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ABSTRACT In this paper, an adaptive neural command filtered backstepping scheme is proposed for
the pneumatic active suspension with the vertical displacement constraint of sprung mass and actuator
saturation. A quarter car model with a pneumatic spring is first fabricated on the basis of thermodynamic
theory to describe the dynamic characteristics. To overcome the lumped unknown nonlinearities and enhance
the requirement of modeling precision, the radial basis function neural networks (RBFNNs) are proposed
to approximate unknown continuous functions caused by the uncertain body mass and other factors of
pneumatic spring. To solve the explosion of complexity problem in the traditional backstepping designs,
a proposed command filter control is applied by using the Levant differentiators which approach the
derivative of the virtual control signals. Nussbaum gain technique is then incorporated into the controller
to avoid the problem of the completely unknown control gain and control directions of a pneumatic actuator.
In addition, the prescribed performance function (PPF) is suggested to guarantee that the tracking error of
the sprung mass displacement does not violate the constraint boundaries. Based on the command filtered
backstepping control with PPF, the Lyapunov theorem is then applied to indicate the system stability
analysis. Finally, the comparative simulation examples for the pneumatic suspension are given to verify
the effectiveness and reliability of the proposed control.

INDEX TERMS Active suspension systems (ASSs), neural networks (NNs), command filtered control
(CFC), input saturation, prescribed performance function.

I. INTRODUCTION
The pneumatic suspension has been widely used in the auto-
motive industry to improve passenger comfort and vehicle
handling stability [1], [2]. Compared with the various actu-
ators such as hydraulic [3] or electromagnetic [4], pneumatic
actuators are low cost, clean, and high power-to-weight ratio
characteristics [5], [6]. Pneumatic springs can provide flex-
ible stiffness and generate the control forces according to
various uncertain masses of passengers by controlling the
internal pressure [7]. However, the high nonlinearity is one
of the drawbacks of pneumatic systems, which will make it
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difficult and complicated to design the suspension model and
control scheme [8]. Besides, it not easy to maintain chassis
stability under various loads of passengers due to the presence
of unknown parameters in the pneumatic servo system [9].

To overcome the above limitations, many control strategies
have been widely used to improve vehicle performance such
as optimal control [10], [11], sliding mode control [2], [12],
and model predictive control [13], [14]. Although these
controllers can improve the suspension performance, they
may be sensitive to external disturbances because of the
fixed control parameters. To solve the problem of height
tracking of pneumatic suspension, the backstepping con-
trol was proposed and addressed the parametric uncertain-
ties and unmodeled dynamics [9]. However, a common
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disadvantage in the traditional backstepping design pro-
cess is the explosion of complexity caused by its vir-
tual controller derivatives, which increases computational
complexity [15], [16]. Recently, a dynamic surface control
(DSC) method has been developed to address this prob-
lem by including a first-order filter in each control design
step to approximate these derivatives [17], [18]. But the
DSC technique does not consider the errors arising from
the first-order filters, which can reduce system control effi-
ciency [19]. To solve the same inherent problem of traditional
backstepping design, Farrell et al. [20] proposed a command
filtered control technique. By using a command filter to
approximate the differential coefficient of the virtual control
signal at every step of the control design, CFC can obtain
better system tracking performance [21]–[23]. Furthermore,
the compensating signals are proposed to reject the errors
caused by the command filters which can solve the limitation
of the dynamics surface approach [24], [25].

Generally, it is well known that the function approximation
based intelligent design technique has been shown to be a
powerful method for dealing with unknown nonlinearities
and uncertainties [26], [27]. In particular, neural networks
can provide an effective tool to approximate the unknown
functions or parametric uncertainties in the pneumatic sys-
tems [28], [29]. Bao et al. [30] designed a fuzzy adaptive slid-
ing mode control to enhance passenger comfort and vehicle
controllability of the pneumatic active suspension. However,
the authors did not consider the robust control system in the
presence of unmodeled dynamics, and the transient tracking
performance cannot be quantitatively guaranteed in previous
designs [31]. Although the neural networks can provide a
good approximation ability for unknown continuous func-
tions, the traditional backstepping requires that the repeated
differentiation of virtual input must be resolved at each step of
the design process [32]. Consequently, the drawback of com-
plexity explosion cannot be handled, and this also limits the
applications of traditional backstepping. In this paper, adap-
tive neural networks-based command filtered backstepping
technique has been proposed to improve the performance of
the pneumatic active suspension.

Significantly, most of the ASSs did not consider the input
saturation problem during the control design process; how-
ever, the control performance of pneumatic active suspension
can be seriously restricted. In order to improve the control
efficiency, the effect of actuator saturation needs to be prop-
erly regarded in the control design procedure [33]. Although
the input saturation of nonlinear systems can be addressed
with an adaptive NNs controller [34], it will be more difficult
when control gains are unknown time-varying nonlinearities
because of the singularity problems [35]. Besides, the con-
trol directions are very important in nonlinear system design
because they are not easily detected from the prior knowledge
of the signs of the parameters, whichmakes the control design
more complicated and challenging. The previous controllers
of ASSs are not designed to accommodate unknown con-
trol directions for pneumatic systems. As we have known,

the Nussbaum gain technique has been incorporated in the
controller to handle the problem of unspecified control
coefficient [36], [37]. The main point of Nussbaum’s
approach is that using the switching functions which can
obtain the signs of the control directions [38], [39]. This is
suitable to overcome the disadvantage of pneumatic active
suspension which involves unknown nonlinear functions and
depends on many physical parameters.

Recently, a new control scheme with output constraints
called prescribed performance control (PPC) was introduced
by Bechlioulis to guarantee the convergence of system out-
puts, maximum overshoot, and steady-state error into an
arbitrarily small predefined region [40]. PPC has been used
in many control engineering applications requiring output
constraints [41], [42]. Zhang et al. [43] proposed a novel
proportional-integral approximation-free control by using
PPFs for nonlinear robotic systems without employing any
function approximation. To stabilize the vertical and pitch
displacements of active suspensions with parametric uncer-
tainties, an adaptive control with PPF constraints was pro-
posed by Jing Na in [44]. Liu et al. [45] designed an adaptive
control scheme to ensure the convergence of the tracking error
and maximum overshoot of the suspension system with the
PPF constraints and actuator failure. However, these results
assume that all the system states are available or directly mea-
surable which is rarely satisfied in practical applications [46],
and those external disturbances have a negative impact on
control performance [47]. Besides, Shi et al. [48] proposed
the output-feedback control for time-delay systems with
PPF constraints. In response to the explosion of the complex
problem, a dynamic surface control technique has been pro-
posed by Zhai et al. [49]. Nonetheless, the PPF constraints
with CFC are not considered for pneumatic active suspension.

