
Received February 17, 2021, accepted February 23, 2021, date of publication March 4, 2021, date of current version March 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063901

Energy Aware Parallel Scheduling Techniques
for Network-on-Chip Based Systems
BICHI BASHIR YUSUF1, TAHIR MAQSOOD 2, FAISAL REHMAN2, AND SAJJAD A. MADANI1
1Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan
2Department of Computer Science, COMSATS University Islamabad at Abbottabad, Abbottabad 22060, Pakistan

Corresponding author: Tahir Maqsood (tmaqsood@cuiatd.edu.pk)

The work of Bichi Bashir Yusuf was supported by The World Academy of Science (TWAS) and COMSATS University Islamabad through
the Award of 2016 CIIT-TWAS Full-Time Postgraduate Fellowship under Grant 3240293224.

ABSTRACT Minimizing execution time, energy consumption, and network load through scheduling
algorithms is challenging for multi-processor-on-chip (MPSoC) based network-on-chip (NoC) systems.
MPSoC based systems are prevalent in high performance computing systems.With the increase in computing
capabilities of computing hardware, application requirements have increased many folds, particularly for
real world scientific applications. Scheduling large scientific workflows consisting hundreds and thousands
of tasks consume significant amount of time and resources. In this article, energy aware parallel scheduling
techniques are presented primarily aimed at reducing the algorithm execution timewhile considering network
load. Experimental results reveal that the proposed parallel scheduling algorithms achieve significant
reduction in execution time.

INDEX TERMS Network-on-chip (NoC), multiprocessor system-on-chip (MPSoC), task scheduling,
parallel scheduling.

I. INTRODUCTION
Multi-processor system-on-chip (MPSoC) technology allows
multiple processing elements of varying capabilities and
capacities to be embedded onto a single chip. MPSoCs
consist of tens or hundreds of heterogeneous intellectual
property (IP) cores capable of runningmultiple parallel appli-
cations [1], [2]. Often known as Processing Elements (PEs),
the cores can be described as a general purpose processors,
a field programmable modules, or a digital signal proces-
sors [3], [4]. MPSoC framework retained standardized tiled
infrastructure composed of different heterogeneous compute
processors, memory tiles for global memory access, dedi-
cated accelerator tiles, and I/O tiles [5]–[7].

Improving energy efficiency of MPSoCs is important to
realize the sustainable adoption of these systems in commer-
cial and household devices [7]. According to [8], [9], energy
consumption of high-performance multiprocessor systems
including cloud datacenter, IT industry, and telecommuni-
cation equipment may rise up to 26 GW worldwide. More-
over, increase in energy consumption leads to increase CO2
emissions that contributes to the global warming. Studies

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

also revealed that majority of the servers within datacenters
operate in the range of 15% to 30% of their total capac-
ity [9], [10]. This underutilization comeswith a cost as a study
conducted by [11] shows that the operations of datacenters
deployed by large IT service providers, such as Google and
Microsoft accounts to a yearly cumulative spending of nearly
$30 million for energy.

Improving MPSoCs efficiency is critical in achieving
the sustainable deployment of these systems in indus-
trial and residential devices that deals with large work-
flows. The MPSoCs continue to develop and expand in
terms of processing power and core count. The core count
of MPSoC is expected to hit hundreds, or even thou-
sands by 2025 [12]. This growth comes with a cost, i.e.,
increased execution time and energy consumption. Workflow
scheduling is already proven to be NP-hard problem [13].
Consequently, scheduling consumes significant amount of
time, energy, and computational resources. In the literature,
various schemes have been proposed to optimize the energy
efficiency of MPSoCs [1], [2], [12], [14]–[16]. Most schedul-
ing algorithms are developed using a linear or sequential
approach, which consumes considerable time and, conse-
quently, increases energy consumption of MPSoCs when
applied to large workflows with hundreds of thousands of

38778 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0439-5700
https://orcid.org/0000-0003-0619-0338

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

tasks. For instance, techniques designed to look for optimal
or near-optimal solutions, such as integer linear program-
ming (ILP), genetic algorithm (GA), ant colony optimiza-
tion (ACO), and Pareto efficient algorithm have considerably
higher execution time to achieve convergence, typically hours
or even days [1], [2], [15]. Therefore, it is highly desirable to
improve performance and energy efficiency of MPSoCs due
to significant increase in computational demands of current
and future application requirements particularly large scien-
tific workflows.

The major contributions of this work are summarized as
follows.

• Optimize the task scheduling algorithms namely b-level
based (BL) scheme, HEFT ranking b-level scheme
(HRBL), energy efficient scheme (E3FT), and base level
task stealing (BLTS) algorithm by parallelizing different
phases of the algorithms.

• Reduce execution time and energy consumption of
scheduling algorithms.

The rest of this paper is structured in the following manner.
In Section II related work is discussed. Section III deals
with problem formulation and system model. The proposed
parallel scheduling techniques are presented in Section IV.
The experimental evaluation and results are discussed in
Section V. Finally, Section VI concludes the major findings
of this work with a glimpse of the future work.

II. RELATED WORK
Scheduling algorithms have a profound impact on MPSoC
systems performance, energy efficiency and reliability [12,
16]. Numerous task mapping/scheduling schemes have been
proposed for MPSoC based systems using different opti-
mization techniques, such as integer linear programming [2],
genetic algorithm [17], and ant colony optimization [15].
The technique proposed by [2], aims to minimize energy
consumption of heterogeneous MPSoCs. Another technique
proposed by [17] used genetic algorithm to improve energy
efficiency and achieved higher bandwidth for the NoC-based
MPSoC systems. The authors in [15] and [18] developed
an ant colony optimization (ACO) based scheme with the
aim of minimizing computational overhead of MPSoCs. The
aforementioned strategies show promising results in terms of
reducing energy consumption. However, a major drawback
of these systems is that they are computationally intensive
and have significantly higher execution time to achieve con-
vergence [1, 2, 19] when dealing with large workflows of
thousands or millions of jobs [1].

To this end, we further discuss on the schemes that are
firmly related to this work. A dynamic task mapping tech-
nique for NoC based systems was proposed by the authors
in [1]. The authors extended the nearest-neighbor based
communication-aware packing algorithm (CPNN). Proposed
extension aimed to reduce the communication overhead.
In addition, a migration scheme was proposed that allows
highly loaded PEs to move the task to lightly loaded PEs that

can host the task without raising communication overhead.
Similarly, the authors in [20] presented a method to optimize
energy and communication by defining a novel method for
bin packing problem namely Variable bEnefit Bin pAcking
Problem (VEBAP).

