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ABSTRACT Advancements in technology have made deep learning a hot research area, and we see its
applications in various fields. Its widespread use in silicon wafer defect recognition is replacing traditional
machine learning and image processing methods of defect monitoring. This article presents a review of the
deep learning methods employed for wafer map defect recognition. A systematic literature review (SLR)
has been conducted to determine how the semiconductor industry is leveraged by deep learning research
advancements for wafer defects recognition and analysis. Forty-four articles from well-known databases
have been selected for this review. The articles’ detailed study identified the prominent deep learning
algorithms and network architectures for wafer map defect classification, clustering, feature extraction, and
data synthesis. The identified learning algorithms are grouped as supervised learning, unsupervised learning,
and hybrid learning. The network architectures include different forms of Convolutional Neural Network
(CNN), Generative Adversarial Network (GAN), and Auto-encoder (AE). Various issues of multi-class and
multi-label defects have been addressed, solving data unavailability, class imbalance, instance labeling, and
unknown defects. For future directions, it is recommended to invest more efforts in the accuracy of the data
generation procedures and the defect pattern recognition frameworks for defect monitoring in real industrial
environments.

INDEX TERMS Wafer map defects, wafer bin map, defect recognition, deep learning, systematic literature

review.

I. INTRODUCTION

Silicon chips are the backbone of the current digital era.
The advancements in the emerging technologies of Internet
of Things (IoT), Fifth Generation (5G) telecommunication
networks, Artificial Intelligence (AI), and the automotive
industry have propelled their consumption [1], [2]. Keeping
up with the growing demand for semiconductor devices by
embracing the efficient, most suitable manufacturing automa-
tion practices is more critical in present times. Like other
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manufacturing industries, semiconductor fabrication com-
panies aim for maximum productivity by taking measures
against yield limiting factors. Among several influencing
parameters, wafer fabrication defects are significant [3]. Con-
trolling the ratio of defective Integrated Circuits (ICs) deter-
mines an IC foundry or wafer fabrication facility (fab)’s
productivity and indicates its control on the manufacturing
processes [4]. The defects caused by the frontend operations
in circuit fabrication reflect the manufacturing equipment
and processes’ flaws. They are characterized as random and
systematic defects based on their originating factors [5]. Most
wafers carry a mix of both types. Fig. 1 shows examples
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FIGURE 1. Defect types: (a) Random, (b) Systematic, and (c) Mix of both.

of wafer images having random and systematic defects and
a combination of both. Random defects are attributed to
the manufacturing environment and equipment faults. They
disperse randomly on the wafer map, not appearing in a
specific spatial pattern. The elimination of random defects
requires equipment replacement and intense maintenance of
the manufacturing environment, which is very expensive.
Moreover, even in a near-sterile, perfect setting, the absence
of dust particles cannot be guaranteed, and so the presence
of random defects. Although they occur in acceptably small-
scale, controlling them improves the fabrication yield [6].
Systematic defects are caused by the manufacturing processes
and can be prevented by controlling the causing process.
They appear in specific patterns forming a spatial cluster
correlated to their causing factors. Thus, the identification and
analysis of systematic defects facilitate process engineering
and improve product quality and die yield by minimizing
the rate of defective dies [7]. Defect recognition only targets
systematic defects. Random defects are considered as noise
since their presence adds to the difficulties of the systematic
defect pattern analysis.

IC manufacturing process is divided into four basic steps:
fabrication, probing, assembly, and final test [8]. As shown
in Fig. 2, wafer defects are specified in the wafer probe or
die soring phase, performed immediately after the fabrication.
The functionality of integrated circuits is tested based on their
electrical parameters, and a wafer map is generated, marking
the exact locations of the failed circuits. Wafer maps are
converted into wafer bin maps (WBMs), indicating the die
having a circuit failure as a non-functional or defective die.
Each die gets a bin color based on its category. The wafer bin
map is, thus, an important artifact in the die manufacturing
process, portraying all the normal and faulty dies fabricated
on the wafer. It makes the basis for wafer defect analy-
sis, pattern monitoring, root cause assessment, and process
tracking.

Appropriate defect monitoring practices significantly
affect the defect analysis and the overall yield at a fab.
The conventional ways of defect monitoring rely on domain
experts for manual inspections [9]. However, these tra-
ditional approaches are inadequate in their accuracy and
efficiency. The cost of labor is also of concern. Another
critical factor is the rapidly shrinking size of chips, which
makes human intervention and manual defect monitoring
out of the question. The semiconductor industry has con-
stantly leveraged the latest available technological tools to
reduce production costs and improve accuracy and efficiency.
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Hence, various computer-aided methods and automated
visual inspections (AVI) have been widely adopted for defect
monitoring, process improvement, product quality, and yield
enhancement [10]. Image processing and machine learning
methods are prominent in defect patterns analysis [11]-[13].
These methods provide cost-effective defect identification,
improving accuracy and speed. However, the standard image
processing and machine learning methods have their lim-
itations. They are incapable of dealing with large-scale,
low-quality and noisy data. Their reliance on feature engi-
neering is the biggest restrain in their implementation, requir-
ing domain expertise and experience in feature selection.
Hence, data preprocessing under these methods extensively
includes noise filtering, feature extraction and selection
strategies. These intermediate steps are computational inten-
sive. They cause distortion or loss of information, and thus
reduce the accuracy of pattern recognition. The limitations of
conventional methods have paved the way for deep learning
in AVI. The breakthroughs of deep learning methods in defect
monitoring is replacing the manual and traditional machine
learning, making it a promising research area.

With the rapid development of technology in recent
years, deep learning as a computer-aided algorithm has been
actively realized in many fields [14]. Although it has been
serving the semiconductor industry in many areas [15]-[17],
deep learning’s contribution in detecting and analyzing fab-
rication flaws is tremendous. Fabrication process defects
appear in the form of specific patterns on the silicon sub-
strate. These patterns are captured and reflected as wafer
maps, Scanning Electron Microscope (SEM), and Energy
Dispersive X-Ray Analyzer (EDX) images. As deep learning
has proved to be a perfect tool for image processing and
pattern recognition, it is best suited to identify defect patterns
in such images. In addition, the automatic feature learning
abilities of deep methods make them superior. Contrary to
traditional machine learning’s manual feature engineering,
deep networks automatically learn meaningful features from
raw data. Many nonlinear data processing units in the densely
connected hidden layers of deep architectures enable fea-
ture extraction from raw input. Deep learning’s performance
for big datasets, noisy and incomplete data is surprisingly
good [18], [19]. For these reasons, it has been successfully
adopted for wafer map defect detection, identification, seg-
mentation, and classification.

