cabin information and driver’s information to
detect a potential traffic accident or a risky situation and alert
the driver about the emergency.

The proposed system essentially focuses on increasing
road safety and driving performance by analyzing and rec-
ognizing the driver’s situation in real-time by considering
different types of input driver and environment parameters,
including the level of ambient noise measured in dB, heart
rate of the driver calculated in bpm, respiratory rate of the
driver, and ambient temperature measured in ◦C. In case the
system indicates the situation as not safe, it may limit the
vehicle’s maximum speed, suggest a driver have a rest or call
a doctor if he/she breathes abnormally.

Observed research studies leverage a set of differ-
ent approaches providing driver and transport monitoring
solutions. The comparison of the listed papers is shown
in Table 1 and based on certain features, including the use of
different kinds of trips and, in particular, driver-related infor-
mation (video analysis obtained from the camera; motion
activity tracked by position and orientation sensors, including
accelerometer, gyroscope, GPS; audio signals are given by
microphone; physiological activity measured through biolog-
ical signals, including heart rate, blood pressure, and speech
recognition support, etc.), and the use of cloud-based tech-
nologies to provide remote driver behavior analysis.

B. SPEECH RECOGNITION SYSTEMS IN VEHICLE CABIN
The paper [20] presents a method for adaptive audio classi-
fication using a smartphone. The proposed method is aimed
at improving the performance of the speech recognition sys-
tem in noisy conditions of the vehicle environment. The
authors propose a classification algorithm based on the effec-
tive selection of features. Such feature selection helps to
improve the accuracy of classification in driving conditions
with various noise levels. An audio classification framework
for mobile application classifies the input audio into four
categories: music, speech, speech with music, and noise. The
authors describe the possibilities for adjusting the framework
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depending on various driving environments. The key idea
of the proposed framework is the use of individual clas-
sification models generated for different driving scenarios
and the adaptive application of these models based on real-
time identification of the current scenario. More accurately,
the proposed system contains a feature selection module
for the identification of an optimal feature set and sup-
port vector machines (SVM) classification algorithm. SVM
adapts to various driving environments. The paper discusses
MIRToolbox framework [21] that implements features of
extraction functionality. Authors consider the main 16 effec-
tive feature sets for audio classification into speech, music,
and environmental sounds. Also, the paper provides a cor-
pus of more than 420 minutes of real-world audio data
(i.e. speech, music, speech with music, and noise). Audio
data have been collected using a smartphone from differ-
ent driving environments (i.e., local road, crowded city, and
idling car).

Many vehicles currently have an Advanced Driver Assis-
tance System (ADAS) integrated. Basically, drivers interact
with the system using steering wheel controls and indicators
on the dashboard. In the next recent study [22], the authors
consider the use of the third modality: speech dialogue inter-
face for ADAS. The paper presents the development of a
speech dialogue system for ADAS called Adasa. The main
advantage of the system is its informative features extracted
from more than 9,000 conversations between drivers and the
Ford customer service department. Also, they introduced an
additional training dataset created by crowd workers.

The authors divide this number of conversations into
3 main groups [22]:

• division of driving responsibility between the driver and
ADAS (∼50% conversations);

• interface to activate ADAS functions (∼25% conversa-
tions);

• meaning of instrument cluster iconography (∼15% con-
versations);

• other conversations (10%).

Adasa interface is based on the machine learning frame-
work Lucida. Drivers access the Adasa using natural lan-
guage in real-time without restrictions. The Adasa interface
is accessed by pressing a button on the steering wheel, after
which the driver can easily ask questions or give commands.
Researchers have integrated the developed system into com-
mercial vehicles. Also, the authors conducted a user study
involving 15 drivers in real conditions. According to the
authors, the accuracy of identifying user commands in the
system is 77%. In addition, the user’s feedbacks say about
improved understanding and driving experience using ADAS
features (feedback score is 8.9 / 10).

Voice control systems differ in the number of supported
languages, the level of recognition of commands, the number
of implemented management functions. At the same time,
all these voice control systems share one thing in common
- they don’t work in conditions of strong external acoustic

noise, which, nevertheless, is very typical for vehicles in real
traffic conditions. Authors of the papers [23], [24] consider
the active appearance model (AAM) based on features for
multiple cameras visual and audio-visual speech recogni-
tion (VSR and AVSR) in the vehicle environment. In these
papers, the authors conduct experiments on the AVICAR
automotive database. Most of the existing VSR systems
have been designed in controlled laboratory conditions and
rarely addressed visual domain disturbance such as speaker’s
movement, bad illumination, low resolution, etc. Authors
extend the research about multiple-camera VSR [25], [26]
by applying AAM for feature extraction from visual articu-
lators and single HMM (formed for each camera). Finally,
they propose to merge four single visual stream HMMs by
fusion technique [25] to form a single stream pose inde-
pendent HMM. According to the researchers, AAM based
VSR notably shows performance increasing across all driv-
ing conditions compared to discrete cosine transform (DCT)
features baseline. For acoustic features, authors propose to
use their own development system. Authors notice that multi-
stream fusion of VSR with audio stream shows the improve-
ment of multimodal over single modal speech recognition
system.