In [21], the authors proposed different algorithms to tackle
the issue of energy efficient task and data co-scheduling
using different heuristics. The greedy algorithm traverses the
task graph in breadth-first order to reduce makespan and
energy. Critical path-based algorithm works by prioritizing
the scheduling of tasks that are on the critical (longest) path
within a given directed acyclic graph (DAG). The base level
algorithm schedules tasks and the generated data considering
base level priorities of tasks. The task assignment considering
data allocation (TAC-DA), involving two-way operational
stages, is another scheme presented in [22]. First, the critical
path algorithm is utilized to find a suitable appropriate way
of mapping tasks. Then the second phase involves gathering
data items to maximize energy consumption, considering the
time and task mapping constraints of the preceding phase.
Task ratio greedy scheduling scheme (TRGS) deals with
data allocation when scheduling tasks. The scheme allows
each data element to be assigned to a specific processor’s
memory/local cache [22].

The authors in [23] proposed the idea of using two different
types of PEs, i.e., special purpose and general-purpose PEs.
The objective of the work is to achieve a transient fault
aware mapping and scheduling (TFAMS) scheme that satis-
fies the deadline requirement of task as well as minimizes
energy consumption during allocation. The proposed scheme
attempts to dynamically adjust task mapping whenever a
fault is experienced. However, the proposed scheme does not
tackle permanent faults. Moreover, communication overhead
will increase while remapping tasks. Furthermore, technique
proposed in [23] assigns tasks dynamically and it is character-
ized by low utilization. Reference [24] focuses on integrating
task mapping, task ordering and voltage scaling. To take
advantage of the different computational resources available
on a given system, researchers in [17], [25], [26] propose
parallel genetic algorithms (PGA). In [17] PGAmeasures the
fitness value of each person in a single population leveraging
highly parallel processors, such as the master-slave-based
GA platform. The master processor allocates the individuals
among the slave processors. In this architecture, the master
processor becomes the bottleneck for the whole system. Par-
allel ant colony optimization (PACO) [27] is an evolutionary
optimization algorithm. The authors presented a technique
for sharing information among processors by enabling each
processor to select a partner to associate with their pheromone
and adaptively update it. Secondly, a framework is developed
to adapt the timeframe for exchanging information based
on variety of solutions and enhance the consistency of the
optimized solution as well as prevent early convergence.
Table 1 summarizes the works discussed in related work.

In terms of modalities and implementation, majority of
the strategies discussed in the related work are identical. For

VOLUME 9, 2021 38779

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

TABLE 1. Comparison of techniques discussed in related work.

example, the work in [1], [20], [23], [28], [29], [31], [24], [28]
and [30] are based on the sequential mapping approach. The
sequential schemes have high computational complexity and
consume significant amount of time and resources, especially
when dealing with large workflows, such as brain imaging
workflows, health care data analysis, and Pegasus workflow
that tackle thousands of tasks [32]–[34]. Alternatively, the
parallel schemes presented in [17], [27] show significant
improvement in terms of reduced algorithm execution time.
However, their performance for large workflows is not known

III. PROBLEM STATEMENT AND SYSTEM MODEL
A. WORKFLOW MODEL
Workflow scheduling problem in heterogeneous multi-
processor systems can be modeled as follows. A work-
flow can be depicted using a directed acyclic graph (DAG)
G(T ,E). Here T is set of n tasks as T = {t1, t2, t3, . . . , tn with
E representing set of directed edges, E = {e1, e2, e3, . . . , em.
The relationship between task ti and tj creates an edge that
maintains the precedence constraint between tasks i and j
depicting a parent and child relationship between any two

38780 VOLUME 9, 2021

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

FIGURE 1. Application workflow example.

given nodes. Fig. 1 shows a sample DAG with relationship
between tasks. Here t1 is parent and t2, t3, and t4 are child
tasks of t1. Task that does not have parent is referred to as
an entry task while the task with no child is called exit task.
A DAG may consist of multiple entry and exit tasks.

B. ENERGY MODEL
Energy model of PowerPC 405-based architecture imple-
mented on the Xilinx Virtex II Pro FPGA (XupV2Pro) plat-
form have been used. PowerPC 405 processors with a 16KB,
2-way set of associative instruction and data caches are
included in the Virtex II Pro FPGA. The proposed energy
model considers the computational energy consumed by pro-
cessing cores and NoC components. Equation (1) gives the
dynamic power Dpi dissipated in the execution of a task ti on
a PE pj as employed in [16].

Dpi = Lc ∗ V 2
si ∗ fi (1)

Here Lc denotes the effective load switching capacitance, Vsi
the supply voltage, and fi operating frequency accordingly.
The energy of NoC-based systems comprises of two major
components: (a) energy consumption by processor referred as
Ep, and (b) communication energy consumption Ec. Energy
model used in this work is adopted from [1], [15], [35]. Com-
munication energy represents the amount of energy being
used by components of the NoC to transfer data among the
PEs. The communication energy calculation is based on the
bit energy model proposed in [1], [35]. The total energy ET
that a system consumes while executing a given workflow is
given by equation (2).

ET = Ec + Ep (2)

Ep represents the energy consumed by the processing ele-
ments for executing the workflow. While Ec represents the
communication energy consumed when transmitting data
over the NoC. The communication energy is measured using
bit energy as stated in [36], which determines the energy
required for transporting one bit from tile j within the NoC
to tile k as shown in equation (3).

Enbit =
(
njk ∗ Erbit

)
+
(
njk − 1 ∗ Elbit

)
+ (2 ∗ Ecbit) (3)

Enbit is the energy that is required to transfer one bit from
tile j to tile k in the NoC. Erbit indicates the dynamic energy
required to pass a bit through the router (wires, buffers, and
logic gates). Elbit represents the dynamic energy consumed
in moving the bit on the links across two adjacent grids as
shown in equation (4).

Elbit =
Pi

fl ∗ bw
(4)

wherePi shows the total power consumption for one bit on the
links that ti traverses at fl , while bw represent the bandwidth
of each link within the 2D NoC mesh.
Ecbit indicates the dynamic energy consumed between

router to PE link. Lastly, the number of routers or hops that the
bit traverse from grid j to grid k is computed by using equation
(5) where xj and yj are row and column indices of pj on a 2D
NoC mesh. Consequently, the total communication energy
incurred within NoC can be measured using the equation
(6) with Nbit representing total communication volume in
number of bits and navg is the described as the number hops
travelled by all bits on average.

njk =
∣∣xj − xk ∣∣+ |yj − yk | (5)

Ec = Nbit +
(
navg ∗ Erbit

) (
navg − 1 ∗ Elbit

)
+ (2 ∗ Ecbit)

(6)

Equation (7) represents the computational energy consumed
by a given PE pj with nr

j as the number of cycles where pj
is running and ni

j is when pj is idle. Er and Ei describes
the energy consumed by the PE in running and idle states,
accordingly. The overall consumption in terms of computa-
tional energy by all the PEs is calculated using equation (8).