Although, many recent studies have demonstrated the
effectiveness of deep learning for wafer defect pattern recog-
nition, there is a lack of a comprehensive review of the field.
The current study fills this gap by systematically reviewing
the use of deep learning in silicon wafer defect recognition.
This systematic literature review (SLR) investigated the deep
learning algorithms and architectures employed to solve the
specific issues of wafer defect pattern recognition. It cov-
ers the recent four years of literature published on wafer
map defects and deep learning, providing an overview of
what has been done in the field. The focus of the study has
been on answering the specific questions about the learning
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FIGURE 2. Four main stages of IC manufacturing; fabrication, probing, assembly, and final test.

algorithms, network architectures, and the datasets in the
wafer map defect recognizing systems. The results drawn
in this study highlight the challenges in implementing deep
learning systems and devise the future research directions.
It provides a reference for researchers and professionals
working with wafer map defects, guiding them in improving
the current systems and designing new defect-recognition
frameworks.

The rest of the paper has been organized as follows:
Section II describes the SLR method; the research questions,
search terms, data sources, selection, and collection proce-
dures. Section III represents the selected literature and its
statistical analysis. Section IV holds the discussion, catego-
rizes the literature to answer each question, critically ana-
lyzes the findings, and highlights specific issues. Finally,
section V concludes the paper, giving some future work
recommendations.

Il. SYSTEMATIC LITERATURE REVIEW

The three-step process of plan, conduct, and report has been
observed in conducting this SLR [20], [21]. In the plan-
ning phase, research questions were defined, and the review
protocol was established, specifying the publication sources,
search terms, and selection criteria. In the second step, the
literature was collected following the review protocol. The
selected literature was analyzed, extracting and synthesizing
the required data to answer the questions. Finally, the review
results were documented, addressing the research questions
and the objectives of the SLR.

A. RESEARCH QUESTIONS

The main objective of this review was to determine how
deep learning has been applied for wafer map defects. Fur-
thermore, to look into the applications and how the defect
recognition frameworks have been implemented using the
deep networks. Thus, providing the knowledge of the current
practices to building upon that for further improvement in the
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area. Therefore, the following three research questions (RQs)
have been framed:
1) What learning algorithms have been applied?
2) What kind of architecture of the deep network has been
employed?
3) What was the nature of the data used for the network
training and testing?
While scanning the literature, a focused approach has been
followed. Each article has been reviewed to answer the above
questions. The gathered data has been reported in a compre-
hensive way to have a complete picture.

B. REVIEW PROTOCOL

Literature search sources, search terms, selection and rejec-
tion procedures adopted for this SLR are specified as
followed:

1) SEARCH SOURCES

Four popular scientific databases; Scopus, IEEE Xplore, Web
of Science, and Springer Link, were selected to extract the
data.

2) SEARCH TERMS

The investigated topic combines three main search terms:
‘deep learning’, ‘wafer map’, and ‘defects’. Each of the terms
can be searched by multiple alternative words. The most
relevant and commonly used applicable terms were selected
and combined by the ‘OR’ operator. For example, to represent
‘deep learning’, three search terms were identified as ‘deep
learning’, ‘deep network’, and ‘deep architecture’. The other
term for ‘wafer map’ was ‘wafer bin map’ and ‘defect’ was
represented by its only main term. Individual search strings
were concatenated by the ‘AND’ operator to form a search
query. The wild card ‘*’ has been added to include all verb
forms of the key terms. Full text search has been employed
to capture the maximum relevant literature. Complete search
queries for each of the databases are shown in Fig. 3.
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FIGURE 3. Search queries for each of the databases.

3) INCLUSION

This study is limited to the applications of deep learning
for wafer bin map defects. All primary studies published in
the English language, employing a deep learning algorithm
for wafer map defect classification, identification, detec-
tion, segmentation, clustering, or any other task related to
defect recognition, were included. For a broad search spec-
trum, no limits on the subject areas and time frame were
imposed. However, since deep learning is an emerging field,
the literature returned in response to the search queries,
spanned over recent years; starting from 2017 onwards. The
time period of the selected articles extends over four years
2017-2020. The chosen literature included journal articles,
conference proceedings, and book sections on the explored
topic.

4) EXCLUSION

This SLR includes studies on defects represented by wafer
bin maps. The publications on other forms of images like
SEM (scanning electron microscope) or EDX (energy disper-
sive X-ray) images, or any other format were not included.
In addition, articles in languages other than English were
excluded.

C. LITERATURE COLLECTION

The literature search was performed by supplying the search
strings for each database, as shown in Fig. 3. Total 232 pub-
lications were returned as a response to these search queries.
The search results from each database were assessed accord-
ing to the predefined inclusion/exclusion criteria. In the initial
screening, the review articles and non-English publications
were excluded. Each article was evaluated based on its title,
abstract and a quick review of text to decide its selection or
rejection. This filtration reduced the number of articles to
104. After removing the duplicate articles, 57 publications
were included in the full text assessment, and finally, 44 stud-
ies were selected to be the part of this SLR. The process
of data selection has been shown by Preferred Reporting
Items for Systematic Review and Meta-analysis (PRISMA)
framework [22] in Fig. 4.
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Ill. RESULTS

The selected publications are listed in Table 1 with the article
title, publication year, source title, and the number of citations
for each publication. Fig. 5 shows the distribution of the
publications for 2017-2020. In the yearly distribution shown
in Fig. 5(a), a sharp increase in the literature is noticeable,
with only two publications in 2017 to 25 articles in 2020.
Furthermore, as shown in Fig. 5(b), out of 44 articles, 26 were
published in journals and 18 in conference proceedings.
Fig. 5(c) shows the number of journal and conference pub-
lications each year. The distribution of articles in journals
can be seen in Fig. 6. IEEE Transactions on Semiconductor
Manufacturing is on the top of the list with seventeen publica-
tions. Journal of Intelligent Manufacturing has three articles,
Applied Sciences contained two, and the other four journals
have one publication each. Table 2 shows the names of the 18
conferences for conference articles.

IV. DISCUSSION

To answer the RQs, a detailed study of each publication has
been conducted, extracting the required data. Each article was
analyzed for the problem being solved, the main method,
learning algorithm, network structure, data, and how data
were prepared for the network training and testing. The find-
ings for each RQ are explained in their respective sections as
follows:

A. WHAT LEARNING ALGORITHMS HAVE BEEN APPLIED?
The selection of learning algorithm for a deep network
depends on the nature of the problem and the data. Two
main algorithms; supervised learning for labeled data and
unsupervised learning for non-labeled data are the standard
practices, respectively. Taking advantage of labeled and non-
labeled data, a hybrid approach, combining supervised and
unsupervised methods has also been a choice for more accu-
rate analysis. This SLR has found supervised learning to be
used maximum for wafer defect recognition. The obvious
reason for this was having the labeled defect maps and aiming
to categorize them into known classes. Unsupervised and
hybrid learning have also been employed but comparatively
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FIGURE 4. Preferred reporting items for systematic review and meta-analysis (PRISMA) diagram.

less frequently. Table 3 lists prominent references for each
algorithm.

