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ABSTRACT We consider the problem of fault detection and isolation for the penicillin fermentation process.
A penicillin fermentation process is a highly complex and nonlinear dynamic process with batch processing.
A data-driven approach is utilized for fault diagnostics due to the availability of huge batch processing data
and the unavailability of an analytical model. To address the non-linearity, a subspace-aided parity-based
residual generation technique is proposed by using a just-in-time learning approach. For the just-in-time
learning approach, the most similar data samples are selected from the database for incoming test samples
and a subspace aided parity-based residual is generated using these samples. The designed fault detection
technique is implemented for the penicillin fermentation process to demonstrate real-time health monitoring
of the process under sensor noise and process disturbances. Two sensor faults and an actuator fault are
considered and successfully detected using the proposed technique. Further, a fault isolation approach is
developed to isolate these faults and their location has been identified. A case study is given to show the
improvement offered by the proposed technique for the fault detection rate and minimization of the false
alarm rate as compared to the existing techniques for the penicillin fermentation process.

INDEX TERMS Data-driven, fault diagnostics, process monitoring, subspace identification, just-in-time
learning, penicillin fermentation process.

I. INTRODUCTION
Penicillin is an effective antibiotic that is widely used to
treat various contagious ailments. Recently, several natural
and synthetic varieties of penicillin are used to cure a wide
range of infectious diseases. The penicillin fermentation pro-
cess (PFP) is a dynamic nonlinear batch process. There are
three stages in the process, growth of cell stage, synthesis
of penicillin, and the cell autolysis level. In the first stage,
the nutrient substance of the starting material is demolished
and new cells are continuously synthesized. In the second
stage, penicillin synthesis starts and maximizes production
until it weakens the capability to synthesize penicillin. The
third stage of the process is cell autolysis, where the pH
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of the fermentation broth enhances and also diminishes the
capability of penicillin synthesis. Throughout the complete
fermentation process, various elements influence the effi-
cacy of penicillin fermentation, like pH, temperature, dis-
solved oxygen concentration, substrate concentration [1].
Any abnormality or un-permitted deviation in these process
variables may not only affect the product quality but low-
quality products may also lead to coordinated effects in
human life. The improvement in the safety and reliability
of PFP is thus highly desirable. It is of vital importance to
decrease and prevent the hazards of faults. To this end, faults
must be timely indicated and preventive measures must be
taken to look for the issues in the process variables. Therefore,
it is important to implement an efficient health monitoring/
fault diagnostic system to ensure the safety and reliability
of PFP.
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The fault detection (FD) techniques can be classified as
model-based and data-driven techniques. Model-based fault
detection techniques are well-established and have a tremen-
dous history of applications [2]–[5]. During the model-based
FD design, a mathematical model for the process is first
obtained using either the first principle approach or the iden-
tification techniques. The mathematical model is then used
for the estimation of process outputs. The estimated and
actual process measurements are then compared to generate
residual signals to detect any anomaly in the process. Model-
based fault-detection methods rely heavily on the precision
of the mathematical model of the system. Accurate model-
ing of batch processes is very difficult, due to which data-
driven fault diagnosis approaches are more favorable for
fermentation processes as huge input-output measurements
are available.

The data-driven techniques, on the other hand, rely on the
process input and output data. They do not need a mathe-
matical model of the process. The data-driven fault diagnosis
techniques are significantly developed in the previous decade
[6]–[10]. Among the data-driven techniques, the multivariate
statistical approach is commonly applied for batch processes.
It is based on principal component analysis (PCA) [11]–[13].
Notice that the PCA-based design primarily estimates the
future measurements for online monitoring, then the devia-
tion of inevitable anticipation makes the monitoring outcome
unreliable. PCA-based techniques, in general, assume the
processes to be linear while the batch processing in PFP is
nonlinear and complex. In addition, PCA-based approaches
are shown to perform very poorly for the classification of
faults. To address the problem of fault diagnosis in complex
and nonlinear processes such as PFP, temperature distribution
systems, process industry, etc. there exist various data-driven
approaches to investigate faults in nonlinear processes. For
example, Kernel-based fault detection frameworks have been
reported for nonlinear processes [14]–[16]. Fisher discrim-
inant analysis (FDA) and kernel Fisher discriminant analy-
sis (KFDA) has been proposed for fault isolation of industrial
processes considering nonlinearity therein [6], [17]–[19].
Besides the successful record of detection and isolation of
faults, the limitations of these approaches include huge com-
putations, complexity, and the requirement of the knowl-
edge of both healthy and faulty data for FDA. In addition,
certain Kernel functions cannot guarantee the capability of
representing the characteristics of the original data. Recently,
a detection method based on tnGAN (a generative adversarial
network based on the tri-networks form) is proposed in [20] to
address the pipeline leak detection problem. The noteworthy
feature in this approach is the recovery of missing sensor
data which ensures the integrity of data in a pipeline net-
work. Similarly, some new advancement has been made in
[21]–[23]. These approaches involve training and validation
which required huge data and computation which is the main
limitation of these approaches based on neural networks.
In addition, nonlinear dynamics and issues of disturbances
need further improvement.