Based on the aforementioned discussion, we propose a
new active suspension system using a pneumatic spring in
this research. Although pneumatic actuators can meet the
requirements of flexible suspension, controlling the stabil-
ity of the sprung mass within a small predefined boundary
remains a challenge because of their parametric uncertainties
and external disturbances. As we know that PPF constraints
can guarantee the vertical displacement for the active suspen-
sion, but the unknown parameters may cause the problem of
singularity and instability. Besides, actuator saturation usu-
ally leads to the performance degradation of the pneumatic
actuator, so the system design becomesmore difficult without
knowledge of control directions. In this study, a novel control
is established for ASSs with PPF constraint while the result
did not require prior knowledge of control gains. By using
neural networks, the unknown parameters are compensated
to guarantee the performance of the pneumatic suspension.
Furthermore, a command filtered control has been studied to
solve the explosion of complexity in traditional backstepping
controllers. Command filtered control combined with PPF is
proposed not only to handle the explosion of complexity
problem in the traditional backstepping techniques but also
to guarantee the tracking error of sprung mass displacement
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does not violate the constraint boundaries. The Levant dif-
ferentiators are introduced in the CFC control scheme to
compute the derivative approximation of the virtual control
signals and the compensating signals are then designed to
eliminate the errors caused by the command filters. To design
the CFC technique with input saturation, the Gaussian error
function is employed to express the saturation nonlinearity as
a continuous differentiable form. In addition, the Nussbaum
gain function is applied to solve the difficulty of the control
design due to the uncertain control directions of active sus-
pension. Based on the Lyapunov stability analysis, the con-
trol scheme can ensure that all the signals are semi-global
uniformly ultimately bounded. The main contributions of this
paper can be summarized as follows

1. Adaptive neural command filtered backstepping control
is proposed for the pneumatic active suspension which con-
siders the problem of actuator saturation and unknown control
direction.

2. RBFNNs are developed to approximate the parametric
uncertainties of the pneumatic spring and the unknown vari-
ous loads of passengers in the nonlinear ASSs.

The rest of this paper is organized as follows. System
description of the pneumatic quarter car model is given in
Section II. Adaptive neural command filtered control and
the system stability are presented in Section III. Besides,
to demonstrate the effectiveness of the proposed control,
the comparative simulation results are provided in section IV.
Finally, Section V gives some conclusions.

II. SYSTEM DESCRIPTION AND NOTATIONS
A. NONLINEAR QUARTER CAR MODEL
The quarter car model with pneumatic spring is designed as
shown in Fig. 1. In this design, the chassis is affected by
external disturbances that cause continuous excitations to the
passengers. The suspension system is designed to dissipate
this vibration for the passenger comfort. The dynamic equa-
tions of active suspension are demonstrated as

msz̈s + Fs(zs, zu, t)+ Fd (żs, żu, t) = Fu
muz̈u − Fs(zs, zu, t)− Fd (żs, żu, t)

+Fst (zu, zr , t)+ Fdt (żu, żr , t) = −Fu (1)

where ms and mu denote sprung mass and unsprung mass,
respectively. The unsprung mass represents an assembly of
the vehicle axis and wheel while the sprung mass is the total
weight of the chassis and passengers.

These above forces are created by the stiffness of pneu-
matic spring, mechanical springs, damper, and tire, which
can be expressed as Fs (zs, zu, t) = (ks + ka) (zs − zu) ,
Fd (żs, żu, t) = ca (żs − żu) ,Fst (zu, zr , t) = kt (zu − zr ) ,
Fdt (żu, żr , t) = ct (żu − żr ), where zs and zu determine the
position of the sprung mass and unsprung mass, zr presents
the road profile; ks, ca are the stiffness coefficient and damp-
ing coefficient of active suspension; and kt , ct represent the
stiffness and the damping coefficient of the tire.

FIGURE 1. Pneumatic active suspension model.

The tire force which depends on the road holding condition
is expressed by the equation (2), where g denotes the gravita-
tional acceleration [50].

Ft =

{
Fst + Fdt , if Fst + Fdt < (ms + mu) g
0, if Fst + Fdt ≥ (ms + mu) g

(2)

Define the systems state variables: x1 = zs, x2 = żs,
x3 = zu, x4 = żu, the state space form of active suspension
can be written as follows

ẋ1 = x2

ẋ2 =
1
ms

[−Fs (x1, x3, t)− Fd (x2, x4, t)+ Fu]

ẋ3 = x4

ẋ4 =
1
mu

[
−Fst (x3, zr , t)− Fdt (x4, żr , t)

+Fs (x1, x3, t)+ Fd (x2, x4, t)− Fu

]
(3)

To provide the active force for the active suspension
system, an air below is installed between the sprung and
unsprung masses. The active fore of air bellow Fu is calcu-
lated by the following formula

Fu = AasPas (4)

where Aas represents the working area and Pas is the internal
pressure of the air bellow.

Because the aerodynamic properties of the air bellow are
caused by the action of the twisted-wire rubber material under
the effect of external forces, there is a challenge to describe
the absolute mathematical model. Therefore, the nonlinear
dynamic model can be investigated by [2]

Ṗas =
γRT
vas

(
a0qas −

PasAas (x2 − x4)
RT

)
(5)

where R is the ideal gas constant, γ represents the poly-
tropic index, T denotes the air temperature, qas is the area-
normalized mass flow rate, and a0 denotes the orifice open
area of the solenoid valve.
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The air bellow volume vas depends on the relative motion
between the sprung mass and unsprung mass

vas = Aas (zas0 + x1 − x3) (6)

where zas0 denotes the initial altitude of the air bellow.
Assumption 1: The spool position is proportional to the

signal applied to the control valve. Hence, the valve dynamics
can be ignored in the system model, and the orifice open
area a0 of the servo valve can be described by

a0 = σsvu (7)

where σsv is the coefficient factor of the servo valve and u is
the control signal of supply voltage.