The authors of the study [27] presented a smart and
robust context-aware speaker recognition system for vehi-
cle applications. Researchers proposed an algorithm for
speaker detection and identification. This algorithm includes
a preprocessing method using Voice Activity Detection
(VAD). In addition, the presented algorithm is robust to
noise and distance. The authors implemented an extensive
performance analysis of the approaches that are used for
speech processing in various conditions. The paper con-
siders the effect of distance on the accuracy of speaker
recognition. Moreover, researchers conducted experiments
with additional noise in the environment. The study com-
pares the performance of different classifiers with the pro-
posed VAD algorithm. Following classifiers are used for
comparison: SVM (one-against-all), SVM (one-against-one)
and Gaussian Mixture Models (GMM) [27]. The perfor-
mance of the proposed approach is determined by calculating
the processing time required for the system to recognize a
speaker. Table 2 shows the comparison of the considered
systems.

As a rule, established technologies are used as the basis
of the system. For video modality, AAM technology is usu-
ally used and for audio modality, HMM is widely applied.
Most of the systems are designed for the English language.
There are no available systems developed for the Russian
language. All reviewed systems are aimed at improving
speech recognition in the vehicle environment (i.e., the vehi-
cle’s cabin, in some cases a moving car). A future study
needs to consider all environmental factors that affect speech
recognition inside the vehicle (vehicle speed, ambient noise,
camera angle, illumination, resolution, audio quality, etc.).
Most of the studies consider only one modality (video
or audio).
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TABLE 2. Related speech recognition systems aimed for vehicle drivers.

C. MULTIMODAL CORPORA FOR AUDIO-VISUAL SPEECH
RECOGNITION IN VEHICLE CABIN
A relatively large number of publicly available audio-visual
databases exists in the scientific literature. They are cre-
ated for different purposes and with different means. Works
[28], [29] contain a comprehensive list and analysis of such
databases from the audio-visual speech recognition point of
view.

It is well known that driving a vehicle is accompanied
by a rather active head turns from side to side. Thus, often,
the driver is turned to the camera at different angles, which
greatly complicates automatic lip-reading by using video
information. At the same time, the presence of strong acoustic
noise during driving significantly degrades the results of
speech recognition by voice. Therefore, the existence of a
database specially designed for such conditions is a prereq-
uisite. Today, only three databases of audio-visual speech
recorded directly in-vehicle environments are available in
scientific literature, namely: AVICAR,AV@CAR, andCzech
AVSC of a car driver (Table 3).While the use of other existing
databases recorded in office conditions and with a frontal
face capturing does not seem beneficial for the purpose of
developing a reliable speech recognition system in the vehicle
environment. However, since driving is often characterized
by active head turns, we also examined existing databases
that include audio-visual speech recordings at various
angles.

They potentially could be used to create an automatic
driver’s speech recognition system. We examine the seven
most representative multi-view datasets. Their main prop-
erties, such as the number of speakers, words, sentences,
angle of rotation, video parameters are considered (Table 3).
Thus, together with three datasets recorded in the car cabin,
in total, we analyze 10 databases for the possibility of creating
a reliable audio-visual speech recognition system in noisy
traffic conditions.

AVICAR dataset [5], created by the University of Illinois,
is the largest of existing audio-visual speech corpus in the
car environment available. The authors collected the record-
ings of 100 (86 currently available) speakers by using an
array of eight microphones and four video cameras integrated
directly in a vehicle cabin. The dataset has recordings with
five different noise conditions: idling, driving at 35 mph
with closed windows, driving at 35 mph with open windows,
driving at 55mphwith closedwindows, and driving at 55mph
with open windows. Ten different script sets were used in
the corpus and each set is for ten speakers. The vocabulary
of the database consists of four categories: isolated digits,
isolated letters, phone numbers, and sentences, all in English.
Isolated digits are meant for automatic dialing purposes.
Isolated letters are useful for automatic spelling tasks. The
authors added phone numbers to tackle a connected digits
issue and phonetically balanced sentences to train phoneme-
based recognizers. For the equipment, the authors have three
types of signal sources (array of microphones, cameras, and
DTMF generator) and two types of recording devices (ADAT
and MiniDV camcorder).

AV@CAR [30] is a Spanish multichannel multimodal cor-
pus for in-vehicle automatic audio-visual speech recogni-
tion. The audio part of the database is composed of seven
types of recordings: clean speech (captured using a close-talk
microphone), noisy speech from several microphones placed
overhead the cabin, and noise only signals from the engine
compartment. The video part of the database was recorded
by one small video camera sensible to the visible and near-
infrared bands. AV@CAR dataset consists of two main parts:
the first one is collected inside a car in real driving condition
and the second one is captured in a quiet environment. The
recordings were made under different light conditions.

Czech AV corpus [31] of a car driver includes recordings
of 12 speakers with all audio and video data captured using
the single camcorder, mounted on the vehicle dashboard. This
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TABLE 3. Comparison of related audio-visual speech corpora.

is the first (recorded in 2003) speech dataset explicitly col-
lected for in-vehicle audio-visual speech recognition; how-
ever, the amount and quality of data are rather low. The initial
goal of collecting the corpus was the utilization of command
control of car features by using audio-visual information.