Ej = nr
j ∗ Er +ni

j ∗ Ei (7)

Ep =
n∑
j=1

Ej (8)

C. ARBITRATION
Multiprocessor systems’ performance is dependent on the
efficient communication between processing cores and bal-
anced allocation of computation between them rather than
solely on processor speed [37]. Round robin arbitration is
a technique that maintains a high degree of fairness among
agents by assessing each input port fairly and ensuring conti-
nuity in scheduling. An equal opportunity to reach the output
port is given to each input port, this process helps in solving
the problem of starvation [38].

In the mesh architecture, all routers have four adjacent
routers and a PE attached to a local port with the exception of
the routers at the borders. Major benefit of this system is scal-
ability, which enables large number of PEs to be connected.
The same output port can be appropriate for several pack-
ets arriving at various input ports. As such, the output port
must be scheduled to ensure equal utilization of the output
channel by the input channels. Scheduling must be carried
out to ensure that no packet waits to be guided to its target

VOLUME 9, 2021 38781

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

indefinitely. The router arbiters are responsible for managing
the use of the output port [39]. This work uses distributed
round robin arbitration, where each router port manages the
routing and arbitration separately. There is a routing module
connected with each input port, and each output port has an
arbitrator. A specific output port is demanded by the routing
module. The arbitrator chooses a specific input port if it has
received several requests.

D. PROBLEM STATEMENT AND FORMULATION
Researchers have proposed several scheduling techniques
for NoC based MPSoCs. However, a large proportion of
the solutions focus on sequential strategy. Consequently,
scheduling algorithms consume a significant amount of time
and energy, especially when dealing with large workflows,
such as brain imaging workflows, healthcare data analysis,
service-oriented architectures, and so on having hundreds of
thousands of tasks.

To mathematically formulate the problem at hand, task
to processing cores mapping is represented by |T | × |P|
matrix denoted by S. For the matrix S, sk,x demonstrates
whether task tk is placed on processor px or not. Specifically,
when tk is assigned to px , sk,x is one, otherwise it is zero.
The utilization indicated by Urx (S, t) of the processor px is
given by equation (9) with CCx representing the computing
capacity of px and CRk representing computing requirement
of task tk . It is worth noting that the processor’s utilization rate
cannot be greater than one as indicated in equation (10). The
overall network loadNl incurred as a result of communication
among interdependent tasks within the system in a given time
interval (t1 to t2) is calculated using equation (11).

Urx (S, t) =
T∑
k=1

sk,x ∗
CCx

CRk
(9)

T∑
k=1

sk,x ∗
CCx

CRk
≤ 1, ∀xεP (10)

Nl =
T∑
k=1

T∑
m=1

P∑
x=1

P∑
j=1

Sk,x ∗ Sm,j∗nkj (11)

Themain objective of the task scheduling algorithm is tomin-
imize energy consumption of the system which is reflected in
objective function defined in equation (12).

minimize ET =
n∑
j=1

Ej + Ec (12)

This problem is subject to following constraints. (a) tasks
allocated to any processing core pj are processed in the first-
come-first-serve sequence without breaching the execution
order. (b) Task ti, 1 ≤ i ≤ x is executed without preemption
on only one core and is not migrated and split at any stage.
(c) the processor pj for 1 ≤ j ≤ y can house as many tasks at
the same time as long as the utilization does not exceed one.

IV. PROPOSED SCHEMES
The objective of this work is to develop algorithmic solu-
tions using parallel approach to reduce the execution time of
scheduling algorithms for large workflows. Parallel schedul-
ing algorithms can overcome the drawbacks of the sequen-
tial scheduling approach. However, achieving parallelism
in scheduling algorithms is not trivial and introduces new
challenges that need to be considered while developing par-
allel scheduling schemes. One of the major challenges is
that certain data structures are shared by parallel threads
and may need to be accessed and modified simultaneously,
which leads to synchronization issues. Moreover, loading and
pre-processing of large workflow graphs having hundreds
of thousands of tasks consumes substantial amount of time
that contributes towards increasing execution time of the
scheduling algorithm as well as energy consumption. There-
fore, in this work multiple parallel scheduling algorithms are
proposed considering the aforementioned challenges.
NP-Hardness: Task scheduling for the general case is

considered to be NP-hard [35]. Task scheduling problem
is solved for finite or infinite number of processing cores.
In case of finite number of processing cores, the objective
is to find an algorithm and verify its schedulability that the
given workflow is schedulable (or otherwise) on given fixed
number of processing cores. This is analogous to the classical
bin packing problem where certain items need to be packed
in fixed number of bins having specified capacity [40]. Here,
items (tasks) with certain weight (computing requirements
in case of tasks) are required to be packed (scheduled) onto
minimum possible number of bins (processing cores) with
the constraint that weight of items packed in each bin must
not exceed the capacity of bins. Since bin packing prob-
lem is NP-hard [40], [41], the task scheduling problem at
hand is also NP-hard for the general case [40], [42], [43].
Moreover, scheduling for energy minimization is proved to
be NP-hard problem. For detailed proofs on NP-hardness of
the task scheduling problem, the readers are encouraged to
see [43]–[45].

Since the energy efficient task scheduling on multicores is
an NP-hard problem, therefore, in this work heuristics based
parallel scheduling algorithms are proposed. Algorithms pro-
posed as part of this work are: (a) modified base b-level (BL)
scheme, (b) HEFT ranking base level (HRBL), (c) energy
efficient technique (E3FT), and (d) modified base level task
stealing (BLTS). Each of the proposed scheme is discussed in
the subsequent sections and a generic flowchart of proposed
task scheduling methodology is depicted in Fig. 2.

A. MODIFIED BASE LEVEL SCHEME (MBL)
The scheme uses b-level priorities when scheduling tasks.
The b-level value of a task is determined by identifying the
longest path from the task under consideration to the exit
task. The b-level value for the task is measured as the sum of
the computation and communication costs from the particular
task to the exit task along the critical path. Scheduling is

38782 VOLUME 9, 2021

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

FIGURE 2. Generic flowchart of task scheduling methodology.

Algorithm 1Modified B-Level Scheme
Input: Task set T, processing cores P
1. Parallel estimation of b-level

priority
for each task ti ∈ T

2. Parallel sorting of tasks in
non-increasing
order of the b-level values

3. For each task ti ∈ T
4. px = compute PE that report minimum

completion time of a task ti
5. begin assignment
6. assign ti to px
7. end assignment
8. End For

conducted by assigning tasks according to their b-level value
in decreasing order to a PE that reports minimum comple-
tion time. Following modifications have been applied to the
BL scheduling technique. (a) Parallelize the calculation of
b-level values of all tasks as indicated in line 1 of algorithm
1. (b) Modified the sorting phase by applying parallel sorting
technique in algorithm 6 to reduce the execution time (line 2).
The adopted parallel sorting technique is described in detail
in the subsection E.