Using (6) and (7), we can write the dynamic model of air
bellow (5) as follows

Ṗas =
γRT

Aas (zas0 + x1 − x3)

(
σsvqasu−

PasAas (x2 − x4)
RT

)
(8)

Define the new state variable x5 = (Aas/ms)Pas, we obtain

ẋ5 =
γRT

ms (zas0 + x1 − x3)
σsvqasu

−
γ

(zas0 + x1 − x3)
x5 (x2 − x4) (9)

B. PROBLEM FORMULATION
The nonlinear pneumatic stiffness ka exists in the air bellow,
depending on the internal pressure and the axial displace-
ments. Some previous studies have examined this stiffness
based on the thermodynamic theory [51] but it cannot be
applied to the control design process because of different
working conditions. In this study, the air spring stiffness is
considered as an uncertain parameter and then compensated
by NNs. Therefore, we can define the unknown continuous
function as follows

d (t) =
1
ms

[−ka(x1 − x3)] (10)

Besides, the pressure of air bellow is a high nonlinearity
model as it is affected by external disturbances, payload varia-
tions, and unmodeled dynamics. Thus, the dynamicmodel (9)
should consider the parameter deviations which are lumped
to the unmodeled terms. The state-space form of the quarter
car ASSs must be extended using the pneumatic stiffness and
unmodeled parameters of air spring as follows

ẋ1 = x2
ẋ2 = x5 +

1
ms

[−ks(x1 − x3)− ca(x2 − x4)]+ d (t)

ẋ3 = x4

ẋ4 =
1
mu

[
−kt (x3 − zr )− ct (x4 − żr )
+ks(x1 − x3)+ ca(x2 − x4)− msx5

]
−
ms
mu

d (t)

ẋ5 =
γRT

ms (zas0 + x1 − x3)
σsvqasu

−
γ

(zas0 + x1 − x3)
x5 (x2 − x4)+ p (t) (11)

where p (t) is the time-varying modeling error of air bellow
pressure.
Assumption 2: d (t) and p (t) are the unknown bounded

time-varying disturbances. Therefore, there are two constants
d̄ (t) and p̄ (t) satisfying |d (t)| ≤ d̄ (t) and |p (t)| ≤ p̄ (t).
Assumption 3: Due to the limitations of the mechanical

structure and physical performance, the mass of the vehicle
body is limited by msmin < ms < msmax, where msmin and
msmax are the lower and upper limits.

To ensure the ride comfort, the air bellow is used to create
the active force that isolates the external vibrations in the
suspension design. However, because of the limitations of the
pneumatic actuator, the dissipation of vibration will be con-
sidered during the control design process. Thus, the problem
of input saturation is solved for pneumatic active suspension
in this study. The control signal u that is the output of the
saturation actuator can be assumed by

u = sat (v) =

{
v, |v| < uB
uBsign (v) , |v| ≥ uB

(12)

where v is the actual input signal and uB is the known bound
of u.
It can be seen that the relationship between u and v in

equation (12) is a saturation nonlinearity which has sharp
corners as |v| = uB. Thus, it cannot be directly applied to the
backstepping control. To overcome this limitation, a Gaussian
error function is employed to express the saturation nonlin-
earity that can be used for the control design.
Definition 1 [34]:Gauss error function erf (x) is described

by a nonelementary function of sigmoid shape

erf (x) =
2
√
π

∫ x

0
e−t

2
dt (13)

Remark 1: Error function erf (x) is a continuously dif-
ferentiable function, it has real value and has no singularity
(except that at infinity).

To facilitate the control design later, the output signal u is
defined by [52]

u = hvv+ d (v) (14)

where the smooth function hv is used to approximate the
saturation nonlinearity and d (v) is bounded by |d(v)| ≤ 1.
Control objectives: The control scheme is designed to meet

three requirements of active suspension

1. Ride comfort: The controller is proposed to dissi-
pate continuous excitations and guarantee the verti-
cal displacement of sprung mass within the bounded
constraints.

2. Handling stability: The oscillation space cannot
exceed the limited range of suspension displacement.
To meet this requirement, the relative suspension deflec-
tion (RSD) must be ensured to be less than 1.

RSD =
zs − zu
zR

(15)
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where zR which is called rattle space is defined as the
distance between the tire and chassis at rest position.

3. Road holding: The dynamic tire load must be limited to
ensure that the tire is always kept in contact with the road
profile. It means that the relative tire fore (RTF) is kept
smaller than 1.

RTF =
Ft

(ms + mu) g
(16)

Remark 2: Although some advance controllers have been
proposed for the active suspension to provide passenger com-
fort by limiting the sprung mass displacement, the objective
of handling stability cannot be guaranteed simultaneously
because they conflict with each other. The proposed control
in this study can improve all three objectives of active sus-
pension and ensure that the tracking error of sprung mass
displacement does not violate the PPF constraints.

C. NOTATIONS
In this study, a norm of vector x is defined by ‖x‖ =

√
xT x.

The estimate of generic constant quantity θ is indicated
by θ̂ . Moreover, the estimation error and its time derivative
are θ̃ = θ − θ̂ and ˙̃θ = − ˙̂θ , respectively. Some symbols and
their descriptions are given in Table 1.

TABLE 1. Symbols.

III. ADAPTIVE NEURAL COMMAND FILTERED CONTROL
WITH PRESCRIBED PERFORMANCE
A. SOME DEFINITIONS AND LEMMAS
To guarantee the vertical displacement of sprung mass within
boundary constraints, the proposed control design will focus
on the dynamic equations of the sprung mass as follows

ẋ1 = x2

ẋ2 = x5 +
1
ms

[−ks(x1 − x3)− ca(x2 − x4)]+ d (t)

ẋ5 =
γRT

ms (zas0 + x1 − x3)
σsvqasu−

γ

(zas0 + x1 − x3)
× x5 (x2 − x4)+ p (t) (17)

By setting f2 = (1/ms)[−ks(x1 − x3) − ca(x2 − x4)],
g2 = 1, f3 = [−γ /(zas0 + x1 − x3)]x5(x2 − x4), g3 =
{γRT/[ms(zas0 + x1 − x3)]}σsvqas, we can rewrite (17) as
follows

ẋ1 = x2
ẋ2 = f2 + g2x5 + d (t)