Three types of data (isolated words, isolated digits, and
sentences) are available in the corpus. All are recorded in real
driving conditions with phrases prompted by the passenger to
the driver for repeating the text.

Only these three AV speech databases recorded directly in
cars are currently available in the scientific literature. Further,
several multi-view speech datasets will be considered.

CUAVE [32] is one of the most cited databases for train-
ing automatic lip-reading systems. It contains recordings
of 36 speakers with a large number of utterances for each. The
authors record video data by both frontal and profile view
of the speakers. Recorded scenarios include single and dual
(conversation) speaker sessions. The inclusion of parts of
simultaneous speaking is a very interesting feature of the
database. It was the first document of this kind. CUAVE is
designed to benefit the research in two areas: robust to a
speaker’s movement, audio-visual speech recognition, and
distinguishing simultaneously speaking cases.

TCD-TIMIT [33] corpus is designed for continuous audio-
visual speech recognition research and consists of high-
quality audio and video footage. Authors record the video
from two angles: straight on and at 30◦. Researchers used two
pairs of Sony PMW-EX3 cameras to record the database. The
authors concluded that both types of information are equally
important: a frontal view gives information about mouth
height and width, but a profile view gives information about
lip protrusion. The presented research is of great interest since

a recognizer used by car drivers will have to work with angled
views. Nonetheless, the authors of TCD-TMIT were unable
to establish a ‘‘sweet spot’’ angle that provides the most
representative information (angles between 0◦ and 30◦ were
considered).

MV-LRS [34] is the largest multi-view audio-visual speech
corpus that contains profile faces selected using a face
pose regressor network. The authors collected the data from
BBC programs (mainly news broadcasts) with different view
angles, from frontal to profile. While building the multi-view
model, researchers divided the data into five pose categories
based on the rotation angle: the left profile, left three-quarter,
frontal, right three-quarter, and right profile. MV-LRS corpus
contains real-life conversational data and was made purely
based on online data without any explicit recording sessions.
The authors provide some experiments on frontal and profile
view lip-reading. They concluded that it is possible to do
profile view visual speech recognition, however, it is inferior
to frontal one.

The authors of LILiR [35] collected a corpus for speaker-
independent visual speech recognition. It contains recordings
of five viewing angles with data captured simultaneously
by five video cameras in both HD and SD formats. LILiR
main dataset is yet under preparation, however, LILiR two
talk corpus is already available for download. Among the
main goals of creating a database, the authors also highlight
facial feature tracking, comparing visual features for lip-
reading, non-verbal communication, language identification,
and automatic visemes identification.

Creating CMU AVPFV [36] dataset was the first attempt
to make profile view lip-reading. This corpus consists of
simultaneously recorded profile and frontal view audio and
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video data of ten speakers. The authors used MRT (modified
rhyme test) list of 150 words, commonly utilized in speech
intelligibility testing.

Based on the conducted experiments, researchers prove
that the profile view of lip-reading significantly outperforms
frontal view lip-reading in terms of recognition accuracy.
However, this statement does not coincide with the results
obtained in [34], where, on the contrary, the accuracy of
frontal view speech recognition is higher. The authors present
the OuluVS2 [37] multi-view dataset for non-rigid mouth
motion analysis. It contains recordings from five different
viewing angles. Among 53 speakers who participated in the
recordings, 40 were males and 13 were females.

An interesting feature is that there were no native English
speakers among them. Most of the participants were univer-
sity students and were grouped into five different appear-
ance types: European, Chinese, Indian/Pakistani, Arabian,
and African. The recordings were made in ordinary office
conditions by using 6 cameras: facing HD camera and high-
speed camera (0◦), with other four HD cameras located in
the following positions: 30◦, 45◦, 60◦, and 90◦. According to
the authors, the best recognition performance was achieved
from the camera installed at 60◦ and the worst from the
camera installed at 45◦. Initially, AVDigits [38] database was
recorded for visual-only recognition of normal, whispered,
and silent speech. It contains two parts: digits and short
phrases. The database was recorded in a lab environment
using three cameras. The three cameras record three differ-
ent views of the participant’s face. The digits and phrases
were displayed on a laptop screen in front of the speaker.
The database with annotation and transcription is publicly
available. The authors reported significant differences in lip
movements, according to the type of speech: normal, whis-
pered, and silent. In particular, the silent speech recognition
accuracy suffers most, when trained on the normal speech
data.