B. HEFT RANKING BASE LEVEL SCHEME (HRBL)
The HRBL scheme combines the feature of Base Level task
priority algorithm and HEFT algorithm, consequently, named
as HEFT ranking base level (HRBL). The advantage of using
the algorithm (ranking algorithm) is that two dependent tasks
can be allotted on the same PE that leads to reduced schedule
length. Similar to the HEFT scheme, the HRBL consists of
two phases: (i) the priority phase that chooses tasks with
higher priority among the set of tasks, and (ii) the process
phase schedules the task with higher priority to a PE with
least finishing time for the given task.

Task Priority: The priority of each task is calculated using
the upward rank value using equation (13) as proposed in [49,
50], which uses the average communication and computation

Algorithm 2 Ranking Algorithm
Input: Task set T, processing cores P
1 W = calculate on average the
execution time for each task on
all PE

2 For task ti ∈ T in the DAG graph
3 IF ti is the last task
4 Rank of ti

= average task execution time
5 Else
6 Compute raking of ti using

Equation (13)
Ru (ti) = Wi + max

tj∈s(ti)
(Ci,j + Ru(tj))

7 End IF
8 End For

cost. The list of tasks generated is then sorted in decreasing
order of the task based on the rank computed for each task.

Ru (ti) = Wi + max
tj∈s(ti)

(Ci,j + Ru(tj)) (13)

Here s(ti) represents set of successors task of ti,Wi represents
computation cost on average calculated using equation (14).
In (14) wij gives the estimated execution time of ti on PE
pj and q represent the total number of processing entities.
In equation (13) Ci,j represents the average communication
cost of task ti to tj.Ci,j is calculated using equation (15) where
Ci,j is the communications cost of transmitting data from task
ti scheduled on PE pm to task tj scheduled on pn along edge
(i, j). Ru in (13) represents the longest path of a given task ti
to its exit node along with its computational cost.

Wi =

q∑
j=1

wij
/
q (14)

Ci,j = lm + datai,j
/
Bm,n (15)

Here B is a matrix of size qxq representing data transfer rate
between PEs and Bm,n gives the transfer rate between PE m
and n. In (15) lm represents the communication startup cost of
a given PEm. datai,j gives the amount of data shared between
tasks ti and tj.
PE selection: At this stage of scheduling, the scheme

searches for a PEs that report earliest finish time for each task
in the order of their priorities calculated using algorithm 2.
We then further modify the ranking scheme to compute the
task ranking, the sorting process to perform in a parallel
manner as outlined in algorithm 3.

C. ENERGY EFFICIENT EARLIEST FINISHING TIME
SCHEME (E3FT)
The central idea of E3FT scheme is to schedule tasks on
PEs reporting minimum completion time while considering
the energy consumption of PEs. In E3FT, PEs are sorted
according to the energy consumption in increasing order. The
E3FT technique uses the b-level priority of a given tasks

VOLUME 9, 2021 38783

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

Algorithm 3Modified HRBL Scheduling
Input: Task set T, processing cores P
1 Parallel Computation of task ranks
2 Parallel sorting of tasks in
non-increasing order of the b-level
values

3 For each task ti ∈ T
4 px = compute PE that report

minimum completion time of a
task ti from matrix W

5 Assign ti to px
6 End For

similar to the BL scheme [20]. The b-level value of a task
is determined as discussed in section 4.1. The E3FT scheme
shown in algorithm 4, traverses the task list in the sorted order.
For each task ti, earliest finishing time of ti is computed using
equation (16). The task ti is scheduled on PE that reports min-
imum completion time, if there exist a case of tie, i.e., when
there are more than one PEs with same minimum completion
time, then the PE with lower energy consumption is selected.
In case of tie again, when there are more than one PEs with
same energy consumption, then the PE with lower utilization
is selected. To reduce the algorithm execution time, certain
steps of the algorithm are executed in parallel that include
line 1, 2, and 3 as indicated in algorithm 4. To compute the
completion time (CT) we first consider the earliest start time
(EST) of task ti based on the CT of the predecessor tasks
as shown in equation (16), where CT

(
tj, pz

)
represents the

completion time of task tj on processor pz. Therefore, the
completion time of a task ti for a given PE pz is computed
using the formulation presented in equation (17). Here ET iz
denotes the time required to execute task ti on pz. Note that
equation (17) only holds when task ti has more than one
predecessor.

EST (ti) = min
∀pz∈P

max
∀tj∈Pred(tj)

CT
(
tj, pz

)
(16)

CT (ti) = min
∀pz∈P
{EST (ti)+ ET iz} (17)

D. MODIFIED BASE LEVEL TASK STEALING SCHEME
(MBLTS)
This scheme is a modified BL algorithm, the task stealing
method focuses on finding out an idle slot created on any
given processing core after a task has been scheduled. Upon
finding idle slot, then the algorithm tries to identify a suitable
task using a precedence level (p-level) value. The p-level
value for a given task t i is computed by taking into account
the number of edges along path starting at the entry task till
task t i. Two separate sorted lists are maintained for b-level
and p-level values of all tasks involved. To improve the sort-
ing performance, parallel sorting algorithm is used. After the
sorting phase, tasks are traversed in the sorted order of b-level
values. If t i is found to be a join task, the task is then scheduled
on the same PE along with its predecessor that has the top or

Algorithm 4 Modified Energy Efficient Earliest Finishing
Time Scheme (ME3FT)
Input: Task set T, processing cores P
1 Parallel sorting of PEs on energy
consumption and group PEs as per
their energy consumption

2 Parallel computation of b-level
priority for all the tasks within
the Task-DAG

3 Parallel sorting of tasks in order
of decreasing b-level values

4 For each task ti ∈ T
5 List px = compute PE(s) that report

minimum completion time (MCT)
using (16) and (17)

6 IF there are more than one PE
in px

7 list pxm = PE(s) having
lowest energy consumption
among px

8 IF there more than one PEs
in pxm then

9 list pxmu = PE(s) with
lowest utilization among
pxm

10 IF there are more than
one PE(s) in pxmu then

11 pz = randomly select
a PE among pxmu

12 End IF
13 Else
14 pz = pxm
15 Else
16 pz = px
17 End IF
18 assign ti to pz
19 End For

highest values for min
∀pzP&&pz 6=f (j)

{
CT

(
t j,pz

)}
else the taskwill

be scheduled on PE which provides minimum completion
time (MCT) for t i. Algorithm 5 presents the modified BLTS
algorithm.