B. WHAT KIND OF ARCHITECTURE OF THE DEEP
NETWORK HAS BEEN EMPLOYED?

There are three main deep networks employed for wafer
map defect-recognition; Convolutional Neural Network
(CNN), Generative Adversarial Network (GAN), and Auto-
encoder (AE). We have categorized the literature based on
them. The referring publications have been mentioned in the
respective section of each. The publications which present
a framework based on multiple architectures appear under
all of them for complete characterization. The taxonomy of
the literature followed in this SLR has been shown in Fig. 7.
Following is the review of deep networks:

1) CONVOLUTIONAL NEURAL NETWORK

Since CNN is the most cited architecture, we have further
sub-grouped the literature on CNN as custom-made CNN for
single-label defect classification, CNN for multi-label defect
classification, and pre-defined CNN and transfer learning.
A detailed literature review of each topic is given below
and a summary of publications in each category is provided
in Tables 4, 5 and 6.

a: CUSTOM-MADE CNN FOR SINGLE-LABEL DEFECT
CLASSIFICATION

Single label classification refers to the standard classification
problem where a wafer map belongs to only one class. This
section reviews custom build CNN for single defect classifi-
cation, summarizing the important parameters in Table 4.
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Based on the selected literature, the first mention of a CNN
for wafer defect classification has been found as part of an
auto disposition system. Lin et al. [23] proposed a system
to reduce engineers’ intervention in the trouble-shooting pro-
cess. However, they provided only a brief description of their
system, not giving the architecture design and details of the
method. The second work in 2017 aimed at semiconductor
yield enhancement by production inspection and monitoring.
Nakata et al. [24] combined data mining and machine learn-
ing techniques in their framework for day-to-day tracking of
manufacturing data. A CNN was used for long-term failure
recurrence monitoring of defect patterns. It was a retrainable,
one-class classifier with five layers whose parameters were
determined empirically. They used to train it on the frequently
occurring pattern, employing unlabeled images to monitor if
that defect pattern emerges again. This limitation of the model
for only one defect class was the shortcoming of the system.
Also, retraining causes loss of resources, especially in the
case of alternatively reoccurring defects.

From 2018 onwards, a continuous surge in literature
making use of CNN has been observed. Most researchers
presented standalone models, independently performing the
whole task of classification [25]. We also see CNN combined
with other machine learning algorithms in some architectures
to accomplish the job [43].

Nakazawa and Kulkarni [25] proposed a standalone CNN
model for wafer map defect classification and retrieval of
similar maps. It aimed to perform well on the synthetic and
real data and faster retrieval of images from the big library of
wafer maps. They demonstrated the use of synthetic data in
case of imbalanced or limited real data. Synthetic data were
generated with more variations and different from the real
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TABLE 1. Title, publication year, source, and the number of citations of the selected publications.

No. Ref. Publication Title Year Source Title Cg;d
1 [23]  Wafer pattern classification and auto disposition by 2017 2017 Joint International Symposium on e-Manufacturing -
machine learning and Design Collaboration (eMDC) & Semiconductor
Manufacturing (ISSM)
2 [24] A Comprehensive Big-Data-Based Monitoring System 2017  IEEE Transactions on Semiconductor Manufacturing 29
for Yield Enhancement in Semiconductor
Manufacturing
3 [25]  Wafer map defect pattern classification and image 2018  IEEE Transactions on Semiconductor Manufacturing 104
retrieval using convolutional neural network
4 [26]  Deep-structured machine learning model for the 2018  IEEE Transactions on Semiconductor Manufacturing 40
recognition of mixed-defect patterns in semiconductor
fabrication Processes
5 [27]  Classification of Mixed-Type Defect Patterns in Wafer 2018  IEEE Transactions on Semiconductor Manufacturing 51
Bin Maps Using Convolutional Neural Networks
6 [28]  Unsupervised Wafermap Patterns Clustering via 2018  Proceedings of the International Joint Conference on 6
Variational Autoencoders Neural Networks
7 [29]  Anomaly detection and segmentation for wafer defect 2019  IEEE Transactions on Semiconductor Manufacturing 19
patterns using deep Convolutional Encoder-Decoder
Neural Network Architectures in Semiconductor
Manufacturing
8 [30] Bin2Vec: A better wafer bin map coloring scheme for 2019  Applied Sciences (Switzerland) 3
comprehensible visualization and effective bad wafer
classification
9 [31] Deep Learning-Based Wafer-Map Failure Pattern 2019  Proceedings - International Symposium on Quality 7
Recognition Framework Electronic Design, ISQED
10 [32]  Recognition and Location of Mixed-type Patterns in 2019 2019 IEEE International Conference on Smart 2
Wafer Bin Maps Manufacturing, Industrial & Logistics Engineering
(SMILE)
11 [33]  Stacked convolutional sparse denoising auto-encoder for 2019  Computers in Industry 15
identification of defect patterns in semiconductor wafer
map
12 [34]  Convolutional Neural Network for Semiconductor 2019 2019 10th International Conference on Computing, 2
Wafer Defect Detection Communication and Networking Technologies, [CCCNT
2019
13 [35] AdaBalGAN: An Improved Generative Adversarial 2019  IEEE Transactions on Semiconductor Manufacturing 20
Network with Imbalanced Learning for Wafer Defective
Pattern Recognition
14 [36]  Classification of wafer maps defect based on deep 2019 2019 International Conference on Engineering and 2
learning methods with small amount of data Telecommunication, EnT 2019
15 [37]  Wafer defect pattern recognition and analysis based on 2019 IEEE Transactions on Semiconductor Manufacturing 4
convolutional neural network
16 [38]  Wafer defect map classification using sparse 2019  Lecture Notes in Computer Science (including subseries 2
convolutional networks Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics)
17 [39] Enhanced stacked denoising autoencoder-based feature 2019  IEEE Transactions on Semiconductor Manufacturing 5
learning for recognition of wafer map defects
18 [40]  Silicon Wafer Map Defect Classification Using Deep 2019 2019 IEEE 5th International Conference on Computer and -
Convolutional Neural Network with Data Augmentation Communications, ICCC 2019
19 [41]  Wafer Map Defect Recognition Based on Deep Transfer 2019  IEEE International Conference on Industrial Engineering -
Learning and Engineering Management
20 [42] A Semi-Supervised and Incremental Modeling 2020 IEEE Transactions on Semiconductor Manufacturing 4
Framework for Wafer Map Classification
21 [43]  Wafer map defect pattern classification based on 2020  Journal of Intelligent Manufacturing 3
convolutional neural network features and error-
correcting output codes
22 [44]  Active Learning of Convolutional Neural Network for 2020 IEEE Transactions on Semiconductor Manufacturing 3
Cost-Effective Wafer Map Pattern Classification
23 [45]  Mixed pattern recognition methodology on wafer maps 2020 ICAART 2020 - Proceedings of the 12th International -
with pre-trained convolutional neural networks Conference on Agents and Artificial Intelligence
24 [46]  Convolutional Neural Network for Imbalanced Data 2020  Proceedings - 2020 16th IEEE International Colloquium 1
Classification of Silicon Wafer Defects on Signal Processing and its Applications, CSPA 2020
25 [47]  Discriminative feature learning and cluster-based defect =~ 2020  Journal of Intelligent Manufacturing 3
label reconstruction for reducing uncertainty in wafer bin
map labels
26 [48]  Automatic reclaimed wafer classification using deep 2020  Symmetry 1
learning neural networks
VOLUME 9, 2021 116577
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TABLE 1. (Continued.) Title, publication year, source, and the number of citations of the selected publications.