We select several parameters for comparison, in our
opinion, the most representative ones. Regarding the lan-
guage, English dominates in the number of databases (8 out
of 10 recorded in English, 1 in Spanish, and 1 in Czech).
Regarding the context of recordings, 3 databases were col-
lected in real driving conditions, 6 in control office condi-
tions, and 1 (MV-LRS) was artificially made based on TV
data. Angles of recordings vary in a wide range from near
frontal view 0◦ to profile view 90◦. The number of speakers
started from ten in the CMU AVPFV dataset and is reaching
a tremendous 3 783 in MV-LRS. The number of phrases in
each dataset also changes dramatically depending on the task
and considered scenario. E.g. isolated digits recognition and
continuous speech recognition tasks have different demands
on the quality and amount of data. As well as the video
resolution and fps, with the lowest on MV-LRS (160 × 160,
25 fps) and highest on TCD-TIMIT (1920 × 1080, 30 fps).
Based on the conducted analysis we conclude that the

number of currently available databases suitable for training
recognition systems in-vehicle conditions is not sufficient

(at the moment three databases exist: AVICAR, AV@CAR,
Czech AV). Especially, minding other languages besides
English. Even for English, the best available at present
AVICAR dataset has a number of drawbacks - restricted
vocabulary, low quality of video data. Furthermore, few
available multi-view corpora are also not beneficial for this
purpose since they are mostly recorded in a controlled office
environment with artificial lighting. Thus, to create a driver’s
audio-visual Russian speech recognition system, it is neces-
sary to collect our own database that corresponds to the actual
conditions of use.

III. METHODOLOGY
In the previous section, we analyzed existing audio-visual
speech corpora. We substantiated that creation of our own
audio-visual speech corpus for the Russian language in-the-
wild vehicle environment is an actual and important task.
In turn, in this section, we describe the necessary steps that
must be performed to record such a speech corpus, present
resulting speech recognition vocabulary, and develop soft-
ware for recording the corpus. Based on the conducted anal-
ysis of the research field and existing audio-visual datasets
in-the-wild the vehicle environment, we propose a novel task-
oriented methodology for speech corpus creation (see Fig. 1).
The methodology is universal and can be used to record the
corpus for any language. In the general case, the proposed
methodology includes the sequential execution of the theo-
retical and practical steps.

A. ASSESSMENT OF THE SPEECH RECOGNITION
USE-CASES
One of the most important steps in the creation of a speech
corpus, since the definition of the recognition scenario, has
a huge impact on the complexity and size of the corpus.
E.g., ‘‘continuous speech recognition’’, ‘‘keyword recogni-
tion’’, or ‘‘isolated letter/digit recognition’’ tasks require fun-
damentally different approaches to forming vocabulary and
collecting the data. In addition, the language itself also has
a significant impact. Even for the same recognition task,
the amount of data required for analytical English and inflec-
tional Russian can differ significantly due to the linguistic and
phonetic features of the languages.

B. CORPUS METAPARAMETERS
We divide the speech corpus metaparameters into two main
groups: (1) input data parameters, i.e. audio sampling rate,
video resolution, video frame rate, etc., which have to be pre-
defined in advance based on the target recognition scenario
and operating conditions, and (2) corpus structure parame-
ters, where the size of the recognition vocabulary, the number
of speakers, and the number of required repetitions per phrase
are the main ones to be determined.

They are specified based on the selected recognition sce-
nario, type of desired recognition system (speaker-dependent
or speaker-independent), and the selected method of model-
ing audio-visual signal.
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FIGURE 1. Corpus design methodology.

C. DEVELOPMENT OF THE CORPUS RECORDING
FRAMEWORK
Firstly, we determine the basic requirements for the number
of speakers, vocabulary size, quality of the data, etc. Then
we proceed to framework development for the recording of
the desired corpus. Audio-visual speech data synchronization
and fusion from different sensors have to be performed.
In the current research, we present the developed software
for audio-visual speech corpus recording designed to work in
a vehicle cabin environment.

D. CORPUS RECORDING
This step includes building a setup in accordance with
the developed corpus recording framework, searching, and
selecting native speakers with no speaking or hearing prob-
lems for participation in the recordings, and managing the
recording process.

E. CORPUS ANNOTATION
Automatic, semi-automatic, or manual segmentation and
labeling of the collected data. Organizing all the recordings
into a logically structured database that comprises informa-
tion about all the speakers and recording parameters, as well
as a number of text, audio, and video files with temporal
annotation for each recorded speaker.

IV. USE-CASES SCENARIO AND CORPUS STRUCTURE
We propose human-computer interaction that the driver mon-
itoring system should support both: to interact with the driver
in normal mode and to interact with the driver to prevent
sleeping when the system detects the dangerous drowsiness
state. For this purpose, we consider a vocabulary in the
section that the corpus should support to meet the presented
idea and describe the software prototype developed to create
the corpus.

A. USE-CASES FOR SPEECH RECOGNITION IN DRIVER
MONITORING SYSTEMS
We identify use-cases for human-computer interaction that
requires audio and video-based speech recognition. We iden-
tify the main commands that the system should support to
interact with the driver. The driver monitoring system allows
detecting the drowsy driver behavior. Such behavior says that
a driver can fall asleep in the nearest future. To prevent this
situation, we propose question-answer games that allow a

driver to distract from sleeping and drive the vehicle more
safely.

Based on our previous work [39] we identify the following
main commands that the system should support to interact
with the driver in normal mode (see Table 4). In the training,
the mode system asks if the driver is drowsy and distracted.
When a user answers these questions, the system reads how
the driver acts and looks in different conditions. The system
learns on this data to predict dangerous situations in the
future.