ẋ5 = f3 + g3u+ p (t) (18)

In the above equation (18), it can be seen that f2 and f3
are unknown smooth functions because the system state x4
is not considered in the control design. In real suspension,
the sprung mass ms is an unknown parameter, depending on
different passenger masses. Besides, the damping properties
of air bellow cannot be accurately described and are often
ignored in the active suspension.
Remark 3: The nonlinear smooth function g3 contains the

unknown parameter ms and depends on the relative values of
x1 and x3. Thus, the control directions are specified as the
sign of variable control gain g3.
Assumption 4: The unknown function g3 is bounded and

there is a known positive constant satisfying |g3| ≤ υ.
Lemma 1 [26]: The RBFNNs can approximate any

unknown continuous function f (X)

f (X) = W T
h S (X)+ η (X) (19)

where W = [w1,w2, . . . ,wn]T ∈ Rn denote the weight
vector, S (X) = [s1 (X) , s2 (X) , . . . , sn (X)]T is theGaussian
function vector, η (X) illustrates the approximation error,
n > 1 is the node number of RBFNNs, and X represents the
input vector.

The Gaussian functions are described by

Si(X) = exp

(
−
‖X − ξi ‖2

σ 2
i

)
, i = 1, 2, . . . , n (20)

where ξi and σi are the center and width of the Gaussian
functions.

There exists an arbitrary positive constant λ > 0 such that∣∣W T
h S(X )− f (X )

∣∣ ≤ λ [53].
Lemma 2 [37]: The Nussbaum gain technique is used to

handle the unknown sign of variable control coefficient g3.
Any continuous function N (ζ ) is called a Nussbaum-type
function if is satisfied

lim
s→∞

sup
1
s

∫ s

0
N (ζ )dζ = +∞

lim
s→∞

inf
1
s

∫ s

0
N (ζ )dζ = −∞ (21)

Some Nussbaum functions can be recommended, such
as: N (ζ ) = ζ 2 cos (ζ ) ,N (ζ ) = ζ 2 sin (ζ ), N (ζ ) =
eζ

2
cos

(
ζπ
/
2
)
. In this study, the functionN (ζ ) = ζ 2 cos (ζ )

is used.
Lemma 3 [54]: Let V and ζ be smooth functions defined

on [0, tf ) with V (t) ≥ 0. If the following inequality holds on
t ∈ [0, tf )

V (t) ≤ c0 + e−c1t
∫ t

0
(g (τ )N (ζ )+ 1)ζ̇ec1τdτ (22)
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where c0, c1 > 0 are the constant parameters, then V (t), ζ (t),
and

∫ t
0 g (τ )N (ζ )ζ̇e

c1τdτ must be bounded on [0, tf ).
Lemma 4 [55]: The command filters of CFC are defined

based on Levant differentiator as follows

L̇i1 = −R1 |Li1 − αi−1|
1
2 sign (Li1 − αi−1)+ Li2

L̇i2 = −R2sign
(
Li2 − L̇i1

)
, i = 2, 3 (23)

where xi,c = Li1 and ẋi,c = L̇i1 are the output of each
filter used to define tracking error ei = xi − xic. Each
command filter is designed to compute xic and ẋic without
differentiation. The design parameters of differentiators are
chosen by R1 and R2 while αi−1 are the virtual control at each
step. If the input signal αi−1 and their derivatives are bounded
and satisfied |α̇i−1| ≤ µ1 and |α̈i−1| ≤ µ2 in a finite time
with µ1 > 0, µ2 > 0, the following inequality holds

|Li1 − αi−1| ≤ µ (24)

where µ > 0 is a positive constant. The finite-time error
convergence characteristics of the Levant’s differentiators
were proved in [55] and [56].
Remark 4: The Levant differentiators can improve the lim-

itations of traditional CFC by providing a precise filter of the
input signals to obtain the differential signals and guarantee
the convergence of the filter in a finite-time.
Lemma 5 [20]: It can be seen that the tracking errors

caused by command filters can lead to an increase in sys-
tem errors. To eliminate the effect of the errors caused by
command filters, the compensating signals ωi for command
filtered control are selected by

ω̇1 = −k1ω1 + g1ω2 + g1 (x2c − α1)

ω̇i = −kiωi − gi−1ωi−1 + giωi+1 + gi
(
x(i+1)c − αi

)
ω̇n = 0 (25)

where ωi(0) = 0 for t ∈ [0,T1], and ki are designed positive
constants.

According to [21], the compensating signals are bounded
by

‖ωi (t)‖ ≤
υµ

2k0

(
1− e−2k0(t−T1)

)
(26)

where k0 = (1/2)min (ki)

B. PRESCRIBED PERFORMANCE CONSTRAINT
To guarantee the stability of the chassis does not violate
the boundaries in vertical displacement, a PPF constraint is
introduced into the control design. First, let the tracking error
of the system state x1 be defined as

e1 = x1 − xd (27)

where xd is the desired position trajectory.
Definition 2 [40]: The PPF constraint is chosen by a

positive smooth function as follows

ρ (t) = (ρ0 − ρ∞) e−ϕt + ρ∞ (28)

where ϕ > 0 denotes the convergence rate, ρ0 is the
initial value, and ρ∞ indicates the allowable steady-state
error, which must be chosen to satisfy the initial conditions
lim
t→0

ρ (t) = ρ0 > 0, lim
t→∞

ρ (t) = ρ∞ > 0, and ρ0 > ρ∞.

From (28), the tracking error of sprung mass displacement
can be guaranteed by the following inequality

−κρ (t) < e1 < κ̄ρ (t) , t > 0 (29)

where κ, κ̄ > 0 are the positive parameters chosen by the
designers.
Remark 5: Based on (28) and (29), the lower bound of

the undershoot is defined by −κρ (0) while κ̄ρ (0) serves as
the upper bound of the maximum overshoot. By choosing the
appropriate design parameters κ, κ̄, ρ0, ρ∞, ϕ, the steady-
state performance of the system can be guaranteed.

To design the control scheme with PPF constraint, an out-
put transformation is used to construct the prescribed per-
formance boundary into an equality form. For this purpose,
a smooth and strictly increasing function S (z1) is introduced
as follows [40].