27 [49] A Deep Convolutional Neural Network for Wafer Defect
Identification on an Imbalanced Dataset in
Semiconductor Manufacturing Processes

28 [50]  Variational Deep Clustering of Wafer Map Patterns

29 [511 A Neural-Network Approach to Better Diagnosis of
Defect Pattern in Wafer Bin Map

30 [52]  Wafer Map Classifier using Deep Learning for Detecting
Out-of-Distribution Failure Patterns

31 [53]  Wafer map defect patterns classification using deep
selective learning

32 [54] Memory-Augmented Convolutional Neural Networks
With Triplet Loss for Imbalanced Wafer Defect Pattern
Classification

33 [55] A Light-Weight Neural Network for Wafer Map
Classification Based on Data Augmentation

34 [56] Inspection and classification of semiconductor wafer
surface defects using CNN deep learning networks

35 [57]  Two-Dimensional Principal Component Analysis-Based
Convolutional Autoencoder for Wafer Map Defect
Detection

36 [58] Using GAN to Improve CNN Performance of Wafer Map
Defect Type Classification : Yield Enhancement

37 [59] Deformable Convolutional Networks for Efficient
Mixed-Type Wafer Defect Pattern Recognition

38 [60]  Qualitative and Quantitative Analysis of Multi-Pattern
Wafer Bin Maps

39 [61]  Rotation-Invariant Wafer Map Pattern Classification
With Convolutional Neural Networks

40 [62]  Oversampling based on data augmentation in
convolutional neural network for silicon wafer defect
classification

41 [63]  Semi-Supervised Multi-Label Learning for Classification
of Wafer Bin Maps With Mixed-Type Defect Patterns

42 [64]  Ensemble convolutional neural networks with weighted
majority for wafer bin map pattern classification

43 [65] A Defect Detection Model for Imbalanced Wafer Image
Data Using CAE and Xception

44 [66] A Wafer Map Defect Pattern Classification Model Based

on Deep Convolutional Neural Network

2020 IEEE Transactions on Semiconductor Manufacturing 2

2020 IEEE Transactions on Semiconductor Manufacturing 2

2020 2020 China Semiconductor Technology International -

Conference (CSTIC)

2020  Proceedings of the International Symposium on the -

Physical and Failure Analysis of Integrated Circuits, IPFA

2020  Proceedings - Design Automation Conference 2

2020 IEEE Transactions on Semiconductor Manufacturing 1

2020 IEEE Transactions on Semiconductor Manufacturing -
2020  Applied Sciences (Switzerland) -

2020 IEEE Transactions on Industrial Electronics -

2020 2020 31st Annual SEMI Advanced Semiconductor -

Manufacturing Conference (ASMC)

2020 IEEE Transactions on Semiconductor Manufacturing 1
2020 IEEE Transactions on Semiconductor Manufacturing -
2020  IEEE Access -

2020  Frontiers in Artificial Intelligence and Applications -

2020 IEEE Transactions on Semiconductor Manufacturing -
2020  Journal of Intelligent Manufacturing -

2020 2020 International Conference on Intelligent Data Science -

Technologies and Applications (IDSTA)

2020 2020 IEEE 15th International Conference on Solid-State & -

Integrated Circuit Technology (ICSICT)

types to cover the identification of the rare events. Although
variations are good for a generalized model, synthetic images
should be closer to the real images if data synthesis aims
at addressing the imbalance. If similar colors were used to
represent identical bin codes or defects, it will ease the pro-
cess of pattern identification [30]. To prove their hypothesis,
Kim et al. [30] presented a neural network-based bin coloring
method and built a four-layered CNN to distinguish good and
bad wafers. However, further classification of bad wafers into
respective defect types was not done, which is required for
complete classification and the defect root cause analysis.
In both of these works, the data imbalance issue was solved
by easy data manipulation. Instead of following conventional
data sampling methods, Nakazawa and Kulkarni [25] pro-
duced an entirely new balanced dataset for CNN training.
Kim et al. [30] followed a batch training for the original
imbalanced data, sampling an equal number of good and bad
wafers in each batch.

Considering defective and regular wafers as two major
classes of patterned and non-patterned images, some stud-
ies employed binary classifiers to sort them out. Then,
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the patterned class was further classified into the respective
types. Yu et al. [37] employed two CNNs in their frame-
work; one for detection and the other for classification of
defect patterns. The eight-layered detection model (binary
classifier) sorted the defect images into patterned and non-
patterned classes. The patterned type was further classified
into one of the defect classes by the thirteen-layered clas-
sifier. Furthermore, they extracted the feature set from the
classifier’s fully connected layer and used it for the defect
root cause analysis after reducing its dimensionality by PCA.
They under-sampled the major class (non-pattern) to control
imbalance and expanded the two min classes (Near-full and
Donut) by adding rotated, scaled, and noisy images. Training
images were randomly cropped and rotated. They employed
L2 regularization to reduce overfitting due to non-uniform
class distribution. However, for some of the classes, model
performance was not so good.

Kong and Ni [42] adopted a small LeNet like CNN as
binary classifier for patterned and non-patterned wafers.
Defect patterns on wafers were referred to as gross failing
areas (GFA). Their actual work lies under semi-supervised
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of publications.

and active learning, demonstrating the use of auto-encoders
and ladder network. Jin et al. [43] used CNN as a features
extractor and a combination of error-correcting output codes
and support vector machine (SVM) as a classifier.