Parallel with these developments, subspace identification
approaches are proposed [24], [25] which offers an efficient
way for data-driven design. In this research work, we have
focused on subspace identification approaches due to their
feature of simplicity and computationally efficiency in prac-
tical implementation. In [7] parity-based data-driven fault
detection approach is proposed to detect anomalies in the
penicillin fermentation process. In this approach, a subspace
identification mechanism is used and a residual generator
is constructed based on the computed parity space. The
approach proposed in [7] has a limitation in addressing
the robustness issue which is of practical concern. In [26],
the robust fault detection in PFP is considered. In this work,
the low pass filtering and wavelet transformation are used
to eliminate high-frequency contents to improve robustness.
A worth-mentioning point in the aforementioned literature
is the consideration of linear dynamics of the processes.
Techniques designed by considering the linear behavior may
reduce the efficacy in detecting faults and may sometimes
lead to missed detection of a fault.

In [27] a fault-detection scheme is proposed for nonlinear
dynamic systems. The primary idea of this detection scheme
is to develop a local model using the so-called just-in-time
learning (JITL) approach then compare the actual and pre-
dicted output. The bottleneck of this method is computational
complexity increases from the computation scheme of the
optimal local model. Also, this detection method may be less
effective in case of inaccurate prediction of the local model.
Isolation of simultaneous faults is of vital importancewhich is
also a hard problem using this scheme. To address these issues
we have proposed a computationally efficient fault detection
scheme based on subspace identification-based fault detec-
tion method in [28] using the JITL approach. This method is
limited to the detection of faults which should be extended
towards the isolation of fault. Motivated by the effective-
ness and simple implementation of the subspace identifica-
tion together with the JITL approach method, this work is
extended to address the fault isolation problem.

In this article, a novel fault diagnostic scheme has been
proposed and implemented for the Penicillin Fermentation
process. A fault isolation scheme is proposed for the clas-
sification of sensor and actuator faults for processes with
nonlinear dynamics. This technique is generic such that it
depends only on the input-output data and the so-called
JITL approach is used to address the nonlinear behavior of
the process. The parity-based residual generator is used to
construct residual in such a way that it ensures robustness
against process disturbances and sensor noise, and at the
same time sensitivity towards faults. A threshold setting is
utilized for fault decisions and to reduce the false alarm rate.
The diagnostic technique is implemented for the application
of the penicillin fermentation process. The approach pro-
posed in our paper presents diagnostic schemes using input-
output data of the nonlinear processes that have the following
salient features: 1) The computational complexity is reduced
e.g. instead of computing local model just a parity vector
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is computed; 2) The framework is robust against process
disturbances and sensor noise; 3) fault isolation is guaran-
teed without any additional requirements on data/or designed
scheme. The implementation results show that the proposed
technique ismore effective as compared to existing diagnostic
approaches [7], [26] implemented for PFP. The comparative
study shows that the proposed technique improves the fault
detection rate (FDR) and minimizes the false alarm rate as
compare to the existing techniques.

The remaining article is organized as follows. Section II
briefly describes the Penicillin fermentation process. The
proposed fault diagnostic approach is presented in Section III
and residual evaluation and threshold setting are discussed.
The implementation results and comparison is presented in
Section IV. Finally, a conclusion is drawn in Section V.

II. PENICILLIN FERMENTATION PROCESS
Penicillin is one of the most commonly used antibiotics used
for medication. It is discovered in 1928 by Alexander Flem-
ing. The penicillin fermentation process is a typical nonlinear
dynamic batch process used for penicillin commercial pro-
duction. It is a fed-batch process that is performed in aseptic
tank reactors of 30 to 100 thousand gallons capacity. The
fermentation comprises initial seed growth levels, followed
by a fermentation production stage with a cycle of 120 to
200 hours. Numerous substrates including sucrose, glucose,
and other crude sugars have been adopted for this process.
Nearly 65% of the substrate is consumed for maintenance,
25% is used for growth and the only 10% is utilized for the
production of penicillin [29]. For pH value regulation, sugar
is too used during the active penicillin production phase. The
industrial manufacturing of penicillin is generally classified
into two stages, the pre-culture, and the fed-batch stage.
Within the first stage, the early quantity of substrate is con-
sumed by penicillin and therefore the substrate is diminished
by forcing the penicillin production. Within the next part,
the substrate is incessantly maintained as an associated open-
loop operation [1].