S (z1) =
κ̄ez1 − κe−z1

ez1 + e−z1
(30)

Furthermore, the function S (z1) satisfies
1. −κ < S (z1) < κ̄

2. lim
z1→∞

S (z1) = κ̄, lim
z1→−∞

S (z1) = −κ

Then, the performance condition (29) can be transferred as
follows

e1 = ρ (t) S (z1) (31)

Because S (z1) is strictly monotonically increasing and
PPF constraint was chosen to satisfy ρ (t) > ρ∞ > 0,
the inverse transfer function z1 can be expressed by

z1 = S−1
(

e1
ρ (t)

)
(32)

Set β = e1/ρ (t), we can write the transform function of
z1 as follows

z1 =
1
2
ln
(
β + κ

κ̄ − β

)
(33)

Lemma 6 [57]: Based on the above analysis, the system
state (17) is transformed by the smooth function S (z1) of
equation (30) and the stability of the signal e1 can guarantee
the regulation of x1 according to the prescribed performance
constraint (29).
Remark 6: PPF constraint (28) and error transform

S (z1) are proposed for the control design process by
choosing the control parameters ρ0, ρ∞, ϕ, κ, κ̄ . Since the
parameters ρ0, κ, κ̄ are selected so that the initial condition
−κρ (0) < x1 (0) < κ̄ρ (0) satisfies and z1 can be restricted
within the boundaries, the condition −κ < S (z1) < κ̄ is
held. Therefore, the control problem (17) under the condition
−κρ (t) < x1 (t) < κ̄ρ (t) is guaranteed.
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C. ADAPTIVE NEURAL COMMAND FILTERED
BACKSTEPPING CONTROL
In this section, an adaptive neural command filtered scheme
is designed based on a modified backstepping algorithm. The
unknown parameters are approximated by the NNs while
the PPF is introduced to ensure the tracking error of sprung
mass displacement within the boundary constraints. Besides,
the stability of the proposed control scheme is demonstrated
by the Lyapunov theorem. The controller diagram can be
described in Fig. 2.

FIGURE 2. Block diagram of Adaptive NNs CFC with PPF.

Step 1: Identify the inverse transfer function z1 with PPF
in section III.B
Step 2: Design the virtual control α1
The derivative of z1 is given by using (33) as follows

ż1=
1
2

(
1

β+κ
−

1
β − κ̄

)(
ẋ1
ρ
−
x1ρ̇
ρ2

)
= ς

(
x2 −

x1ρ̇
ρ

)
(34)

where ς = 1
2ρ

(
1

β+κ
−

1
β−κ̄

)
A candidate Lyapunov function is chosen asV1 = (1/2) z21.

Then, the time derivative of V1 is obtained by

V̇1 = z1ż1 (35)

In this step, the control algorithm is based on the basis of
the backstepping algorithm, we have

V̇1 = z1ς
(
z2 + α1 −

x1ρ̇
ρ

)
(36)

The virtual control α1 is selected as follows

α1 =
x1ρ̇
ρ
− ς−1k1z1 (37)

Substituting (37) into (36) leads to

V̇1 = −k1z21 + z1ςz2 (38)

Step 3: Design the virtual control α2
The tracking error of x2 is designed based on command

filtered backstepping theory

e2 = x2 − x2c (39)

where x2c is the output signal of the command filter while the
virtual controller α1 goes through the filter.
In this step, the compensated tracking error is redefined

based on the theory of command filtered backstepping as
follows

z2 = e2 − ω2 (40)

The error compensation is proposed based on (25)

ω̇2 = −k2ω2 + g2ω3 + g2 (x3c − α2) (41)

Choose the candidate Lyapunov function V2

V2 = V1 +
1
2
z22 (42)

Taking the derivative of V2, we have

V̇2 = −k1z21 + z2 (z1ς + ż2) (43)

Using (39), (40), and (41), we can write (43) as
follows

V̇2 = −k1z21 + z2 (z1ς + ẋ2 − ẋ2c − ω̇2) (44)

V̇2 = −k1z21 + z2

(
z1ς + f2 + g2x5 + d (t)− ẋ2c
+k2ω2 − g2ω3 − g2x3c + g2α2

)
(45)

Choose the virtual control α2

α2 =
1
g2

(
−z1ς −

z2ST2 S2θ̂

2r22
+ ẋ2c − z2 − k2e2

)
(46)

where r2 is a positive constant, θ̂ denotes adaptive law which
is determined later.

Then, the equation (45) will be written as

V̇2 = −k1z21 + z2

(
f2 + g2x5 + d (t)+ k2ω2 − g2ω3

−g2x3c −
z2ST2 S2θ̂

2r22
− z2 − k2e2

)
(47)

According to (47), the virtual control signal is diffi-
cult to be designed because of the unknown function f2.
In this step, f2 will be approximated by NNs according
to Lemma 1.

f2 (X2) = W T
2 S2 (X2)+ η2 (X2) (48)

It can be seen from (17), the unknown function f (X2)
is related to these variables x1 and x2, so we choose
X2 = [x1, x2]T , and η2 is the approximation error satisfy-
ing |η2| < λ2. Basing on Young’s inequality theorem and
Assumption 2, we have

z2f2 (X2) = z2
(
W T

2 S2 + η2
)

≤
1

2r22
z22 ‖W2‖

2 ST2 S2 +
1
2
r22 +

1
2
z22 +

1
2
λ22 (49)

z2d (t) ≤
1
2
z22 +

1
2
d̄2 (50)
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Rewrite equation (47) using (49) and (50), we have

V̇2 ≤ −k1z21 − k2z
2
2 +

1

2r22
z22
(
‖W2‖

2
− θ̂

)
ST2 S2

+ g2z2z3 +
1
2
r22 +

1
2
λ22 +

1
2
d̄2 (51)

Step 4: Design the control signal u
In this step, the tracking error of x5 is considered by

e3 = x5 − x3c (52)

where x3c is the output signal of the command filter.
The compensated tracking error is defined as follows

z3 = e3 − ω3 (53)

The error compensation is suggested by (25)

ω̇3 = 0 (54)

Choose the Lyapunov function V3 as follows

V3 = V2 +
1
2
z23 (55)

Then, the derivative of V3 can be transformed into

V̇3 = −k1z21 − k2z
2
2 +

1

2r22
z22
(
‖W2‖

2
− θ̂

)
ST2 S2 +

1
2
r22

+
1
2
λ22 +

1
2
d̄2 + g2z2z3 + z3 (f3 + g3u+ p (t)− ẋ3c)