The complexity and nature of data are the crucial factors
in determining the network architecture. di Bella et al. [38]
adopted submanifold sparse convolutional network (SSCN)
as a binary classifier for sparse data of larger images.
Dataset was acquired from STMicroelectronics in Agrate
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Brianza, Italy, and contained 29,746 wafer maps in 12 classes.
The images were extremely big, with a resolution of 20,
000 x 20.000 pixels. In another experiment with WM-811k,
when the wafer map sizes were small, they adopted a standard
CNN. In addition, oversampling was adopted to overcome the
class imbalance. All classes were expanded by adding image
transformations; rotations, horizontal flips, translation, noise
injection and, random mixing of cropped images from less
peculiar classes. Tsai and Lee [55] also presented separate
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TABLE 2. Conference names for 18 conference articles.

Z
°

Conference Title

© ® N N kW

—_
(=)

Frontiers in Artificial Intelligence and Applications

—_
—_

2017 Joint International Symposium on e-Manufacturing and Design Collaboration (eMDC) & Semiconductor Manufacturing (ISSM)
2019 10th International Conference on Computing, Communication and Networking Technologies, [CCCNT 2019

2019 IEEE 5th International Conference on Computer and Communications, ICCC 2019

2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE)

2019 International Conference on Engineering and Telecommunication, EnT 2019

2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)

2020 China Semiconductor Technology International Conference (CSTIC)

2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)

2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence

12 IEEE International Conference on Industrial Engineering and Engineering Management

13 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

14 Proceedings - 2020 16th IEEE International Colloquium on Signal Processing and its Applications, CSPA 2020

15 Proceedings - Design Automation Conference

16 Proceedings - International Symposium on Quality Electronic Design, ISQED

17 Proceedings of the International Joint Conference on Neural Networks

18 Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, [IPFA

TABLE 3. Learning algorithms cited in literature.

Learning Algorithm

References

Supervised learning
[56], [58], [59], [60], [61], [62], [64], [65], [66]

Unsupervised learning  [28], [29], [39], [47], [50]

[23], [24], [25], [26], [27], [30], [31], [32], [34], [36], [37], [38], [40], [41], [43], [44], [45], [46], [48], [49], [52], [53], [54], [55],

Hybrid learning [331, [35], [421, [51], [57], [63]
| Deep Networks for Wafer Map Defect Recognition |
l
| Convolutional Neural Network (CNN) | | Generative Adversarial Network (GAN) | | Auto-encoder (AE)
| }
Custom-made CWN for single-label defect classification | | CNN for multi-label defect classification | | Pre-defined CNN and Transfer Learning |

FIGURE 7. Taxonomy of literature made in this study.

models for two different real datasets because of the nature
of the data. A lightweight CNN with fewer parameters for
WM-811K was based on depthwise separable convolutions,
a concept borrowed from MobileNet V1 and V2. The network
for the 21-defect dataset was based on the Residual network.
A convolutional auto-encoder (CAE) was used to oversample
images in each class. The synthesized images further went
through rotations to develop a more robust training set.
Many researchers employed data undersampling for han-
dling imbalance. Shawon et al. [40] used a 3-layered CNN
for the WM-811k benchmark and resolved the imbalance
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by data augmentation, adding 2000 images in each type.
A CAE was used for data synthesis. However, they dropped
the max class (non-pattern), including only eight patterned
types in classifier training. Batool et al. [46] introduced
an eight-layered CNN for wafer defect classification. They
employed under-sampling by taking an equal number of
images from each class and dropping the min class (Near-
Full). Also, image transformations were added to bring vari-
ations in the training data. Kim et al. [52] performed wafer
map classification by applying an out-of-distribution or out-
of-domain image detection technique. The CNN architecture
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was based on VGG16 for the dataset of real binary wafer
maps of 13 classes. Class sizes were downsampled to the
min class to have balanced data. Du and Shi [66] proposed
a CNN with global average pooling, replacing flattened and
fully connected layers to reduce the parameter set for faster
training. They excluded the major class (non-pattern) in
model training to reduce its impact on the data distribution.
Although data under-sampling may ease the implementation
or, in some cases, be needed for model comparison, exclud-
ing some of the classes from the available dataset means
providing an incomplete solution. Major and minor classes
are particularly significant in quantifying how much biased a
model is. So, their inclusion in training is critical in building
a fair model.

To construct a well-performing model and reduce the
labeling cost of wafers, Shim et al. [44] introduced active
learning in CNN training. The proposed defect pattern clas-
sification system provided a means for cost effective intel-
ligent labeling and imbalance management. They employed
a small LeNet-5 like structure as a classifier and trained it
incrementally. Each model building iteration followed four
steps: uncertainty estimation, wafer query selection, labeling,
and model updation. Bayesian Active Learning by Disagree-
ment (BALD) and Mean Standard Deviation (Mean-STD)
were selected empirically for uncertainty estimation. The
diversified top-K selection was employed as query wafer
selection for imbalance alleviation.

Shih et al. [48] worked on defect classification of
reclaimed wafers [67] to reduce manufacturing costs by
recovering reclaimed wafers. They employed and compared
three networks, multilayer perceptron (MLP), CNN, and
Residual Network (ResNet), experimenting with different
structures of the networks to find suitable architecture. The
defect patterns were analyzed to determine whether the
wafers could be re-polished or not, also specifying the exact
defect type. The employed models were compared based on
the error loss, accuracy, training time, and the number of
parameters. CNN with properly designed kernels and struc-
tures ranked higher in this comparison because of its lower
error rate, higher accuracy, fewer parameters, and lesser train-
ing and validation time. ResNet stood in the middle and MLP
at the bottom.

Data oversampling is done mainly by data augmentation
techniques. Also, CAE and GAN have been employed for
data synthesis. Saqlain et al. [49] presented an eight-layered
CNN, addressing class imbalance by oversampling through
data augmentation. Alawieh et al. [53] adopted deep selective
learning to construct a CNN with prediction and selection
output. The CNN model was equipped with a reject option,
abstaining predictions for samples with high misclassifica-
tion risk. The model was built on WM-811K, synthesizing
data by a CAE in underrepresented classes. The training set
was further augmented by adding transformations of rotated
images to solve the imbalance. Ji and Lee [58] demonstrated
the performance of CNN on multiple datasets generated
by GAN, augmentation of image transformations, and the
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combination of both. To increase the quantity and diver-
sity of the scarce training data, Kang [61] demonstrated the
effectiveness of rotation-based data augmentation in wafer
map pattern classification, adopting a LeNet5 like CNN.
Batool et al. [62] performed augmentation by rotating and
flipping images for imbalance management and robust train-
ing.