E. TASK SORTING
Sorting is extensively used in all the presented schemes.
To optimize the sorting process we developed a paral-
lel sorting technique based on the well-known merge sort
algorithm [48]. Merge-sort algorithms applies the divide-
and-conquer principle. A key benefit of using the merge sort
in the context of large workflow is that it enables quicker
sorting because it does not sort the complete list repeatedly.
Another befitting factor is that the average execution time
of the algorithm is consistent as different stages of the sort-
ing scheme are executed in a similar time factor. We add a

38784 VOLUME 9, 2021

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

Algorithm 5 Modified Base Level Task Stealing Scheme
(MBLTS)
Input: Task set T, processing cores P
1 b_list = Parallel computation of
b-level priority for all the tasks
in T

2 p_list = Parallel computation of
p-level values for all the tasks T

3 Parallel sorting of tasks in
non-increasing order in b_list and
p_list

4 For task ti ∈ b_list
5 If ti is a disjoined node
6 ta = max

∀tj∈Pred(tj)
min

∀pz∈P&&pz 6=fj

{
CT

(
tj, pz

)}
7 pz = PE that holds ta
8 Else
9 pz = PE with MCT
10 assign ti to PE
11 End If
12 If there exist idle slot(s) then
13 p_list = tasks which have
same

value of p-level that are not
scheduled

14 For each task tp in p-list in
non- increasing order of the
value of b-level

15 IF the size of tp ≤ idle
16 ti = tp
17 GOTO 9
18 End If
19 End For
20 End If
21 End For

parallel sorting strategy as presented in [48] to the scheduling
schemes mentioned earlier. The parallel sorting algorithm
(algorithm 6) is called by different techniques whenever a
list needs to be sorted. The scheme as shown in algorithm 6,
works by dividing the unsorted lists into the smallest pos-
sible sub-lists, and each sub-list is processed by a separate
processing core, relative to the adjacent task and merged
in sorted order. For N number of items and M number of
processors, the parallel merge sort scheme proceeds in two
stages. Firstly, the local sorting stage then the merging stage.
Line 3 of the algorithm allows all the involved processing
cores to perform parallel sorting of the unsorted list accord-
ingly. The local sortingmethod provides items that are locally
sorted in each processor while the processorsmerge the sorted
list keys into some steps described as logM steps in the
second stage. The processor cores are grouped into sender
and receiver, whereby in the first step every sender transmits
its list of N/M keys to its recipient. Each recipient then
merges the two lists to create a sorted list of 2N/M items.

Algorithm 6 parallel Sorting Technique
Input: unsorted list
Output: sorted list
M: the total number of processing
cores
Mi: processing core having index i
n: number of all active processing
cores
1 n := M
2 For all 0 ≤ i ≤ M − 1
3 Mi locally sorts list of N/M

items
4 End For
5 For j = 0to(logM)− 1
6 For all 0 ≤ i ≤ n− 1
7 If (i < n/2) then
8 Mi accepts N/n keys from

Mi−n/2
9 Mi merges two lists of N/n

items in 2N/n sorted list
10 Else
11 Mi transmits its list to Mi−n/2
12 End If
13 n: = n/2
14 End For
15 End For

During the next stage, only the receivers in the previous step
are paired as (sender and receiver) and every pair executes
the same process and same merge operations to form a set
of 22N/M items. The method continues until a full list of
N sorted items is achieved. The performance analysis for
the algorithm is revealed as M/logM = M/2 + M/4 +
M/8. . .+ 1)/(logMsteps). Therefore, complexity of the par-
allel merge sort at its worst case can therefore be given as
(work/span) which is estimated as O(M/ log M).

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
Extensive simulations are performed to analyze performance
of proposed algorithms on a number of mesh sizes spanning
from 20×20 to 80×80 mesh NoCs. The results are averaged
over four different sets of application graphs for each NoC
size, where the number of tasks vary from 2000 to 100,000 on
average based on the size of the NoC. The information about
the number of tasks per simulation scenario are described in
Table 2.

B. RESULT AND DISCUSSION
This section compares the performance of proposed
sequential algorithms namely HRBL and E3FT with the
existing BL and BLTS techniques proposed in [28] in the
literature. Moreover, proposed parallel scheduling algorithms
presented in Section IV including: MBL, MHRBL, ME3FT,
and MBLTS are compared with the existing parallel genetic

VOLUME 9, 2021 38785

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

FIGURE 3. Consolidated run time for all scheduling scheme (a) Non-parallel (b) Parallel.

FIGURE 4. Run time for BL and MBL scheduling scheme (a) small mesh size (b) large mesh sizes.

FIGURE 5. Run time for HRBL and MHRBL scheduling scheme (a) small mesh size (b) large mesh sizes.

algorithm (PGA) and parallel ant colony optimization
(PACO) [17], [27]. The metrics used to measure the per-
formance of the algorithms include: (a) execution time
(b) energy consumption, and (c) network load. The results
have been grouped into two categories based on NoC
sizes and workflows. The smaller size workflow consisting
of 2000 to 5000 tasks with an NoC mesh size between
20 × 20 to 50 × 50, respectively. Similarly, large work-
flows consisting of tasks between 30,000 to 100,000 with

a NoC mesh size of 60 × 60 to 80 × 80, respectively.
It must be noted that we use the acronyms MBL, MHRBL,
ME3FT andMBLTS to represent the parallel schemes against
the non-parallel techniques BL, HRBL, E3FT, and BLTS,
respectively.

C. EXECUTION TIME
Fig. 3(a) shows the comparison of average execution time
consolidated over all the mesh sizes, i.e., 20×20 to 80×80 of

38786 VOLUME 9, 2021

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

FIGURE 6. Run time for E3FT and ME3FT scheduling scheme (a) small mesh size (b) large mesh sizes.

FIGURE 7. Run time for BLTS and MBLTS scheduling scheme (a) small mesh size (b) large mesh sizes.

TABLE 2. Details of experimental parameters.

FIGURE 8. Consolidated energy consumption for all scheduling scheme.

all the scheduling schemes before introducing parallelization.
The experimental results show that the E3FT scheme exhibit

highest execution time among all the compared schemes.
On the other extreme, BL scheme achieves lowest execu-
tion time amongst the compared schemes. BL has approxi-
mately 11%, 32%, and 37% lower execution time compared
with HRBL, BLTS, and E3FT, respectively. Similarly, HRBL
scheme reports second lowest average execution time having
approximately 21% and 38% lower execution time compared
to BLTS and E3FT, respectively. The reason behind the higher
execution time of E3FT is due to the time spent in locating the
appropriate PE in case of ties that may occur when multiple
PEs have the same minimum completion time, same energy
consumption, or same utilization. On the other hand, the
BL scheme achieved the lowest execution time because the
PEs are selected for task mapping from the already com-
puted matrix W. Similarly, consolidated average execution
time reported by the scheduling scheme after introducing
parallelization is shown in Fig. 3(b). The experimental results
reveal that the PGA scheme reports the highest execution
time. On the other extreme, MBLTS reports the lowest exe-
cution time among all the compared schemes. Specifically,
PACO, ME3FT, MHRBL, and MBLTS has approximately
15%, 41%, 42%, and 43% lower execution time compared
with the MBL. Based on the percentage difference HRBL
scheme achieved the second lowest execution time com-
pared with ME3FT and MBL, respectively. It can be wit-
nessed that all the parallel schemes reduce the execution time

VOLUME 9, 2021 38787

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

FIGURE 9. Energy consumption for scheduling schemes (a) small mesh size (b) large mesh sizes.