(56)

Similar to step 3, the unknown function f3 (X3) =
(f3 + g2z2 − ẋ3c) can be approximated by NNs.

f3 (X3) = W T
3 S3 (X3)+ η3 (X3) (57)

where X3 = [x1, x2, x5]T . Let η3 be the approximation error
satisfying |η3| < λ3, and apply Young’s inequality theorem
and Assumption 2, we obtain

z3f3 (X3) ≤
1

2r23
z23 ‖W3‖

2 ST3 S3 +
1
2
r23 +

1
2
z23 +

1
2
λ23 (58)

z3p (t) ≤
1
2
z23 +

1
2
p̄2 (59)

where r3 is the positive control parameter.
Using the form of real control law (14) and substituting

equations (58) and (59) into (56), we can write the derivative
of V3 as follows

V̇3 ≤ −k1z21 − k2z
2
2 +

1

2r22
z22
(
‖W2‖

2
− θ̂

)
ST2 S2

+
1
2
r22 +

1
2
λ22 +

1
2
d̄2 +

1
2
r23 +

1
2
λ23 +

1
2
p̄2

+ z23 + z3

(
g3 (hvv+ d (v))+

1

2r23
z3 ‖W3‖

2 ST3 S3

)
(60)

Because the control coefficient is unknown, the Nussbaum
function is introduced to handle the problem of unknown

control directions. Hence, the actual input signal v can be
designed by

v = N (ζ )

[
k3z3 +

1

2r23
z3ST3 S3θ̂

]
(61)

whereN (ζ ) is Nussbaum-type function and the smooth func-
tion ζ is chosen as

ζ̇ = k3z23 +
1

2r23
z23S

T
3 S3θ̂ (62)

Apply Young’s inequality theorem, we can write

z3g3d (v) ≤
1
2
z23 +

1
2
g231

2 (63)

Then, (60) can be rewritten using (61), (62), and (63) as
follows

V̇3 ≤ −
2∑
i=1

kiz2i −
(
k3 −

3
2

)
z23

+

3∑
i=2

1

2r2i
z2i
(
‖Wi‖

2
−θ̂
)
STi Si+

1
2

3∑
i=2

r2i +
1
2

3∑
i=2

λ2i

+
1
2
d̄2 +

1
2
p̄2 +

1
2
g231

2
+ (g3hvN (ζ )+ 1) ζ̇ (64)

Consider the Lyapunov function V

V = V3 +
1
2m
θ̃2 (65)

where m is the positive parameter and θ̃ = θ − θ̂ is the
estimation error. By choosing θ = max

{
‖W2‖

2 , ‖W3‖
2} for

the time derivative of V , we have

V̇ ≤−
2∑
i=1

kiz2i −
(
k3 −

3
2

)
z23+

1
m
θ̃

(
3∑
i=2

m

2r2i
z2i S

T
i Si −

˙̂
θ

)

+
1
2
d̄2

+
1
2

3∑
i=2

r2i +
1
2

3∑
i=2

λ2i +
1
2
p̄2 +

1
2
g231

2

+ (g3hvN (ζ )+ 1) ζ̇ (66)

The adaptive law is designed as follows

˙̂
θ =

3∑
i=2

m

2r2i
z2i S

T
i Si − qθ̂ (67)

where q is the design parameter.
Theorem: Consider the pneumatic active suspension sys-

tem (17) satisfying Assumptions 1 - 4, the virtual con-
trollers (37), (46), actual control (61), and adaptation law (67)
are designed. The proposed control can ensure that all system
signals are semi-globally uniformly ultimately bounded. This
leads to the estimation errors converging to a small set around
zero asymptotically. It means that the sprung mass displace-
ment is guaranteed within the PPF constraint.

56862 VOLUME 9, 2021



C. M. Ho et al.: Adaptive Neural Command Filtered Control for Pneumatic Active Suspension

Proof: Applying Young’s inequality, we have
q
m
θ̃ θ̂ ≤

q
2m
θ2 −

q
2m
θ̃2 (68)

Therefore, we can rewrite (66) using (67) and (68) as
follows

V̇ ≤ −
2∑
i=1

kiz2i −
(
k3 −

3
2

)
z23 +

1
2

3∑
i=2

r2i +
1
2

3∑
i=2

λ2i

+
q
2m
θ2

−
q
2m
θ̃2 +

1
2
d̄2 +

1
2
p̄2 +

1
2
g231

2
+ (g3hvN (ζ )+ 1) ζ̇

(69)

Because the unknown function g3 is bounded under
Assumption 4, we can write the third part of equation (63)
as follows g231

2
≤ υ212. Hence, the equation (69) can be

written as

V̇ ≤ −
2∑
i=1

kiz2i −
(
k3−

3
2

)
z23−

q
2m
θ̃2+

1
2

3∑
i=2

r2i +
1
2

3∑
i=2

λ2i

+
1
2
d̄2+

1
2
p̄2+

q
2m
θ2+

1
2
υ212

+(g3hvN (ζ )+ 1) ζ̇

(70)

By setting 8 = min
{
2k1, 2k2, 2

(
k3 − 3

2

)
, q
}
and 4 =

1
2

3∑
i=2

r2i +
1
2

3∑
i=2
λ2i +

1
2 d̄

2
+

1
2 p̄

2
+

q
2mθ

2
+

1
2υ

212, we can

obtain

V̇ ≤ −8V +4+ (g3hvN (ζ )+ 1) ζ̇ (71)

Multiplying (71) by e8t on both sides and then integrating,
it leads to

e8t V̇ +8e8tV ≤ e8t4+ e8t (g3hvN (ζ )+ 1) ζ̇ (72)

V (t) ≤
(
V (0)−

4

8

)
e−8t +

4

8

+ e−8t
∫ t

0
(g3hvN (ζ )+ 1) ζ̇e8τdτ

(73)

Define P0 =
(
V (0)− 4

8

)
e−8t + 4

8
, based on

Lemma 3 and [36], we can conclude that ζ, zi(i = 1, 2, 3),
and

∫ t
0 (g3h (v)N (ζ )+ 1) ζ̇e8τdτ are uniformly ultimately

bounded.
Then according to (65), the following conditions are

satisfied

|zi| ≤

√
2
(
P0 + e−8t

∫ t

0
(g3hvN (ζ )+ 1) ζ̇e8τdτ

)
,

i = 1, 2, 3 (74)