Chien et al. [56] demonstrated and compared two ways
of building a CNN for wafer defect classification: a custom-
made CNN, carefully designed model for the specific dataset,
and a pre-trained CNN fine-tuned by transfer learning. Both
methods were equally good and performed better than the
machine learning algorithms; SVM, logistic regression, ran-
dom forest, and soft voting ensemble. A predefined model,
faster-R-CNN pre-trained on COCO and KITTTI datasets was
used in the study.

This section has reviewed the literature on single defect
wafer classification by custom-built CNN. We have seen that
different configurations of the CNN have been employed; as
a part of the more extensive framework or a single complete
classifier. The model design was based on the nature of the
data. CNN training was done on real and synthetic images.
Various methods for data synthesis have been employed,
including GAN and CAE. In addition, multiple ways of
imbalanced data handling have been adopted. A summary
of the literature included in this section has been presented
in Table 4. A wafer may carry more than one defect, and a
rigorous analysis requires all of them to be identified accu-
rately. In the next section, a review of the multi defect wafers
has been presented.

b: CNN FOR MULTI-LABEL DEFECT CLASSIFICATION
Identification of multiple defects on a wafer is critical for
accurate defect classification and root cause analysis. Leav-
ing some unidentified defects may lead to incomplete or inac-
curate root cause analysis, affecting the fabrication process
improvement and IC yield. This section reviews the literature
on multi-defect wafer classification.

A multi-defect recognition system based on a randomized
general regression network (RGRN) and CNN was presented
by Tello et al. [26]. First, random defects were removed
by a spatial filter in the data preprocessing step, and data
were divided into single and multi-defect subgroups by a
splitter (Information Gain theory). Then RGRN was used
for single and CNN for mixed defects identification. Real
and synthetic data with seven defect types (three basic and
four mixed types) were employed in the experiments. In their
configuration, splitter is the leading player with maximum
accuracy of 95%. However, RGRN and CNN performance
is relative as they depend on the splitter for their data input.
Following the CNN-only approach, Kyeong and Kim [27]
proposed a mixed defect classification system consisting of
four CNN models for four basic defect types of the dataset.
They demonstrated that a separate model for each type per-
forms better than a single model for all types. The proposed
model was able to identify 16 defect types as combinations of
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TABLE 4. Literature on custom-made CNN for single-label defect classification.

No. Ref. Authors ~ Year  Learning Model Problem Solved Data No. of Augmentation Imbalance Management
Method Classes
Synthetic Real Robust Data Under- Over- Weighted Others
Training  Generation  Sampling  sampling  Cost
1 [23] Kunger 2017  Supervised CNN Auto - - - - - - - - -
al. disposition
2 [24] Nakata 2017  Supervised CNN Yield - v - - - - - - Single
etal. enhancement class
monitoring classifier
3 [25] Nakaza 2018  Supervised ~ CNN Classification v v 22 X X X X X Balanced
wa and and Retrieval, training
Kulkarni rare event set
detection
4 [30] Kim et 2019  Supervised NN, CNN Bin Coloring, x v - - - X X X Balanced
al. Classification batch
5 [371 Yu,Xu, 2019  Supervised CNN and Classification X v 9 v X v v X -
and PCA and root cause WM-811k
Wang analysis
6 [42] Kong 2020  Hybrid CNN Classification, X v 22 - - - - - v
and Ni (Semi- Ladder Labeling (2 real
supervised) network, with 22
autoencoder classes)
7 [43] Jinetal. 2020  Supervised =~ CNN-ECOC-  Classification X v 8 X X v v X X
SVM WM-811k
(Near-full
excluded)
8 [38] diBella 2019  Supervised Submanifold Classification X v 12,9 X v X v X -
etal. Sparse 2 real,
Convolutional WM-811k
Network
(SSCN), CNN
9 [55] Tsaiand 2020  Supervised CNN, Classification X v 9,21 v v X v X -
Lee CAE WM-
811k
21-
defect
dataset
10 [40] Shawon 2019  Supervised CNN, CAE Detection and X v 8 (Non x v v v X -
etal. Classification WM- excluded)
811k
11 [46] Batool et 2020  Supervised CNN Classification X v 9 v v v X X X
al. WM-
811k
12 [52] Kim, 2020  Supervised CNN Classification X v 13 X X v X X -
Cho and
Lee
13 [66] Du and 2020  Supervised CNN Classification X v 8(Non x X X X X -
Shi WM- excluded)
811K
14 [44] Shimet 2020  Supervised CNN Classification X v 9 - - - - - v
al. WM-
811k
15 [48] Shih, Supervised CNN, Resnet  Classification X v 10 X v X v X -
Hsu,and 2020 34, MLP
Tien
16 [49] Saglain, 2020  Supervised CNN Classification X v 9 v v X v X -
Abbas, WM-
and Lee 811k
17 [53] Alawich, 2020  Supervised CNN, CAE Classification v WM- 9 X v X v X -
Boning (data 811k
and Pan generation)
18 [58] Jiand 2020  Supervised CNN, GAN Classification v v 10 X v X v X -
Lee WM-811k
19 [61] Kang 2020 Supervised CNN Classification X v 9 - v - - - -
WM-811k
20 [62] Batool et 2020  Supervised CNN Classification X v 9 v v X v X -
al. WM-811k
21 [56] Chien, 2020  Supervised CNN And Classification X v 4 X X X X X -
‘Wu, and Faster RCNN
Lee

four basic types. Synthetic data were used for model training
and testing. However, only six real wafers were employed
for testing, a significantly small set for a thorough model
evaluation. The system was not equipped with a feature to
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return the count of defects if the same defect appeared mul-
tiple times on a wafer. The ensemble of models is easier to
adopt for new merging defects and addresses class imbalance,
but it means putting more than the required resources for
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the task. Taking this into account, Devika and George [34]
optimally trained a single CNN on four basic types of sin-
gle defect patterns that could detect combinations of the
basic types. For each defect type of the real dataset, more
images were generated by drawing patterns in paint that is
a very naive approach for such a sensitive task. Also, they
did not provide a comparison of their model against any
benchmark.

To classify multi-defect wafers with overlapping and non-
overlapping patterns, Kong and Ni [32] presented a multi-
step system. First, they employed a binary CNN to classify
wafers with overlapping and non-overlapping patterns. The
wafer maps with a single pattern or non-overlapping mixed-
type pattern were segmented into single pattern maps through
a seed filling algorithm and then classified by a CNN. Then,
overlapped patterns were classified by a primitive template
matching technique. Their subsequent work [60] investigated
more potential ways by employing UNet and CNN in the clas-
sification system to locate and segment the patterned groups.
Overlapping patterns were unwrapped and segmented into
single patterns and then classified. A real dataset with seven
classes of single patterns was used for model evaluation.
The superimposition of single patterns generated new multi-
pattern types. The combination of UNet (for defect boundary
segmentation) with CNN (for classification) improved the
overall system performance.