Mini-production protocols are commonly used in peni-
cillin fermentation. They include the 20-40 percent with-
drawal of the fermenter substances and its substitute with
the new germ-free medium. This process can be frequently
repeated many times during this process deprived of har-
vest reduction, it can increase the total penicillin harvest.
Penicillin is evacuated into the medium and improved in the
final stage of fermentation. Entire abstraction is optimum
performed at acidic pH, with 2 to 5 percent improve-
ment in overall abstraction efficiency. Substrate abstrac-
tion of cool acidified soup is carried out with butyl,
amyl, or isobutyl acetate. Nowadays penicillin fermen-
tation processes are highly automated. All the essential
antecedents, sugar, ammonia, oxygen, carbon dioxide, etc.
are controlled, with comprehensive observing of pH and
temperature for optimal penicillin production. The pH is set
between 5.5 and 6 throughout the active production phase
which can be increased up to 7 due to consumption of

lactic acid or discharging of NH3 gas. In case pH exceeds
8 MgCO3 or CaCO3 or phosphate buffer will be added.
Agitator power is 30W and aeration rate will be from 30 to
60 L/h which is initially high and later less O2 [1]. Any
abnormality or un-permitted deviation in these process vari-
ables may not only affect the product quality but low-quality
products may also lead to coordinated effects in human life.
The improvement in the safety and reliability of PFP is thus
highly desirable. It is of vital importance to decrease and pre-
vent the hazards of faults in order to maintain the continuous
quality production of penicillin. The detailed descriptions of
biosynthesis and chemical reactions are not focused on in
this research work. The structure model of biosynthesis and
chemical reactions of PFP as shown in Fig. 1 is summarized
in [1] as:

X = f (X; S;CL;H ;T )

S = f (X; S;CL;H ;T )

CL = f (X; S;CL;H ;T )

P = f (X; S;CL;H ;T ;P)

CO2 = f (X;H ;T )

H = f (X;H ;T )

where X is the biomass concentration, CL is the dissolved
oxygen concentration, S is the substrate concentration, CO2
is the concentration of carbon dioxide, P is the penicillin
concentration, H refers to the pH and T represents the tem-
perature. A simulation package of the penicillin fermentation
process is introduced by Bajpai et. al in 1980 [30]. The envi-
ronmental effects such as temperature, pH are not included
in this model. Furthermore, the effect of input variables like
agitator power, aeration rate, feed flow rate of the substrate on
biomass is not considered. This modular simulation package
was extended by Birol et al. in 2002, in which effects of input
and environmental variables are also addressed [1] as shown
in Fig. 2. In order to control environmental variables, two PID
controllers are introduced by using input variables as control
variables. This modular package is flexible and user-friendly.
The controls, input variables can be changed and outputs
can be measured offline. In this research work, the PenSim
v2.0 package is used provided by Ali Cinar for the implemen-
tation of the diagnostic system. Using this simulator normal
and faulty batches are produced for diagnostic purposes.
In this model, the effects of environmental variables like
pH, Temperature, and input variables such as agitator power,
aeration rate, and feed flow rate of glucose on biomass and
penicillin concentrations are considered. Two PID controllers
are installed to control the temperature and pH, using cooling
water and base/acid flow rate as control variables. The simu-
lation package gives the user flexibility of varying sampling
and total simulation time. In bio-processes, variables like
penicillin concentrations and biomass are measured offline
by a quality analysis laboratory, therefore introducing lag in
measurements. Thus sampling time is adjusted accordingly.
The description of the process model is given in Table 1.
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FIGURE 1. Schematics of fault detection of Penicillin fermentation process.

III. DESIGN OF PROPOSED FAULT DIAGNOSTIC SCHEME
In this article, we consider the problem of fault diagnostics
(detection and isolation) for the PFP with nonlinear dynam-
ics. Fault detection is the binary decision about the presence
of a fault. Fault isolation is the identification of fault location.
It is of prime importance to detect the fault in time and

identify the position of fault that occurs in order to take appro-
priate preventive actions to avoid consequential damages well
before the incipient fault evolves to a failure. A data-driven
diagnostic approach is utilized for the detection and isolation
of faults due to the availability of huge processing data and
the unavailability of an analytical model. The so-called JITL
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FIGURE 2. Fed batch penicillin fermentation process.

TABLE 1. Description of process variables [1].

based fault detection technique is presented in our previous
work in [28] that addresses the nonlinear effect of the process.
This work is extended for fault isolationwhich is an important
part of fault diagnostics. To address the non-linearity, the so-
called JITL techniques are utilizedwherein, the t input-output
data samples based on similarity index are selected to gener-
ate residual signals.