In the normal mode in case, the system automatically rec-
ognizes dangerous drowsiness situations (based on the algo-
rithm proposed in [40]) it asks the driver about his/her con-
dition. If the driver approves his/her dangerous drowsiness
state, the system asks if a user wants to change a route or have
a break. If the driver is driving on a highway and the rest of the
trip is more than one hour, the system recommends staying
at a hotel or have some caffeinated beverage. If a driver is
driving in a city, the system recommends taking nap. If the
rest of the trip is less than one hour, the system recommends
playing a game or listen to music.

The system recognizes commands, listed in Table 9. Com-
mands ‘‘Yes’’ and ‘‘No’’ are needed in both training and nor-
mal mode to receive an answer about drowsiness. The com-
mand ‘‘Change route’’ is needed in normal mode to inform
the system of the selection of the proposed recommendations
to make a stop. The commands ‘‘Turn on music’’ and ‘‘Play’’
are needed to inform the system of the selection to listen to
music and to play the game.

We propose games to prevent a driver from sleeping in
case the driver monitoring system detects drowsiness dan-
gerous state. The authors of the research [41] clarified that
playing games improve the drowsy driver state. This is a
consequence of the fact that when playing word games,
the driver actually engages in a dialogue with the passen-
ger. According to various organizations, maintaining a non-
monotonous dialogue with the passenger allows to delay
falling asleep [42]. In the paper [43] authors clarify that
music improves drivers’ response times to accelerations
and decelerations of a lead vehicle while following a car.
In the paper experiments with the 47 participants have been
considered.

The authors of the paper [44] showed based on the experi-
ments in a simulator that verbal communication with a media
device showed improved lane-keeping performance and had
improvements in neurophysiological measures of alertness.
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TABLE 4. Examples of the questions the system generates for the driver.

It can be clarified that the drowsiness level of the driver
decreases.

Each of the games is a word-based game that requires
a speech interface. In this case, the driver will not be dis-
tracted from the road. The games are distinguished by their
complexity and, therefore, the load on the user’s brain for
concentration. The easiest game is ‘‘rock-paper-scissors’’
[45]. It allows a driver to slightly strain the brain and not
particularly think about the answer.

We divide the drivers by the following: age (old, middle
adulthood, young adulthood, young) and sex (women, man).

The Mid-core game is presented by the ‘‘hangman’’ game.
It is harder and allows to strain the user’s brain more, but it
is still not hard, and it does not require analytics [46]. The
hardest game is ‘‘more-or-less’’, which requires analytics and
helps to concentrate as much, as possible by the word games.

We analyze a driver’s portrait to make a decision on what
type of game better fits a driver and a situation based on
some statistical information. According to statistics, men and
young people are more prone to analytical thinking than
women and old people [47]. After receiving the information
about a user’s portrait and the situation context, the system
counts points (presented in Table 5 and Table 6).

Due to the fact, that the context is more important than the
decision, the total number of points will be calculated by the
formula, where the context points will have a coefficient of 2.
It allows the system to select the type of game relying pri-
marily on the context. Each user can play any of the available
games, and analytical thinking only adjusts the type of the
game in some cases, when several games fit the same context.
The game is selected according to the following formula:

P = Pp + 2Pc, (1)

where Pp– portrait points (calculated according to Table 5),
Pc– context points (calculated according to Table 6), P – total
points to make a decision which game is more applicable for
the driver in the current situation.

The game is selected by the total number of points and
each game corresponds to a certain number of points. ‘‘Rock-
Paper-Scissors’’ corresponds to points 0–7, ‘‘Hangman’’ cor-

FIGURE 2. Rock-paper-scissors game.

responds to points ‘‘8–15’’, ‘‘More-Or-Less’’ corresponds to
points ‘‘16–22’’ (see Table 7).

After several sessions the system decides which game has
a higher priority for the driver: it counts the average number
of replays for each game and the percentage of success in
‘‘hangman’’ and ‘‘More-Or-Less’’ games. After receiving
this data, the system changes the portrait points value with
the statistic point value. The driver gets 1, 2, or 3 points if he
prefers one of the games. It shows if the user prefers harder
games, so he/she needs more analytical games to become
cheerful. The system receives this information by comparing
the number of replays. Also, a user earns 1, 2, or 3 points for
the win rate of the ‘‘hangman’’ and ‘‘more-or-less’’ games,
because they represent mid-core and hardcore word games.

B. VOCABULARY
Rock-paper-scissors is the most casual game, that does not
strain the brain so much. This game uses small vocabulary
and does not demand the resources or the level of training
of the player. It fits users that do not need to increase the
concentration level. Fig. 2 describes the game process within
the system. The game takes place in the following way. The
system suggests choosing 1 of 3 options: paper, rock, or scis-
sors. After receiving an answer from the driver, the system
randomly chooses 1 of 3 options. Then the system matches
a user’s and the system’s values to determine if the user won
or lost. The system compares values according to the rules
of the game: rock defeats scissors but loses to paper. Scissors
defeat paper but lose to rock. Paper defeats rock but loses to
scissors.

We summarize all the words the system should recognize
and pronounce to play the rock-paper-scissors game (see
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TABLE 5. Human classification of synthetic or analytical mind based on statistics.

TABLE 6. Human context related to game difficulty.

TABLE 7. Game choice based on matchpoints.