Some studies introduced variations in the standard CNN
architecture. Byun and Baek [45] used a CAE to initialize
CNN weights. The model was trained on single-type defect
map data and tested on the combination of single and mixed
type patterns. In testing, defect categories were distinguished
based on their probability and a threshold value. Eight classes
from the WM-811k were used as the primary single defect
types, excluding the non-pattern class. Five new classes of
mixed defects were produced by mixing center, scratch, edge-
loc, and edge-ring patterns. The model performed well for
single defects but not for the mixed types. Hyun and Kim [54]
proposed a memory-augmented CNN with triplet loss for
highly imbalanced WBM data comprising mixed-type defect
patterns. Rather than a classifier, CNN trained by triple loss
acted as an embedding function to map high dimensional
WBMs to low dimensional. For class imbalance manage-
ment, a key-value memory module fixed the same amount
of memory for each class. The model was evaluated on the
synthetic dataset of 16 classes; one non-pattern, four sin-
gle and eleven mixed types with different levels of imbal-
ance, and train/test configuration. Wang et al. [59] proposed
a deformable convolutional network for mixed-type defect
patterns by selectively sampling and extracting high-quality
features from mixed wafer defects. They also introduced a
public domain dataset “MixedWM38”’, having 38 types of
wafer maps. Zhuang et al. [51] employed a deep belief net-
work (DBN), investigating hybrid learning for the task. They
trained an ensemble of six DBNs for six classes of defects
in the real wafer map data and tested it on the wafers having
single and mixed type defects. Lee and Kim [63] presented a
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semi-supervised deep convolutional generative model using
labeled and non-labeled data.

This section provided a review of the literature on
multi-defect wafer map classification. Several articles have
addressed the multi-defects problem, employing CNN in
some way. Standalone CNN, an ensemble of CNN, CNN
with variations and combined with other algorithms. Real
and synthetic, both sorts of data were employed for model
training and validation. Since multi-defects are less frequent
than single defects in the real data, multi-defect wafer maps
were generated for system evaluation in almost every work.
Many researchers generated balanced training sets, and less
attention has been paid to address the imbalanced nature of
the data. Furthermore, the scope of the studies was limited
to find a maximum of two defects on a wafer, which is not
a realistic approach. A model should be more generalized in
identifying all defect patterns on a wafer and should report if
multiple defects of the same type are present on a wafer map.
Table 5 shows a summary of the findings in this section.

¢: PRE-DEFINED CNN AND TRANSFER LEARNING

Designing a well-suited CNN and training it for a specific
task requires a certain level of expertise. Network train-
ing is resource-intensive; demanding time, computational
resources, and a large training dataset. Pre-defined standard
networks are a solution to the problem. They offer ease
of use and a confidence level in the network architecture.
Furthermore, adopting pre-trained networks through transfer
learning is a less resource-intensive way of having a trained
model than training a new model from scratch. In this section,
we review the literature on pre-defined and pre-trained net-
works for wafer map defect recognition.

Ishida et al. [31] compared VGG, AlexNet, and
GoogleNet, suggesting data augmentation with noise reduc-
tion to achieve higher recognition rates. Among the three
models, VGG performed best for the underlying data. They
applied Hough transformation for denoising random defect
patterns on greyscale wafer images during the data prepara-
tion phase. Then, the clearer images went through rotation
and flipping, producing variations of the quality images and
thus augmenting the data with better object instances. The
training benchmark dataset WM-811K contained nine defect
classes, but the deep network was trained as a binary clas-
sifier for a single target pattern only. All other images were
considered belonging to the non-target class. A cost function
was also employed for imbalance addressing, assigning a
weighted cost to the target class samples in the backprop-
agation phase of the learning algorithm. The weighted cost
was proportional to the class imbalance ratio, i.e., the ratio of
the target and non-target class sizes. In all the cited literature,
this is the only work addressing imbalance by a cost-sensitive
network; an idea that is worth investigating more. Hsu and
Chien [64] presented an end-to-end ensemble model of
LeNet, AlexNet, and Googl.eNet for WM-811k. A weighted
majority function was employed for prediction output, giving
more weightage to high performing base model.
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TABLE 5. Literature on multi-label defect classification.

No Ref.  Authors Year Learning Model/Method Problem Real (Classes) Synthetic Imbalance
Method (Classes) Control
1 [26]  Tello et al. 2018 Supervised = CNN, RGRN, IG Classification v o v X
2 [27]  Kyeong and Kim 2018  Supervised = CNN ensemble Classification )] v (16) v
3 [34]  Devika and George 2019  Supervised ~CNN Classification v (4) v -
4 [32] Kong and Ni 2019  Supervised  CNN, seed filling, Classification v' 2 datasets v -
pattern matching 31x31(12), 31x31(5),
38x38 (9) 38x38 (5)
5 [60] Kong and Ni 2020  Supervised  CNN, Classification v (7) v 8 -
Unet (Boundary
detection)
6 [45]  Byun and Back 2020 Supervised CNN, CAE (weight  Classification ~ v*  (8) v X
initialization) WM-811k
7 [54] Hyun and Kim 2020  Supervised  CNN (mapping Classification v (4) v (16) yes
function)
8 [59] Wangetal 2020  Supervised  Deformable CNN Classification v (38) v (38) yes
9 [51]  Zhuang et al. 2020  Hybrid DBN Classification v (6) X -
10 [63] Leeand Kim 2020  Hybrid CNN Classification v (4) voo(16) x

Maksim et al. [36] selected VGG-19, ResNet-34, ResNet-
50, and MobileNetV2 for comparison and demonstrated their
capabilities for wafer defect classification. To overcome the
scarcity of real data, they used synthetic data along with
the original. The generated images were based on six defect
classes of WM-811k. Models were first pre-trained and
validated on the synthetic images and then trained again
on composite data of real and synthetic images, but only
real images were used for testing. Trained in this manner,
RestNet-50 stood out to be the best among all the comparing
networks. Shih et al. [48] employed ResNet-34 to experiment
with reclaimed wafers defect classification. Cha et al. [65]
used Xception model for wafer defect classification and a
CAE to generate more images, solving the imbalanced issue
of WM-811k.