The fault detection technique is briefly presented in
Algorithm 1 and schematics of fault detection of the PFP
is demonstrated in Fig. 1. For each incoming test sample,
the most relevant samples are selected from the stored sam-
ples, and then optimal robust parity vector (Pp) is constructed
to generate the residual signal. The interested reader are
referred to [28].

The robust fault isolation algorithm is proposed for fault
isolation of industrial processes is based on decoupling the
effect of faults other than the desired fault from specific
residual. The weighted parity vector is designed in such a
way that it shows the effect of ith fault on ith residual and
nullifies the effect of remaining faults on ith residual. For
example, the ith residual γi(k) indicates the ith position of fault
is sensitive towards ith fault and decoupled from all remaining
faults. A bank of residuals is generated for the isolation of a
single fault.

To this end, consider a nonlinear dynamic process as:

x(k + 1) = f (x(k), u(k))+ d(k)

y(k) = g(x(k), u(k))+ n(k) (1)

where, x(k) ∈ Rn is the state of the system, u(k) ∈ Rl

is the input and y(k) ∈ Rm, is the output of the system.
The variables d(k) represents process disturbance and n(k)
represents sensor noise.

Algorithm 1 Fault Detection Approach
1: Store N input-output samples in healthy condition.
2: Compute similarity index pi between test input sample

ur and healthy samples ui, i = 1, · · · ,N in database by
using (2).

3: Select t most relevant data samples based on similarity
index.

4: Construct t input-output data samples in form of past
and future input-output block Hankel matrices Zp and
Zf respectively.

5: Perform SVD on 1
t Zf Z

T
p .

6: Compute the terms 0⊥p , 0
⊥
p G

i
up by using (10).

7: Construct the optimal parity vector by using (11) and
(12).

8: The residual is generated using (13).
9: Repeat steps 2-6 to generate residuals for other test

samples.

Notice that in the design of a data-driven based fault diag-
nosis scheme, a sufficiently large amount of data samples are
collected. For our purpose, the N number of healthy input-
output data samples are collected. The collected data sample
are stored as U = [u1 · · · uN ]T ∈ RN×l input samples and
Y = [y1 · · · yN ]T ∈ RN×m as output samples. Among these
samples t most similar data samples are selected using the so-
called JITL approach where t � n [27]. The idea of JITL is
that for each incoming test sample, the most relevant samples
from the stored samples will be selected based on the similar-
ity index. Then parity space is computed using these selective
data samples. In the conventional subspace-aided parity base
approach, a constant parity space is computed. Meanwhile,
in the proposed technique the parity space is adaptive and
computed for each test sample in order to address the non-
linear dynamics. The similarity index (s) depends on the
distance and angle between test input and stored data samples.
The similarity index of test input (uq) and stored input (ui) is:

si = α
√
ed2 + (1− α)cosθi (2)

where, α is freedom variable i.e. 0 < α < 1, d is Euclidean
distance between test input uq and stored input ui and θi is
angle between uq and ui.
The selected t most relevant data samples are organized

within the descending order based on similarity index (si).
The input-output data samples are organized within the type
of block Hankel matrices for these t data samples.

Uf =


uo u1 · · · ut−p
u1 u2 · · · ut−p+1
...

. . .
. . .

...

up up+1 · · · ut
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Yf =


yo y1 · · · yt−p
y1 y2 · · · yt−p+1
...

. . .
. . .

...

yp yp+2 · · · yt


After the selection of similar data samples based on similarity
index from the database, now for such data samples, we can
assume the linear dynamics of the system to generate the
parity vector. Considering an LTI system as:

x(k + 1) = Adix(k)+ Bdi (u(k)+ fa(k))+ w(k)

y(k) = Cdix(k)+ Ddi (u(k)+ fa(k))+ v(k)+ fs(k) (3)

Here, Adi ∈ Rn×n, Bdi ∈ Rn×l , Cdi ∈ Rm×n, Ddi ∈ Rm×l

are constant matrices and x(k) ∈ Rn×1 is state vector, u(k) ∈
Rl×1 is input vector, fs(k), fa(k) are sensor and actuator fault
vectors respectively. w(k), v(k) are disturbances, and sensor
noise respectively and are speculated having normal distribu-
tion with zero means.
The output of system in (3), for p ≥ 0 is considered as

yp(k) = 0pxp(k)+ Gup(up(k)+ fap(k))

+Gdpwp(k)+ vp(k)+ fsp(k) (4)

where,

wp(k) =


w(k − p)

w(k − p+ 1)
...

w(k)

 , vp(k) =


v(k − p)

v(k − p+ 1)
...

v(k)



fsp(k) =


fs(k − p)

fs(k − p+ 1)
...

fs(k)

 , yp(k) =


y(k − p)

y(k − p+ 1)
...

y(k)

 (5)

and

Gup =


Dd 0 . . . 0

CdBd Dd
. . . 0

...
. . .