TABLE 8. Vocabulary for rock-paper-scissors question/answer game.

FIGURE 3. Hangman game.

Table 8). Words ‘‘Yes’’ and ‘‘No’’ are used to answer the
question about replaying the game after finishing. Words
‘‘Rock’’, ‘‘Paper’’, and ‘‘Scissors’’ are recognized to under-
stand what answer the driver chose.

TABLE 9. Vocabulary for hangman question/answer game.

Hangman is a guessing-word game (see Fig. 3). The driver
has 10 attempts to guess a word. This game requires a bigger
user’s engagement and it is good enough for a medium brain
load, which promotes concentration. This game requires
vocabulary and letter-detection. The game takes place in the
following way.

The system suggests guessing the word. The word is
selected from a pre-prepared vocabulary and consists of 3 to
10 letters. Then the system suggests guessing a letter from
the selected word. If the word contains a letter that the player
named, the system opens this letter in the word and suggests
guessing the rest. If a player calls a letter that is not in the
word, the system reports this and predicts a different letter.
If a player names a wrong letter 10 times the player loses.
If the player names all the letters in the word, the player wins.
Vocabulary for the Hangman game is presented in Table 9.

The last game (more-or-less) requires maximum concen-
tration from a driver. The system asks a question, where an
answer is a number (see Fig. 4). The driver needs to think of
the question and guess, after what he/she gets a hint if the
right answer is more or less. The user has 5 attempts before
he/she lost. This game effectively loads the brain, which helps
to concentrate on a road. The game works as follows. The
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FIGURE 4. More-Or-Less game.

TABLE 10. Vocabulary for More-Or-Less question/answer game.

system asks a user a question about some characteristics of
some object. For example, a system might ask ‘‘what size is
Lake Baikal’’ or ‘‘how much is a Boeing 747?’’.

After this question, the user might guess the answer
and pronounce it to the system. The system compares the
answer and the user’s assumption and says if the answer is
more or less. If the user gives the correct answer, he wins.
If the user gives 5 wrong answers, he/she loses the game and
the system shows the right answer.

Table 10 shows all the words the system should recog-
nize and pronounce to play a more-or-less game. The sys-
tem recognizes the numbers from 1 to 100 and the words
‘‘thousand’’, ‘‘million’’, ‘‘hundred’’ to get an answer from
a driver. The system pronounces sentences from the words,
listed in the table to construct questions for the driver. To fill

the database with facts connected with the numbers the
system uses Numbers API [48]. PHP-script gets facts with
random numbers, generates a text file, after which the file is
manually checked and cleared of the facts that do not fit the
system.

C. CORPUS METAPARAMETERS
We have identified the following parameters the corpus
should support according to the presented speech recognition
scenario in the vehicle cabin.

• Realistic recording conditions. Since our task is to create
a real-life recognition system and integrate it into the
driver monitoring system, we need training data to be as
close as possible to the actual operating conditions. This
includes both the variability of SNR in a wide range and
the variability of lighting conditions. The data should
be recorded in the vehicle cabin, and not imitated in
artificial conditions.

• The multiple number of speakers. To create a speaker-
independent recognition system, it is necessary to record
a large number of speakers (not less than a few dozens).
Each of them should be recorded in all target scenarios.

• Size of the vocabulary. The size of the vocabulary is
heavily dependent on the recognition task being solved.
In the current research, we are primarily aimed at solving
the problem of recognizing individual commands of the
user, rather than continuous speech. Thus, a small-sized
vocabulary of 140 words/short phrases (section 3.2) is
suitable for our goal.

• Quality of the data. The quality of the recorded data,
namely the video resolution and the audio sampling rate,
has a significant impact on the resulting recognition
accuracy. Therefore, given the complexity of the con-
ditions of use, we need to have as high-quality data as
possible: video resolution no less than 720 × 480, and
audio sampling rate no less than 44.1 kHz. For the video
part, it is also important that the face occupies at least
40% of the image, otherwise, the resolution of the video
should be increased to at least 1280 × 720 pixels.

• Multi-view video data. We need to consider the specifics
of driving conditions when the driver often has to make
active head turns.

This fact greatly complicates the task of automated lip-
reading and imposes a need to have the data recorded at
different angles for reliable speech recognition. In the current
research, we decided to use two cameras: one facing camera
with a near-frontal view of the driver’s face and one camera
located at 30◦ to the driver’s right-hand side.

V. CORPUS CREATION
A. FRAMEWORK
We consider the driver as a main source of information for
the proposed driver behavior monitoring system. In order
to conduct experiments and collect sensor data, obtained in
natural driving conditions, we proposed a reference model
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FIGURE 5. Reference model of the corpus creation framework.

for recording audio signals and visual-based information
obtained from several smartphones, equipped with video-
based camera and microphone, in a synchronous way that
each obtained audio fragment matches a video frame (see
Fig. 5). This approach consists of the following three com-
ponents: smartphones, cloud service, and a driver.

The smartphone is installed inside the vehicle cabin in a
way that its camera successfully captures and tracks a driver’s
face and position along the trip. Smartphones are responsible
for recording audio signals, capturing human speech and
noise level, obtained by a microphone sensor inside the vehi-
cle cabin. This kind of audio information is passed through
an Android-based automatic speech recognizer provided by
the Google platform to extract words spoken by the driver.