Moreover, the tracking errors e1, e2, e3 are also bounded
because z1, z2, z3 and ωi are bounded. Then, the system
states xi, i = 1, 2, 3 are also bounded by the selection of
design parameters. Thus, the proposed control can guaran-
tee the dynamic behavior of the system under the influence

of the unknown nonlinear dynamics and various loads of
passengers.
Remark 7: To obtain the objectives of active suspension,

the control parameters should be chosen to meet the balance
between the demand of output performance and the actual
operating conditions of the system. The PPF constraint is
designed to satisfy the initial condition −κρ (t) < x1 <

κ̄ρ (t) by selecting the boundary parameters κ, κ̄, ρ0. A good
control performance can be achieved with large ϕ and small
ρ∞ but lead to large control actions. Besides, the positive
parametersR1 andR2 of Levant differentiators are designed to
obtain the differential signals and guarantee the convergence
of the filter in a finite-time. The large control gains ki could
enhance the convergence rate of the system but they require
more control actions and lead to high chattering.

D. HANDLING STABILITY AND ROAD HOLDING ANALYSIS
In the previous analysis, the proposed control scheme has
been designed to demonstrate the stability of the suspension
system. By introducing a PPF constraint, the sprungmass dis-
placement is guaranteed within the prescribed performance
boundaries, which means the first objective of ride comfort
is achieved. Other suspension requirements for handling sta-
bility and road holding are also analyzed in this section by
choosing the appropriate control parameters.

Firstly, we consider the dynamic equations of the unsprung
mass of the system (11). Based on the above results, the track-
ing errors ei, i = 1, 2, 3 are proved to be bounded. Besides,
the RBFNNs are used to approximate the unknown con-
tinuous function f2 (X2). Then, substituting (48) into (11),
we obtain

Ẋ = MX + NY + Y0 (75)

where

X =
[
x3
x4

]
; M =

 0 1

−
kt
mu
−
ct
mu

 ; N =
 0 0
kt
mu

ct
mu

 ;
Y =

[
zr
żr

]
Y0 =

[
0
ϒ

]
;ϒ =

ms
mu

(
W T

2 S2 (X2)+ η2 (X2)
)

+
ms
mu

(−x5 − d (t))

Because the tracking errors ei are bounded, ϒ is also
bounded and there is a constant ϒ̄ such that ‖ϒ‖ ≤ ϒ̄ .

Choose a Lyapunov function as follows

Vz = XTPX (76)

where P is a positive definite symmetric matrix.
Then, the time derivative of Vz is written as

V̇z = ẊTPX + XTPẊ (77)

Substituting (75) into (77), we obtain

V̇z = XT
(
MTP+ PM

)
X + 2XTPNY + 2XTPY0 (78)
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There is a positive definite symmetric matrixQ > 0 so that
the Lyapunov equationMTP+PM = −Q is satisfied. Apply-
ing Young’s inequality theorem, we can rewrite 2XTPNY and
2XTPY0 as follows

2XTPNY ≤
1
γ1
XTPNNTPX + γ1Y TY

2XTPY0 ≤
1
γ2
XTPPX + γ2Y T0 Y0 (79)

where γ1 > 0 and γ2 > 0 are the positive constants.
According to (79), we can write (78) as follows

V̇z

≤ −


λmin

(
P
−1/2QP

−1/2
)
−

1
γ1
λmax

(
P
1/2NNTP

1/2
)

−
1
γ2
λmax (P)

V

+ γ1Y TY + γ2Y T0 Y0 (80)

where λmax and λmin denote the maximal and minimal eigen-
values of the matrix

Choose the positive constants γ1, γ2, and appropriate
matrix P, Q, we obtain

γ1 > 2
λmax

(
P
1/2NNTP

1/2
)

λmin

(
P
−1/2QP

−1/2
) and

γ2 > 2
λmax (P)

λmin

(
P
−1/2QP

−1/2
) (81)

From (81), there are two constants χ and ψ satisfying

χ ≥ λmin

(
P
−1/2QP

−1/2
)
−

1
γ1
λmax

(
P
1/2NNTP

1/2
)

−
1
γ2
λmax (P) (82)

ψ ≥ γ1Y TY + γ2Y T0 Y0 (83)

Substituting (82) and (83) into (80), the time derivative
of Vz is described by

V̇z ≤ −χVz + ψ (84)

Then, integrating both sides of equation (84), we obtain

Vz ≤
(
Vz (0)−

ψ

χ

)
e−χ t +

ψ

χ
≤ Vz (0) e−χ t +

ψ

χ
(85)

Based on the above results, the system x3 and x4 are
satisfied

|xi (t)| ≤

√(
Vz (0) e−χ t +

ψ

χ

)
/λmin (P), i = 3, 4 (86)

From (15), the handling stability condition can be written
as follows

|zs − zu| ≤ |x1| + |x3| ≤ κ̄ρ (0)

+

√(
Vz (0) e−χ t +

ψ

χ

)
/λmin (P) (87)

Therefore, the inequality (15) is satisfied by selecting
the PPF parameters κ̄, κ, ρ (0) and the positive parameters
γ1, γ2,P such that |zs − zu| ≤ zR.

Similarly, the tire forces Fst and Fdt are computed by

Fst (zu, zr , t) = kt (x3 − zr )

≤ kt

√(
Vz (0) e−χ t +

ψ

χ

)
/λmin (P)

+ kt ‖zr‖∞ (88)

Fdt (zu, zr , t) = ct (x4 − żr )

≤ ct

√(
Vz (0) e−χ t +

ψ

χ

)
/λmin (P)

+ ct ‖żr‖∞ (89)

Substituting (88) and (89) into (2), we can get the relative
tire force condition (16) as

|Fst + Fdt | ≤ |Fst + Fdt |

≤ (kt + ct )

√(
Vz (0) e−χ t +

ψ

χ

)
/λmin (P)

+ kt‖zr‖∞ + ct‖ż‖∞ (90)

From (90), the RTF constraints can be obtained by select-
ing the positive parameters γ1, γ2, and matrix P to ensure
|Fst + Fdt | ≤ (ms(t)+ mu) g.
Based on the above analysis, the requirements of handling

stability and road holding are satisfied by the selection of
initial conditions and control parameters.
Remark 8: The proposed control can ensure not only the

transient response of vertical displacement of the sprungmass
but also the mechanical structure and safety condition of the
pneumatic suspension. Furthermore, by choosing the appro-
priate PPF constraints and control design parameters, the
proposed control can improve the performance requirements
of pneumatic active suspension.