. . . 0
CdAd p−1Bd · · · CdBd Dd

 ,

Gdp =


0 0 . . . 0

Cd 0
. . . 0

...
. . .

. . . 0
CdAd p−1 · · · Cd 0

 (6)

For subspace aided data-driven approach (4) can be written
as:

Yf = 0pXi + GiupUf + G
i
dpWf + Nf (7)

where, 0p is known as the external observability matrix,
Uf is the block Hankel matrix of future inputs and Yf
includes future outputs and Xi is the state matrix.Giup is lower
block Toeplitz deterministic fault coupling matrix and Gidp
is stochastic disturbances coupling matrix. Wf is the block

Hankel matrix represent disturbances while Nf represents
noise.
Equation (7) can also be represented as:

Zf =
[
Yf
Uf

]
=

[
0p Giup
0 I

] [
Xi
Uf

]
+

[
GidpWf + Nf

0

]
where ZTf is input-output block Hankel matrices comprising
the inputs-outputs respectively. Subdividing the total num-
ber of samples (t) and post multiplying ZTf on both sides,
the above equation turns out to be as:

1
t
Zf ZTf =

1
t

[
0p Giup
0 I

] [
Xi
Uf

]
ZTf +

1
t
4ZTf ,

4 =

[
GidpWf + Nf

0

]
Perform singular value decomposition of 1

t Zf Z
T
f .

1
t
Zf ZTf = Uz6zṼz (8)

where,

Uz =
[
Uz11 Uz12
Uz21 Uz22

]
∈ R(m+l)p×(m+l)p

Uz11 ∈ R(m+p)×(pl+n), UT
z12 ∈ R

(mp−n)×(mp)

Uz22 ∈ R(lp)×(pm−n) (9)

According to [24], we can obtain the 0⊥p and 0⊥p G
i
up by using

the relations
0⊥p = UT

z12 , 0
⊥
p G

i
up = −U

T
z22 (10)

It is noticed thatUT
z12 spans parity space and also rows ofU

T
z12

are the parity vectors [31]. So, parity space is equal to 0⊥p
such that 0⊥p 0p = 0. In order to construct an optimal parity
vector which can ensure sensitivity towards faults as well as
robustness against disturbances, the following performance
index [32]is used:

J = max
0⊥p

0⊥p G
i
upG

i
up
T
0⊥,Tp

0⊥p G
i
dpG

i
dp
T
0
⊥,T
p

(11)

This performance index includes two terms that are Giup
and Gidp. The term Giup represents the influence of faults on
residual signals while the term Gidp represents the effect of
disturbances as mention in (7). In order to compute optimal
robust parity vector we have to maximize the performance
index that means to maximize the term 0⊥p G

i
up that enhance

the impact of the fault and at the same time minimize the
term 0⊥p G

i
dp which minimize the influence of disturbances.

The performance index (11) is solved by expressing it as an
associate eigenvalue problem.

`p,max(0⊥p G
i
upG

i
up
T
0⊥,Tp − λp,max0

⊥
p G

i
dpG

i
dp
T
0⊥,Tp ) = 0

(12)

where, `p,max is the maximum eigenvector and λp,max is the
maximum eigenvalue.
Pp = `p,max0

⊥
p is the optimal robust parity vector that

diminishes the influence of the disturbances and enhances the
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impact of the fault on residual. The residual is computed by
using the subsequent relation.

γ (k) = Pp(yp(k)− Gupup) (13)

where Pp is the optimal robust parity vector.

A. CLASSIFICATION OF SENSOR FAULTS
Consider the parity based residual generator given as

γ (k) = 0⊥p (yp(k)− Gupup(k))

= 0⊥p (Gupfap(k)+ fsp(k)+ Gdpws(k)+ vs(k)) (14)

By ignoring the effect of disturbances and noise, it can be
written as:

γ (k) = 0⊥p Gupfap(k)+ 0
⊥
p fsp(k) (15)

where, 0⊥p is the parity vector and Gup and 0⊥p is computed
using JITL parity space approach as discussed (10). fap(k) and
fsp(k) are the actuators and sensors faults respectively.

fsp(k) =


fs(k − s)

fs(k − s+ 1)
...

fs(k)

 , fap(k) =


fa(k − s)

fa(k − s+ 1)
...

fa(k)

 (16)

and

fa(k) =



fa1 (k)
...

faj (k)
...

fa` (k)

 , fs(k) =



fs1 (k)
...

fsj (k)
...

fsm (k)