FIGURE 10. Consolidated network load for all scheduling scheme.

compared to their non-parallelized counterparts. However,
MBL scheme reported the highest reduction in execution time
compared to the other schemes.

Fig. 4(a) and (b) show the execution time of BL and MBL
schemes, respectively. The MBL achieves 12%, 22%, and
16% reduction in execution time for 20 × 20, 30 × 30, and
50 × 50, respectively. It can be seen that 30 × 30 achieves
maximum reduction while 20 × 20 achieves the minimum
reduction. The execution time for 30 × 30 NoC mesh size
takes more time than 50 × 50. This is due to higher task
to PE ratio for 30 × 30 mesh size, which is 3.33 tasks per
PE. Whereas, in case of 50 × 50 the ratio is 2.0 tasks per
PE. Consequently, for 30× 30 the algorithm must map more
tasks per PE that leads to increase in execution time of the
algorithm. The reason behind such behavior is that finding
appropriate PE for each task consumes more time due to
higher task to PE ratio. It is worth mentioning here that the
same argument holds for all the other presented schemes.
Fig. 4(b) show the same comparison for large mesh NoCs,
i.e., 60 × 60 to 80 × 80. Similar trend is observed in Fig.
4(b) where MBL achieves 9%, 19%, and 14% reduction in
execution time compared with BL for 60× 60, 70× 70, and
80× 80, respectively.
Fig. 5(a) and (b) show the execution time of HRBL

and MHRBL schemes, respectively. The MHRBL scheme
achieves 24%, 26%, and 31% reduction in execution time
compared with HRBL for 20 × 20, 30 × 30, and 50 × 50

respectively. Following the same pattern for large NoC mesh
sizes shown in Fig. 5(b), the MHRBL scheme outperformed
the HRBL scheme by achieving a decrease of 27%, 30% and
30% for 60×60, 70×70, and 80×80 mesh, respectively. Fig.
6(a) and (b) shows the running time of the E3FT scheme and
the ME3FT scheme. The percentage reduction for ME3FT
over E3FT scheme is 5%, 19%, and 57% for 20×20, 30×30
and 50×50, respectively. Themaximum reduction is achieved
by 50 × 50 while the minimum reduction was achieved by
20 × 20. Similar trend is observed for the large mesh NoCs
presented in Fig. 6(b). Fig. 7(a) and (b) show comparison of
the BLTS and MBLTS scheme. MBLTS exhibit 12%, 24%,
and 16 % reduction in execution time compared with BLTS
for 20× 20, 30× 30, and 50× 50. Similar trend is observed
where MBLTS outperforms BLTS by 9%, 17%, and 13%
lower execution time for 60× 60, 70× 70, and 80× 80 mesh
sizes, respectively.

D. ENERGY CONSUMPTION
Consolidated energy consumption of scheduling schemes
averaged over all mesh sizes is shown in Fig. 8. Experimental
results reveal that MHRBL scheme reports the highest energy
consumption. On the other extreme, MBLTS achieves the
lowest energy consumption among all the compared schemes.
Specifically, MBL, PGA, PACO, ME3FT, and MBLTS has
approximately 43%, 58%, 64%, 72%, and 98% lower energy
consumption compared with MHRBL. The reason behind
higher energy consumption of MBL and MHRBL is that
these techniques seek to jointly optimize overheads in com-
munication as well as energy consumption. Consequently,
to cut down the overhead some tasks are assigned to PEs
having higher energy consumption that leads to increase in
energy consumption. Alternatively, the factor behind lower
energy consumption of MBLTS and ME3FT is that these
schemes focus at reducing energy consumption without con-
sidering the communication overhead among interdependent
tasks.

The experimental result presented in Fig. 9 shows the
energy consumption of all the schemes over different mesh
sizes. The experimental results show that all the algorithms
follow almost similar trend for small and large mesh NoCs.

38788 VOLUME 9, 2021

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

FIGURE 11. Network load for scheduling schemes (a) small mesh size (b) large mesh sizes.

The exceptional cases are of MHRBL for 50 × 50 and 60 ×
60 where MHRBL has slightly higher energy consumption
compared with MBL. The reason behind such behavior is
that MHRBL explicitly seek to reduce overheads in commu-
nication by placing heavily communicating tasks to close by
while sacrificing energy consumption. Another exceptional
case is of MBLTS for 70 × 70 mesh NoC where MBLTS
has higher energy consumption compared with ME3FT. The
reason behind this is that MBLTS attempts to find idle slots
for reducing energy consumption, whichmay not be available
in all scenarios.

E. NETWORK LOAD
The consolidated network load of parallel scheduling
schemes is presented in Fig. 10. The experimental result
shows that on average PGA scheme reports the highest
network load followed by the PACO. Specifically, PACO,
ME3FT, MBLTS, MHRBL, and MBL have approximately
5%, 22%, 28%, 36%, and 37% higher network load compared
to MBL scheme. The reason behind the higher network load
exhibited by ME3FT and MBLTS can be attributed to the
fact that these schemes focus more on lowering consump-
tion in computational energy without explicitly consider-
ing the overheads in communication among interdependent
tasks.

The experimental result presented in Fig. 11 shows net-
work load of all the schemes over individual mesh size.
It can be observed that MBLTS shows varying trend of small
and large mesh NoCs, i.e., MBLTS achieves lower com-
munication overhead for small NoCs whereas it has higher
network load for large mesh NoCs. The rational associated
with such behavior is that MBLTS seek to place successor
tasks in the idle slots starting from the PE where the pre-
decessor task is mapped. For small mesh NoCs the number
of tasks to core ratio is low, consequently many successor
tasks can be mapped onto the same PE as of the prede-
cessor task leading to lower network load. However, for
large mesh NoCs task to core ratio is high that leads to
majority of tasks successor tasks being mapped onto differ-
ent PEs that results in higher network load for large mesh
NoCs.

VI. CONCLUSION
In this article, we presented parallel scheduling tech-
niques aimed at reducing the execution time of the algo-
rithm for large workflows. The experimental results show
that parallel scheduling schemes achieve better time effi-
ciency compared to their non-parallel counterpart. Among
the compared schemes, MBLTS achieved lowest execution
time followed by MHRBL. Similarly, MBLTs outperformed
all compared schemes in terms of energy consumption.
Whereas, MBL scheme exhibited lowest network compared
to other presented schemes. The work presented in this arti-
cle can be extended by implementing the graph partitioning
schemes to partition the workflows and executing multiple
instances of the application mapping algorithms on the par-
titioned workflow to further reduce the algorithm execution
time.

REFERENCES
[1] T. Maqsood, S. Ali, S. U. R. Malik, and S. A. Madani, ‘‘Dynamic task

mapping for network-on-chip based systems,’’ J. Syst. Archit., vol. 61,
no. 7, pp. 293–306, Aug. 2015.