IV. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION DESCRIPTION
In this section, the numerical simulation examples for pneu-
matic active suspension are provided to demonstrate the
effectiveness of the proposed method compared with passive
suspension, traditional backstepping, CFC, and PPF con-
trollers. To evaluate the ride comfort of active suspension,
in addition to reducing the sprung mass displacement, the
human body’s sensitivity to acceleration should be consid-
ered during the control design process. According to ISO
2361 criteria, humans are sensitive to vertical vibration in
the frequency range of 4 - 8 Hz, and the active suspension
systems must be guaranteed to a minimum in this domain.
Therefore, the rootmean square (RMS) values of sprungmass
acceleration are examined with a filter is proposed in [58].

W (s) =
81.89s3 + 796.6s2 + 1937s+ 0.1446
s4 + 80s3 + 2264s2 + 7172s+ 21196

(91)

Besides, the objectives of handling stability and road
holding are also investigated in this study by considering
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two parameters RSD and RTF. The main parameters of pneu-
matic active suspension are listed in Table 2.

TABLE 2. Pneumatic active suspension parameters.

The simulation examples are demonstrated by the sin road
profile with amplitude 0.02 m and frequency 1 Hz as zr =
0.02 sin (2π t). The initial values of the system states are set
by x1 (0) = 0.05 (m), x2 (0) = x3 (0) = x4 (0) = 0 (m),
x5 (0) = 0.5 × 105 (Pa). The PPF constraint is defined by
ρ0 = 0.058, ρ∞ = 0.0029, ϕ = 1.5 and design parameters
κ = 0.98, κ̄ = 0.98. To investigate the comparative results,
the control parameters are given in Table 3.

TABLE 3. Control parameters.

B. SIMULATION RESULTS
The comparative simulation results of sprung mass acceler-
ation and displacement, relative suspension deflection, rel-
ative tire force, and control signals of passive, traditional
backstepping, CFC, PPF, and proposed control with sin road
profile are provided in Figs. 3–7. The passenger comfort,
driving safety, and handling stability are strongly improved

FIGURE 3. Comparative performance of sprung mass displacements.

FIGURE 4. Vertical displacement tracking errors of sprung mass.

FIGURE 5. Acceleration responses of the sprung mass.

with the proposed control because the responses of acceler-
ation and deflection, RSD, and RTF are all guaranteed. The
proposed control can enhance the ride comfort comparedwith
the other methods because the sprung mass displacement is
ensured inside the boundary constraints as shown in Fig. 3.
In particular, the proposed control can obtain better regulation
performance and ensure the convergence of the tracking error
does not violate the maximum overshoot as shown in Fig. 4.
By introducing the PPF constraint, the time of zero con-
vergence for the error signal e1 can be achieved faster and
around t = 1.3 (s). Although CFC can reduce the sprung
mass displacement compared with passive suspension, there
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FIGURE 6. Relative suspension deflection responses.

FIGURE 7. Relative tire force responses.

are some peak values due to external disturbance that can
affect the passenger comfort. Besides, the PPF control can
guarantee the tracking error of vertical displacement within
the boundaries but it cannot converge to zero because of para-
metric uncertainties. As can be seen in Fig. 4, the traditional
backstepping cannot fulfill the convergence time requirement
of the prescribed performance constraint. In addition, the pro-
posed control can provide the magnitude of the RSD smaller
than other methods as shown in Fig. 6, and this RSD is also
guaranteed to be less than 1. Due to the influence of uncer-
tain parameters in the dynamic system, the RSD of passive
suspension is the biggest value, and there are some maximum
peak points. Furthermore, the traditional backstepping cannot
provide a good performance of RSD because it is affected by
unknown parameters. By keeping the sprung mass vibration
under the PPF boundaries, the proposed control scheme can
not only provide passenger comfort but also guarantee the
magnitude of RSD and RTF within the limit values. From
Fig. 7, the dynamic stroke constraints are guaranteed within
the limits to ensure the stability of the chassis. Moreover,
the RTF value of the proposed control is also smaller than
CFC, PPF, and traditional backstepping designs.

The comparative simulation results of control signals are
shown in Fig. 8. The objectives of suspension can be guar-
anteed in the presence of pneumatic actuator saturation with
the proposed control. The control signals of PPF and tradi-
tional backstepping controllers are larger and more chattering

FIGURE 8. Control signals (V).

FIGURE 9. Simulation results of Nussbaum gain.

than the proposed control because of external disturbances.
The CFC scheme can avoid the chattering problem of tradi-
tional backstepping control. Compared with the basic control
designs, the proposed control scheme with NNs can over-
come the unknown parameters to provide good performance
for pneumatic active suspension. Besides, the simulation
results of Nussbaum function signals ζ and N (ζ ) are shown
in Fig. 9. It can be seen clearly that the Nussbaum gain
N (ζ ) moves in to correct direction to ensure the tracking
performance.

V. CONCLUSION
This paper presents an adaptive neural command filtered con-
trol with prescribed performance and input saturation for the
pneumatic active suspension system. The proposed control
scheme can not only retain sprungmass vertical displacement
within the prescribed performance boundaries to get the ride
comfort but also guarantee handling stability and road hold-
ing. To approximate the unknown continuous functions of
the pneumatic suspension system with an air spring actuator,
the RBFNNs are developed in the control design. In addi-
tion, the Gaussian error function is employed to character-
ize the saturation nonlinearity as a continuous differentiable
form, and the Nussbaum gain function is then applied to
scope with unknown control directions of pneumatic active
suspension. A command filtered backstepping control has
been employed to solve the explosion of complexity in tradi-
tional backstepping designs. Finally, the effectiveness of the
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proposed control is verified by the simulation examples
which indicate that the controller design can be more efficient
than other adaptive controllers. Therefore, this approach can
be a promising method for the automotive industry.
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