 (17)

fspj̄ (k) = [fs1 (k − s) · · · fsj−1(k − s) fsj+1(k − s) · · ·

fsm (k − s) · · · · · · fsj−1(k)fsj+1 (k) · · · fsm (k)]
T

(18)

fapj̄ (k) = [fa1(k − s) · · · faj−1 (k − s) faj+1(k − s) · · ·

fap (k − s) · · · · · · fa1 (k) · · · faj−1(k) faj+1(k)

· · · fap (k) ]
T (19)

fspj (k) = [fsj (k − s) fsj (k − s+ 1) · · · · · · fsj (k)]
T (20)

fapj (k) = [faj (k − s) faj (k − s+ 1) · · · · · · faj (k)]
T (21)

where ′`’ is the total number of actuators, ′m′ is the total
number of sensors and ′j′ is the jth actuator or sensor fault.
In order to isolate the jth sensor fault, parity space (0⊥s,sen,j)
is selected in such a way that it decouples the remaining
sensors faults. For ′m′ sensor faults ′m′ residual signal will
be computed, each residual signal indicates a specific sensor
fault. For jth sensor fault, the residual equation (14) can be
written as:

γj(k) = 0⊥p Gupfap(k)+ 0
⊥
p fsp(k)

= 0⊥s,sen,j0
⊥
p Gupfap(k)+ 0

⊥
s,sen,j[0

⊥
s,j 0⊥s,j̄]

[
fspj̄ (k)
fspj (k)

]
(22)

such that 0⊥s,sen,j0
⊥
s,j = 0.

To compute0⊥s,sen,j organize0
⊥
p as:0⊥p = [0⊥s,10

⊥

s,2 · · ·0
⊥
s,s],

where 0⊥s,k ∈ R
µ×n and k = 1, 2 · · · s

Subdivide the term 0⊥s,k = [0⊥s,k,10
⊥

s,k,2 · · ·0
⊥
s,k,m] such

that 0⊥s,k,i ∈ Rµ, i = 1, · · ·m, where m is the number of
outputs or sensors.

Now compute the parity space for jth fault such that
0⊥s,sen,j = null(0⊥s,j), where 0

⊥
s,j can be written as:

0⊥s,j = [0⊥s,1,1 · · · 0
⊥

s,1,j−10
⊥

s,1,j+1 · · · 0
⊥

s,2,m0
⊥

s,2,1 · · ·

0⊥s,2,j−10
⊥

s,2,j+1 · · · 0
⊥

s,2,m · · · 0
⊥

s,s,1 · · · 0
⊥

s,s,j−1

0⊥s,s,j+1 · · · 0
⊥
s,s,m] (23)

Considering the effect of noise and disturbances as shown in
(14), the parity vector should compute that ensure robustness
against noise and disturbances and sensitivity towards faults.
In order to construct such an optimal parity vector Psen,j for
jth sensor following performance index will be solved as
mentioned in (12)

Jsen = max
0⊥s,sen,j

0⊥s,sen,jG
i
upG

i
up
T
0
⊥,T
s,sen,j

0⊥s,sen,jG
i
dpG

i
dp
T
0
⊥,T
s,sen,j

(24)

The optimal robust parity vector for jth residual will be
Psen,j = `s,max0

⊥
s,sen,j0

⊥
p . The residual is generated for jth

sensor by using following relation.

γsen,j(k) = Psen,j(yp(k)− Gupup(k)) (25)

The proposed fault classification approach for sensor fault is
briefly mentioned in Algorithm 2.

Algorithm 2 Proposed Sensor Fault Isolation Approach
1: Compute similarity index pi between test input sample

ur and healthy samples ui, i = 1, · · · ,N in database by
using (2).

2: Select t most relevant data samples based on similarity
index.

3: Compute the terms 0⊥p and 0⊥p G
i
up by using (10).

4: Organize 0⊥p as: 0⊥p = [0⊥p,10
⊥

p,2 · · ·0
⊥
p,s], where 0

⊥
p,k ∈

Rµ×n and k = 1, 2 · · · s
5: Subdivide the term 0⊥p,k = [0⊥p,k,10

⊥

p,k,2 · · ·0
⊥
p,k,m] such

that 0⊥p,k,i ∈ R
µ, i = 1, · · ·m, where m is the number of

outputs. Construct 0⊥p,j as mentioned in (23).
6: Now compute the parity space for jth fault such that
0⊥p,sen,j = null(0⊥p,j).

7: Construct the optimal parity vector Psen,j for jth sensor
by solving the performance index (24).

8: The bank of residual signal is generated by using (25).