[2] S. Tosun, ‘‘Energy-and reliability-aware task scheduling onto heteroge-
neousMPSoC architectures,’’ J. Supercomput., vol. 62, no. 1, pp. 265–289,
Oct. 2012.

[3] T.-K. Dao, T.-S. Pan, T.-T. Nguyen, and J.-S. Pan, ‘‘Parallel bat algorithm
for optimizing makespan in job shop scheduling problems,’’ J. Intell.
Manuf., vol. 29, no. 2, pp. 451–462, Feb. 2018.

[4] C.-L. Chou and R. Marculescu, ‘‘Contention-aware application mapping
for network-on-chip communication architectures,’’ in Proc. IEEE Int.
Conf. Comput. Design, Oct. 2008, pp. 164–169.

[5] S. Roloff, F. Hannig, and J. Teich, ‘‘Fast architecture evaluation of het-
erogeneous MPSoCs by host-compiled simulation,’’ in Proc. 15th Int.
Workshop Softw. Compil. Embedded Syst., 2012, pp. 52–61.

[6] W. Wolf, A. A. Jerraya, and G. Martin, ‘‘Multiprocessor system-on-chip
(MPSoC) technology,’’ IEEETrans. Comput.-AidedDesign Integr. Circuits
Syst., vol. 27, no. 10, pp. 1701–1713, Oct. 2008.

[7] T. Li, T. Zhang, G. Yu, J. Song, and J. Fan, ‘‘Minimizing tempera-
ture and energy of real-time applications with precedence constraints
on heterogeneous MPSoC systems,’’ J. Syst. Archit., vol. 98, pp. 79–91,
Sep. 2019.

[8] N. Prasad S and S. S. Kulkarni, ‘‘Performance and energy balanced
algorithm for executing high performance computing application,’’ in
Proc. Int. Conf. Smart Syst. Inventive Technol. (ICSSIT), Nov. 2019,
pp. 252–257.

[9] K. L. A. Uchechukwu and Y. Shen, ‘‘Energy consumption in cloud com-
puting datacenters,’’ Int. J. Cloud Comput. Services Sci., vol. 3, pp. 31–48,
Jun. 2014.

VOLUME 9, 2021 38789

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

[10] T. Maqsood, K. Bilal, and S. A. Madani, ‘‘Congestion-aware core mapping
for network-on-chip based systems using betweenness centrality,’’ Future
Gener. Comput. Syst., vol. 82, pp. 459–471, May 2018.

[11] L. Yu, T. Jiang, and Y. Cao, ‘‘Energy cost minimization for dis-
tributed Internet data centers in smart microgrids considering power out-
ages,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 120–130,
Jan. 2015.

[12] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, ‘‘A parallel
random forest algorithm for big data in a spark cloud computing environ-
ment,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp. 919–933,
Apr. 2017.

[13] A. Majd, G. Sahebi, M. Daneshtalab, and E. Troubitsyna, ‘‘Optimizing
scheduling for heterogeneous computing systems using combinatorial
meta-heuristic solution,’’ in Proc. IEEE SmartWorld, Ubiquitous Intell.
Comput., Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big
Data Comput., Dec. 2017, pp. 1–8.

[14] S. Khan, S. Anjum, U. A. Gulzari, T. Umer, and B.-S. Kim, ‘‘Bandwidth-
constrained multi-objective segmented brute-force algorithm for efficient
mapping of embedded applications on NoC architecture,’’ IEEE Access,
vol. 6, pp. 11242–11254, 2018.

[15] Z. Li-yun and Z. Li-feng, ‘‘An ant colony optimization algorithm based
on automatic dynamic updating,’’ in Proc. IEEE Int. Conf. Comput. Sci.
Autom. Eng. (CSAE), May 2012, pp. 111–116.

[16] H. Ali, U. U. Tariq, Y. Zheng, X. Zhai, and L. Liu, ‘‘Contention & energy-
aware real-time task mapping on NoC based heterogeneous MPSoCs,’’
IEEE Access, vol. 6, pp. 75110–75123, 2018.

[17] Y. Xue, Z. Qian, G. Wei, P. Bogdan, C.-Y. Tsui, and R. Marculescu, ‘‘An
efficient network-on-chip (NoC) based multicore platform for hierarchical
parallel genetic algorithms,’’ in Proc. 8th IEEE/ACM Int. Symp. Networks-
on-Chip (NoCS), Sep. 2014, pp. 17–24.

[18] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, ‘‘Ant colony
heuristic for mapping and scheduling tasks and communications on hetero-
geneous embedded systems,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 29, no. 6, pp. 911–924, Jun. 2010.

[19] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, and K. Li, ‘‘Efficient task
scheduling for budget constrained parallel applications on heterogeneous
cloud computing systems,’’ Future Gener. Comput. Syst., vol. 74, pp. 1–11,
Sep. 2017.

[20] T. Maqsood, N. Tziritas, T. Loukopoulos, S. A. Madani, S. U. Khan,
C.-Z. Xu, and A. Y. Zomaya, ‘‘Energy and communication aware task
mapping for MPSoCs,’’ J. Parallel Distrib. Comput., vol. 121, pp. 71–89,
Nov. 2018.

[21] D. Talia, ‘‘Workflow systems for science: Concepts and tools,’’ ISRN Softw.
Eng., vol. 2013, p. 15, Dec. 2013.

[22] Y. Wang, K. Li, H. Chen, L. He, and K. Li, ‘‘Energy-aware data alloca-
tion and task scheduling on heterogeneous multiprocessor systems with
time constraints,’’ IEEE Trans. Emerg. Topics Comput., vol. 2, no. 2,
pp. 134–148, Jun. 2014.

[23] S. P. N. Chatterjee and S. Chattopadhyay, ‘‘Task mapping and schedul-
ing for network-on-chip based multi-core platform with transient faults,’’
J. Syst. Archit., vol. 83, pp. 34–56, 2018.

[24] H. Ali, X. Zhai, U. U. Tariq, and L. Liu, ‘‘Energy efficient heuristic
algorithm for task mapping on shared-memory heterogeneous MPSoCs,’’
in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., Jun. 2018,
pp. 1099–1104.

[25] D. I. Arkhipov, D. Wu, T. Wu, and A. C. Regan, ‘‘A parallel genetic algo-
rithm framework for transportation planning and logistics management,’’
IEEE Access, vol. 8, pp. 106506–106515, 2020.

[26] R. E. Ferreira, L. de Macedo Mourelle, and N. Nedjah, ‘‘A parallel genetic
algorithm on a multi-processor system-on-chip,’’ in Proc. Int. Conf. Ind.,
Eng. Appl. Appl. Intell. Syst., 2010, pp. 164–172.

[27] L. Chen, H.-Y. Sun, and S. Wang, ‘‘A parallel ant colony algorithm on
massively parallel processors and its convergence analysis for the travelling
salesman problem,’’ Inf. Sci., vol. 199, pp. 31–42, Sep. 2012.