We tackle the problem of synchronizing two smartphones
(which can be potentially applied to a greater number of
mobile devices) by introducing a start recording synchroniza-
tion platform.

As soon as smartphones collect this kind of audio and
video-based information, clients transmit it to cloud storage
for further processing and analysis.

Cloud service is comprised of three main data storages,
responsible for collecting audio recordings, video recordings,
and text data, describing the media data, and a media source
matching module. The latter component aids to join and
match the collected data properly, process, and analyze it as
a single source of collected data.

The first smartphone (main) is essentially responsible for
establishing a connection with another smartphone (sec-
ondary) and employing a driver’s monitoring. It runs danger-
ous state recognition by analyzing video and audio streams,
obtained from a camera and a microphone of the smartphone,

FIGURE 6. a) (left) presents a screenshot of mobile application taken
from the main smartphone, and b) (right) shows a screenshot of the
application acquired from the secondary smartphone.

respectively. The application runs drowsiness detection algo-
rithms to recognize dangerous situations [40].

Also, it is responsible for audio-based interaction with
a driver, utilizing the smartphones’ microphone. The appli-
cation plays an audio clip requesting a driver to repeat a
certain audio phrase. The system will record the time when
the phrases were generated and will save the details about
the asked question and the answer in the SQLite database for
further analysis and processing. The current phrase and its
number are visible on the screen of this application (Fig 6, a).

As soon as the main smartphone initializes a connection
with a secondary one, the latter starts to record video and
audio signals produced inside the vehicle cabin to be later pro-
cessed. Video recordings are saved on the external memory
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FIGURE 7. Audio-visual corpus recording in vehicle cabin using two
smartphones.

card of the smartphone. We accumulate audio and video data
in smartphone SD card and send them to the cloud service
as soon as the Internet connection is available. The screen-
shot of the application, responsible for recording media data,
is shown in Fig. 6, b).

Both utilized smartphones are placed in the vehicle cabin
(see Fig. 7). The first (main) smartphone is placed near the
driver to the left of his view.

The second smartphone is located at an angle approxi-
mately 20 degrees to the right. The first smartphone performs
a driver’s monitoring using the front-facing camera directed
to the driver’s face, while the other (second) one is mainly
focused on recording video and audio information captured
by the smartphone’s front-facing camera. We have chosen
the smallest smartphones for data recording due to safety
reasons.We do not place the smartphone in front of the driver.
Such smartphone locations are popular for the drivers to set
smartphones with the navigation system for the vehicles that
do not have built-in.

VI. MULTIMODAL CORPUS RUSAVIC
RUSAVIC corpus contains the following data (see Fig. 8)
recorded in-the-wild: audio and video data of the driver
recorded from different angles and RUSAVIC database that
includes sensor data from the main smartphone and driver
condition detected by the driver monitoring system installed
in the main smartphone [49]. RUSAVIC database includes
the following information (see Table 12): date, time, vehi-
cle speed, vehicle acceleration, noise level, and dangerous
states detected by the driver monitoring system. Driver con-
dition includes yaw and pitch head angles [50], eyes state,
mouth state, PERCLOS (PERsantage of eyes CLOSure) [51],
and detected dangerous state. So, the driver monitoring sys-
tem provides possibilities to recognize the following states:
drowsiness, distraction, belt unfasteness, smartphone usage,
eating/drinking, and smoking.

The state of drowsiness characterizes the driver fatigue
level as high which causes longer voiced duration as well as
response time [52]. The state of distraction clarifies that driver
attention is not concentrated on the road in contrast can cause

TABLE 11. List of phrases in RUSAVIC corpus.

faster speech but also longer response time. Other dangerous
states also can cause the drive voice change.

We propose to consider the mentioned parameter as a
context for the driver. Every driver trip is related to the audio-
video file as well as mentioned parameters that provides pos-
sibilities for experiments with speech recognition in different
surroundings. E.g. noisy environment vs silent one, drowsy
driver, and the normal one.
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FIGURE 8. The logical structure of the RUSAVIC audio-visual speech database.

TABLE 12. RUSAVIC database description.

Table 13 shows the main parametrical characteristics of
the created corpus. We have recorded 20 speakers each of
them pronounce 50 phrases. We have repeated 10 sessions for
each of the speaker. Every session has been recorded in own
condition in-the-wild vehicle cabin (different speed, different
acceleration, different nise level and driver condition). For
the recordings we have used two smartphones mounted in
the vehicle windshield (angles: −20◦, 20◦). Since we record
the corpus in the real conditions we got the difference signal
to noise ratio: from 30 to 5. Examples of the video can be
found in the RUSAVIC portal.1 Context information is stored
in PostgreSQL (general structure is presented in Table 12).

1 https://mobiledrivesafely.com/corpus-rusavic

The logical structure of the RUSAVIC database is shown
in Fig. 9. The database contains the number of directories
equal to the number of speakers (20). Then, the directory of
each speaker includes subdirectories equal to the number of
uttered phrases (50 according to our dictionary) as well as
metadata file that describes the speaker:

• Driver: Alexey Kashevnik;
• Vehicle: Geely Atlas;
• Age: 38;
• Sex: Male;
• City: St. Petersburg;
• Native language: Russian.