γ (sen, j) = Psen,j(yp(k)− Gupup)

B. CLASSIFICATION OF ACTUATOR FAULTS
In order to isolate the jth actuator fault, parity space (Hp,act,j)
is computed in such a way that it decouple the remaining
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actuator faults. For jth actuator fault (14) can be written as:

γj(k) = Hp,act,j(0⊥p Gup

[
fapj̄ (k)
fapj (k)

]
+ 0⊥p fsp(k)) (26)

ConsiderH = 0⊥p Giup, (26) can be written as:

γj(k) = Hp,act,jH
[
fapj̄ (k)
fapj (k)

]
+Hp,act,j0

⊥
p fsp(k)

= Hp,act,j[Hp,j Hp,j̄]
[
fapj̄ (k)
fapj (k)

]
+Hp,act,j0

⊥
p fsp(k)

(27)

such thatHp,act,jHp,j = 0.
To compute Hp,act,j, organize H as: H = [Hp,1Hp,2 · · ·

Hp,s], where Hp,k ∈ Rµ×l and k = 1, 2 · · · s, where
0⊥p,k ∈ R

µ×n and k = 1, 2 · · · s.
Subdivide the term Hp,k = [Hp,k,1Hp,k,2 · · ·Hp,k,`] such

that Hp,k,i ∈ Rµ, i = 1, · · · `, where ` is the number of
actuators.

Now compute the parity space for jth actuator fault such
thatHp,act,j = null(Hp,j), whereHp,j can be written as:

Hp,j = [Hp,1,1 · · ·Hp,1,j−1 Hp,1,j+1 · · ·Hp,2,m Hp,2,1 · · ·

Hp,2,j−1 Hp,2,j+1 · · ·Hp,2,m · · ·Hp,s,1 · · ·Hp,s,j−1

Hp,s,j+1 · · · Hp,s,m] (28)

Considering the effect of noise and disturbances as shown
in (14), the parity vector should be computed that ensure
robustness against sensor noise and process disturbances as
well as sensitivity towards faults. In order to construct such an
optimal parity vector (Pact,j) for jth actuator fault following
performance index will be solved as mentioned in (12)

Jact = max
Hp,act,j

Hp,act,jGiupG
i
up
THT

p,act,j

Hp,act,jGidpG
i
ds
THT

p,sen,j

(29)

The optimal robust parity vector for jth actuator residual will
be Pact,j = `s,maxHp,act,j0

⊥
p . The residual is generated for jth

actuator by using following relation.

γact,j(k) = Pact,j(ys(k)− Gupus) (30)

The proposed actuators fault classification approach is briefly
mentioned in Algorithm 3

C. RESIDUAL EVALUATION AND THRESHOLD SETTING
The unavoidable disturbances and noise may affect the resid-
ual and generate false alarms. It is important to differentiate
faults from such unavoidable influences. The threshold set-
ting is used in order to make decisions for fault alarms and
minimize false alarms. The fault alarm should be generated
only when the residual surpasses the particular threshold
level. There are various types of threshold settings discussed
in [2], [3] and the references therein. In this work, we have
used the Generalized likelihood ratio (GLR) based threshold
design for the decision of fault. GLR has been proved as a
valuable fault decision rule that guarantees the maximal fault

Algorithm 3 Proposed Actuator Fault Isolation Approach

1: ConsiderH = 0⊥p Giup
2: OrganizeH as:H = [Hp,1Hp,2 · · ·Hp,s], whereHp,k ∈

Rµ×l and k = 1, 2 · · · s
3: Subdivide the term Hp,k = [Hp,k,1Hp,k,2 · · ·Hp,k,`]

such that Hp,k,i ∈ Rµ, i = 1, · · · p, where p` is the
number of actuators. ConstructHp,j asmentioned in (28)

4: Now compute the parity space for jth actuator fault such
thatHp,act,j = null(Hp,j).

5: Compute the optimal parity vector Pact,j for jth actuator
by solving the performance index (29).

6: The bank of residual signals are generated by using (30).

γ (act, j) = Pact,j(ys(k)− Gupus)

detection rate (FDR) and minimum false alarm rate (FAR)
[2]. By considering the residual generator (13),

γ (k) = f (k)+ d(k) (31)

where γ (k) represents the residual signal, f (k) indicates the
fault and d(k) is white noise ∈ N (0, σ 2

r ). Considering the
false alarm rate (FAR) is not more than β, Algorithm-4 briefly
defines the execution steps of threshold setting by usingGLR.

Algorithm 4 GLR Based Threshold Computation
1: By using chi-square distribution table, compute χa such

that P[χ2 > χa] = β.
2: The threshold level will be: JTH =

χa
2 .

3: The testing statistic is processed as
J = 1

2σ 2r Nw
(
∑Nw

k=1 γ (k)
2). where, γ (k) is the residual

signal.
4: The fault alarm is set if J > JTH .