[28] T. Maqsood, N. Tziritas, T. Loukopoulos, S. A. Madani, S. U. Khan,
and C.-Z. Xu, ‘‘Leveraging on deep memory hierarchies to minimize
energy consumption and data access latency on single-chip cloud com-
puters,’’ IEEE Trans. Sustain. Comput., vol. 2, no. 2, pp. 154–166,
Apr. 2017.

[29] N. Van Cuong, N. T. Bang, L. Dinh Tuyen, and P. N. Nam, ‘‘Dynamic
mapping of quality adjustable applications on NoC-based reconfigurable
platforms,’’ in Proc. Int. Conf. Adv. Technol. Commun. (ATC), Hanoi,
Vietnam, Oct. 2016, pp. 322–327.

[30] H. Ali, U. Ullah Tariq, X. Zhai, and L. Liu, ‘‘Energy efficient task mapping
& scheduling on heterogeneous NoC-MPSoCs in IoT based smart city,’’ in
Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., Jun. 2018,
pp. 1305–1313.

[31] R. Bamnote, P. M. RavaleNerkar, and S. S. Apte, ‘‘Task dependency aware
IP core for dynamic scheduling in MPSoC environment,’’ in Proc. Int.
Conf. Inf. Process. (ICIP), Dec. 2015, pp. 80–84.

[32] S. Puch, I. Sánchez, and M. Rowe, ‘‘Few-shot learning with deep triplet
networks for brain imaging modality recognition,’’ in Domain Adapta-
tion and Representation Transfer and Medical Image Learning with Less
Labels and Imperfect Data. Springer, 2019, pp. 181–189.

[33] A. Grando, A. Manataki, and S. K. Furniss, ‘‘Multi-method study of
electronic health records workflows,’’ in Proc. AMIA Annu. Sympo Proc.,
2018, p. 498.

[34] R. Prodan, ‘‘Specification and runtime workflow support in the
ASKALON grid environment,’’ Sci. Program., vol. 15, no. 4, pp. 193–211,
2007.

[35] U. U. Tariq, H. Ali, L. Liu, J. Panneerselvam, and X. Zhai, ‘‘Energy-
efficient static task scheduling on VFI-based NoC-HMPSoCs for intel-
ligent edge devices in cyber-physical systems,’’ ACM Trans. Intell. Syst.
Technol., vol. 10, no. 6, pp. 1–22, Dec. 2019.

[36] J. Hu and R. Marculescu, ‘‘Energy-aware mapping for tile-based NoC
architectures under performance constraints,’’ in Proc. Asia South Pacific
Design Autom. Conf., 2003, pp. 233–239.

[37] M. N. Akhtar and O. Sidek, ‘‘An intelligent arbiter for fair bandwidth
allocation,’’ in Proc. IEEE Student Conf. Res. Develop., Dec. 2011,
pp. 304–309.

[38] K. Jain, S. K. Singh, A. Majumder, and A. J. Mondai, ‘‘Problems encoun-
tered in various arbitration techniques used in NOC router: A survey,’’ in
Proc. Int. Conf. Electron. Design, Comput. Netw. Automated Verification
(EDCAV), Jan. 2015, pp. 62–67.

[39] D. R. G. Silva, B. S. Oliveira, and F. G. Moraes, ‘‘Effects of the NoC
architecture in the performance of NoC-based MPSoCs,’’ in Proc. 21st
IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Dec. 2014, pp. 431–434.

[40] A. Elewi, M. Shalan, M. Awadalla, and E. M. Saad, ‘‘Energy-efficient task
allocation techniques for asymmetric multiprocessor embedded systems,’’
ACM Trans. Embedded Comput. Syst., vol. 13, no. 2s, pp. 1–27, Jan. 2014.

[41] H. L. Ong, M. J. Magazine, and T. S. Wee, ‘‘Probabilistic analysis of bin
packing heuristics,’’ Oper. Res., vol. 32, no. 5, pp. 983–998, Oct. 1984.

[42] W. Y. Lee, ‘‘Energy-efficient scheduling of periodic real-time tasks on
lightly loaded multicore processors,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 3, pp. 530–537, Mar. 2012.

[43] Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong, ‘‘Energy-
efficient multi-core scheduling for real-time DAG tasks,’’ in Proc. 29th
Euromicro Conf. Real-Time Syst. (ECRTS), 2017, pp. 22:1–22:21.

[44] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, ‘‘An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor,’’ in Proc. Design,
Autom. Test Eur., 2005, pp. 468–473.

[45] S. Baruah, ‘‘Mixed criticality schedulability analysis is highly intractable,’’
Washington Univ. St. Louis, St. Louis, MO, USA, Tech. Rep., 2009.

[46] Y. Samadi, M. Zbakh, and C. Tadonki, ‘‘E-HEFT: Enhancement hetero-
geneous earliest finish time algorithm for task scheduling based on load
balancing in cloud computing,’’ in Proc. Int. Conf. High Perform. Comput.
Simul. (HPCS), Jul. 2018, pp. 601–609.

[47] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[48] M. Jeon and D. Kim, ‘‘Parallel merge sort with load balancing,’’ Int.
J. Parallel Program., vol. 31, pp. 21–33, Mar. 2003.

BICHI BASHIR YUSUF received the B.Sc. degree
in computer science from KUST Wudil, Kano,
Nigeria, in 2010, and the M.Sc. degree in com-
puter engineering from Yasar University, Izmir,
Turkey, in 2014. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
COMSATS University Islamabad, Pakistan. His
research interests include application mapping,
NoC-based MPSoC systems, and cloud and fog
computing.

38790 VOLUME 9, 2021

B. B. Yusuf et al.: Energy Aware Parallel Scheduling Techniques for NoC-Based Systems

TAHIR MAQSOOD received the M.Sc. degree in
computer networks from Northumbria University,
U.K., in 2007, and the Ph.D. degree in computer
science from COMSATS University Islamabad,
Pakistan, in 2017. He is currently an Assistant
Professor with COMSATS University Islamabad
at Abbottabad, Pakistan. His research interests
include resource allocation, multi/manycore sys-
tems, reliable systems, the Internet of Things, and
mobile edge computing.

FAISAL REHMAN received the M.S. and Ph.D.
degrees in computer science fromCOMSATSUni-
versity Islamabad at Abbottabad, Pakistan, in 2010
and 2018, respectively. He is currently an Assistant
Professor with COMSATS University Islamabad.
His research interests include recommender sys-
tems, green computing, and wired and wireless
networks.

SAJJAD A. MADANI received the M.S. degree
in computer sciences from the Lahore University
of Management Sciences and the Ph.D. degree
from the Vienna University of Technology. He is
currently a Professor with COMSATS Univer-
sity Islamabad, Pakistan. He has published more
than 90 papers in peer-reviewed international
conferences and journals. His research interests
include low-power wireless networks, green com-
puting, and optimization techniques.

VOLUME 9, 2021 38791