Each phrase subdirectory includes the number of fold-
ers according to the number of recording sessions per
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TABLE 13. RUSAVIC corpus description.

speaker (8-12). Thus, at the bottom of our structure we have
audio-visual files of the same speaker uttering the same
phrase during different recording conditions. Recording ses-
sions metadata files are also included. It contains such infor-
mation as device description, driving hours, recording condi-
tions, driver rotation angle, etc.

VII. DISCUSSION
In this section we summarize answers to research questions
we specified in the introduction and studied in the paper.
We remind research questions step by step and provide
research answers (RA) got from the analysis.

RQ1: What modern technologies are used for audio-visual
speech recognition?

RA1: According to the conducted analysis, the state-
of-the-art methodology to tackle the problem of audio-
visual speech recognition in a vehicle environment is usually
based either on discrete cosine transform (DCT) coefficients-
based or on active appearance models-based (AAM) features
extraction, followed byHiddenMarkovmodels (HMM), used
for the classification. However, such solutions in some cases
are ineffective, since they do not meet the requirements of
practical systems of audio-visual speech recognition due to
their inability to take into account many factors at the same
time (various noisy conditions or occlusions in the video
data). Nevertheless, the collection of a large amount of data,
as well as the availability of computing resources, nowadays
allows the researchers to use various architectures of neural
networks to extract informative features, train models, and
develop reliable audio-visual speech recognition systems.
Using modern LSTM and CNN neural network architectures,
both short-term and long-term spatio-temporal characteristics
of audio-visual speech can be extracted. For our research, we
plan to use different topologies of these neural networks. In
turn, the spatial pyramid pooling allows us to normalize the
formed spatio-temporal features for the subsequent hypoth-
esis. In this case, the audio and video modalities are trained
separately from each other and are combined only at the level
of hypotheses to decide on the speech uttered by the speaker.

RQ2: Which parameters are important to corpus creation
for audio-visual speech recognition in a vehicle cabin?

The main purpose of recording the database is to train a
reliable and robust speech recognition system that is able to
recognize a limited set of user’s commands in noisy driving
conditions. Based on the conducted research, we have iden-
tified corpus parameters specific for the considered scenario
of speed recognition in the vehicle cabin.

Thus, having determined the basic requirements to the
recording conditions, the number of speakers, vocabulary
size, and quality of the data we proposed the reference model
and developed a prototype of the mobile application for
audio-visual corpus creation with the vocabulary presented
in Section 3.2.

RQ3: How the dialog-based interaction with the drowsy
driver can be used in the driver monitoring system to avoid
sleepiness?

Dialogue-based games can help the driver stay awake. The
advantages of thismethod are that the driver can play games at
ease, which distracts him from sleep. In addition, games such
as hangman or more-or-less develop analytical thinking and
vocabulary. On the other hand, games can distract the driver
from the road, which can lead to a dangerous situation. But all
the negative aspects of using this system overlap with positive
ones. In reality, the consequences of falling asleep are much
more dangerous than the consequences of possible distraction
from the road, so the risks are justified.

RQ4: Which vocabulary should be supported for corpus
creation?

We analyze the main commands that the driver monitoring
system should recognize to prevent the driver’s distraction
during the vehicle driving. At the same time, we propose
question/answer games that the human-computer interaction
interface can launch in the case of drowsiness dangerous
state detection to prevent the sleeping condition. Games are
distinguished by their complexity and, therefore, the load on
the user’s brain for concentration. We propose rock-paper-
scissors, hangman, and more-or-less games. Our analysis
shows that to support such functionality the system should
recognize the following vocabulary: yes; no; 33 Russian let-
ters; numbers (1-10); thousand; million; hundreds; dozens;
and some special words (rock, paper, scissors, change the
route, play, turn on/off music).

Recognition of the following vocabulary allows developing
the human-computer interface that supports the presented in
the paper functionality.

VIII. CONCLUSION
In this paper, we consider the problem of efficient audio-
visual speech recognition for driver monitoring systems.
We analyze related research works in the following topics:
driver monitoring systems based on smartphone sensors,
speech recognition systems in vehicle cabins, andmultimodal
corpus for audio-visual speech recognition in a vehicle cabin.
We develop the task-oriented methodology for speech corpus
creation and implement that was a goal of this paper. We for-
mulate four research questions related to the task of collecting
a representative audio-visual speech corpus. We identify the
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main specifics of speech recognition for driver monitoring
systems, research the main state-of-the-art techniques for
audio-visual speech recognition, discuss important parame-
ters for audio-visual corpus creation related to driver’s speech
recognition and develop our own recognition vocabulary for
further corpus recording. Finally, we describe the mobile
application developed for the corpus creation and record
RUSAVIC corpus that includes 20 participants in-the-wild
vehicle conditions.

Our future work is related to new algorithm development
for effective speech recognition in a vehicle cabin based on
RUSAVIC corpus presented in the paper.
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