IV. IMPLEMENTATION RESULTS
The PenSim v2.0 package is used for simulation purposes
provided by Ali Cinar. Using this simulator healthy and faulty
batches are produced for FDI purposes. For the implemen-
tation of the FDI scheme, 20 batches are obtained under
normal conditions with a sampling time (Ts) of 0.5hrs. The
simulation time is set to 400hrs for each batch process. A total
of 16,000 samples are collected for the purpose of FDI. p is
chosen to be 10. The variables penicillin concentrations and
biomass served as outputs whereas inputs variables are tem-
perature, pH, dissolvedO2 concentration,CO2 concentration,
culture volume, and cooling water flow rate as shown in Fig. 1
Three faults that are aeration rate fault, biomass concentration
fault, and penicillin concentration fault are considered for
testing.

Figs. 3-5 show the implementation results of the FD tech-
nique. For each incoming test sample, the most similar data
samples are collected from the stored samples then the opti-
mal robust parity vector is constructed using these selective
samples for the generation of the residual signals. The fault
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FIGURE 3. Biomass concentration fault.

FIGURE 4. Penicillin concentration fault.

FIGURE 5. Aeration rate fault.

TABLE 2. Comparison of FD approaches.

decoupling approach as discussed earlier is used for the clas-
sifications of fault positions. In Fig. 3 biomass concentration
fault is introduced up to 15 percent after 400th samples and
penicillin concentration fault is inserted up to 20 percent
in Fig. 4. Aeration rate fault is introduced after the 400th sam-
ple by adding up to 10 percent fault in Fig. 5. All mentioned
faults are successfully detected. The effect of disturbances is
also included that may affect the residual signal and cause
somewhere false alarms. The worth noticing point here is
that FAR has been reduced and FDR has been maximized
as shown in Table 3. A comparison with recently reported
techniques (Table 3) shows that our proposed FD framework
performs well and superior.

Fault isolation is shown in Figs. 6-8. It is obvious from
the figures that all the faults are successfully isolated.
Fig. 6 shows the biomass concentration fault for which
residual-1 and residual-3 are greater than threshold while

FIGURE 6. Biomass concentration fault.

FIGURE 7. Penicillin concentration fault.

FIGURE 8. Aeration rate fault.

TABLE 3. Decision table for fault isolation.

residual-2 is less than a threshold level. In the case of sensor
faults, the residuals representing the actuator faults will be
greater than a threshold as their parity space will be insen-
sitive towards the sensors fault coupling matrix as discussed
earlier. Similarly, in the case of actuator faults, the residuals
representing sensor faults will be greater than the threshold
as their parity space will be insensitive towards actuator fault
coupling matrix Fig. 7 reflects the penicillin concentration
fault that clearly indicates that the residual-2 which represents
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the penicillin concentration fault is greater as compared to
threshold along residual-3 which represent aeration rate fault.
The aeration rate fault is shown in Fig-3 in which all residual
signals are greater than the threshold level.
The table 3 shows the decision table for the proposed fault
isolation scheme that indicates the final result about a fault in
a specific component for the penicillin fermentation process.
’1’ indicates the residual is greater than the threshold and ’0’
represents the residual is less than the threshold level.

V. CONCLUSION
We have developed and implemented a data-driven fault diag-
nostic scheme for the Penicillin fermentation process. The
so-called just-in-time learning approach is used to address
the non-linear behavior of the process. For incoming test
samples, the data samples are chosen based on similarity
and by using these samples appropriate parity space is gen-
erated. The designed diagnostic scheme improves the fault
detection rate and decreases the false alarm rate as compared
to the previous fault diagnostic approaches implemented for
the Penicillin fermentation process. It is noticed that the
designed scheme is effective for industrial processes like
the Penicillin fermentation process having a high sampling
period. The online computational complexity is still one of
the problems specifically for processes with low sampling
periods which need further attention. In a typical large-scale
complex industrial process, there are hundreds and thousands
of sensors. The input and output information is coming from
various channels. Using this big chunk of data, the design
of a process monitoring system is a challenging problem.
In practice, the analysis of such big data reveals that the
performance of the process can be monitored by a group of
sensors. This can reduce the demand for storing the whole
data and consequently its analysis. This idea can lead us
to the so-called identification of key performance indicators
which is highly important for designing and implementation
diagnostic systems. It is worth noticing that identification
of Key Performance Indicators among the whole input and
output space of a large-scale process and based on these
indicators constructing an appropriate diagnostic scheme is
still a challenging task that needs to be explored. In the future,
the research work will be performed to develop an effective
diagnostic scheme based on Key Performance Indicators for
industrial processes. Also, the just-in-time learning based
approach can be extended to develop a fault-tolerant control
design for nonlinear dynamic processes to ensure continued
operation of the process with reasonable performance in pres-
ence of tolerable faults.
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