There are only a few studies on transfer learning. Shen and
Yu [41] employed DenseNet169 with and without transfer
learning and found transfer learning a better approach than
the only pre-defined model. The DenseNet169 was originally
trained on the Imagenet dataset. Their work demonstrated that
transfer learning is a faster and more accurate way of wafer
map defect classification. Chien et al. [56] compared faster-
R-CNN pre-trained on COCO and KITTTI datasets and found
the KITTTI pre-trained model better than the other. A balanced
data from the four classes of WM-811K was selected for
model retraining.

Park et al. [47] presented an unsupervised clustering
method for wafer defects, employing a Siamese network
for feature learning. The main objective of their work was
to reduce the uncertainty in the manual labeling of defect
classes. Their class label reconstruction method was based
on discriminative feature learning of the Siamese network,
repeated cross-learning of the class label reconstruction, and
Gaussian means (G-means) clustering. The method was ver-
ified on WM-811k and discovered new defect types in the
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data which were not known previously when only the manual
labeling by engineers was in effect.

This section has reviewed the work employing pre-trained
CNN and transfer learning for wafer map defects. The promi-
nent networks cited in the literature are ResNet, AlexNet,
GoogLeNet, and LeNet. It has been noticed that transfer
learning from standard datasets in other domains to wafer
defects data provides better results. Table 6 shows a summary
of the findings in this section.

2) GENERATIVE ADVERSARIAL NETWORK (GAN)

GAN is a hybrid deep architecture, consisting on ‘generator’
and ‘discriminator’ components. It is well-known for data
generation features, but it has not been used much for silicon
wafer defects. Only two studies investigated GAN for wafer
defect classification and data generation. Wang et al. [35]
presented an adaptive balancing generative network (AdaBal-
GAN) solving class imbalance, simultaneously performing
data generation and classification. Ji and Lee [58] demon-
strated the performance of CNN on multiple datasets gener-
ated by GAN, classical augmentation, and their combination.
The model performed better on the data produced by GAN
compared to the classical augmentation. Table 7. lists the
publications on GAN.

3) AUTO_ENCODER (AE)

Several AE types have been employed for various tasks in
wafer defect recognition; feature learning, defect segmen-
tation, clustering, and classification. Tulala et al. [28] used
variational autoencoders for feature extraction from the wafer
map patterns. On the resultant feature set, k-means cluster-
ing was applied to divide wafer maps into disjoint clusters.
Yu et al. [33] used stacked convolutional sparse denoising
auto-encoders (SCSDAE) for effective feature learning from
simulated and real data, employing sampling methods for
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TABLE 6. Literature on pre-defined and pre-trained CNN.

No. Ref.  Authors Year  Learning Model Problem Data No. of Augmentation Imbalance Management
Method Solved Synthetic Real Classes  Robust Data Under- Over- Weighted Others
Training  Generation  Samplin; sampling  Cost
1 [31]  Ishida et al. 2019  Supervised VGG, Classification  x v 9 X v X v v X
AlexNet, and
GoogLeNet
2 [64] Hsuand Chien 2020  Supervised Ensemble of Classification X v 9 X X X X X v
LeNet, WM-811k
AlexNet, and
GoogLeNet
3 [36]  Maksim et al. 2019  Supervised ResNet-50 Classification v v 6 X X X v X X
4 [48]  Shih,Hsuand 2020  Supervised CNN, Resnet  Classification X v 10 X v X v X X
Tien 34, MLP
5 [65] Chaeral 2020  Supervised Xception, Classification X v 9 X v X v X X
CAE (data WM-811k
generation)
6 [41] Shen and Yu 2020  Supervised and  DenseNet169  Classification X v 9 X X X X X X
Transfer WM-811k
7 [56] Chien, Wu, 2020  Supervised and  CNN, and Classification X v 4 - -
and Lee Transfer Faster RCNN
8 [47]  Park,Jangand 2020  Unsupervised Siamese Uncertain class v 9 - v X v X X
Kim network label WM-811k
(discriminati reconstruction
ve features),
G-means
clustering
TABLE 7. Literature on generative adversarial network (GAN).
No. Reference  Authors Year Learning Model Problem Data No. of Augmentation Imbalance Management
Method Solved Classes
Synthetic Real Robust Data Under- Over- Weighted
Training  Generation Sampling sampling  Cost
1 [35] Wangetal. 2019 Hybrid GAN Classification v 9 X X X v X
WM-811k
2 [58] Jiand Lee 2020 Supervised CNN, GAN  Classification v 10 X v X v X
WM-811k

imbalance mitigation. Extensive experimentations demon-
strated the model’s effectiveness on various data composi-
tions. Yu [39] combined stacked denoising auto-encoders
and manifold regularization for robust feature learning
capabilities. Hwang and Kim [50] implemented a variational
autoencoder with Gaussian mixture distribution to extract
more suitable features for clustering. A Dirichlet process was
further applied for automated one-step clustering. Address-
ing class imbalance and classification, Yu and Liu [57]
proposed a two-dimensional principal component analysis-
based convolutional auto-encoder (PCACAE) for wafer map
defect recognition. Unsupervised AE was combined with
conditional two-dimensional principal component analysis
(C2DPCA) for feature extraction. The framework was com-
pared with other deep neural networks in terms of accuracy
and per iteration training time. The performance was better,
especially for the small classes.

Nakazawa and Kulkarni [29] presented SegNet, U-Net, and
FCN based autoencoders for detection and segmentation of
abnormal wafer map defect patterns. SegNet and U-net based
networks showed similar training accuracy, while FCN based
architecture performed lower than them.

AE has also been used in wafer defect labeling.
Kong and Ni [42] introduced semisupervised and active
learning in wafer defect classification to facilitate wafer
map labeling. They studied two semisupervised models;
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the Ladder network and the semisupervised variational
autoencoder (SVAE). Active learning and pseudo labeling
were adopted for incremental modeling. Comparison with a
standard CNN on two real datasets showed the superiority
of SVAE over the ladder network and the standard CNN.
However, there is a need to experiment with other semisu-
pervised models and different CNN architectures in this area.
A summary of the AE publications has been provided
in Table 8.

4) CRITICAL SUMMARY OF THE RQ2 FINDINGS

A recap of RQ2 shows CNN, GAN, and AE are the principal
components of any deep framework for wafer map defect
recognition. CNN has been the most dominantly used net-
work for classification. Network architectures were designed
to address the needs of the specific datasets of wafer defect
maps. Datasets vary in their types of defects, the number
of defect classes, and class sizes. Also, no standard con-
vention for defect names has been followed in the industry.
Accessibility of data is also an issue. So, every study tried to
come up with a solution for the available data. No general-
purpose architecture is possible in this scenario. Usually,
small CNNs with three to eight layers have been employed
with standard convolutional and pooling layers. Some of the
studies experimented with network regularization methods,
batch normalization, and dropout. Pre-defined networks and
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TABLE 8. Literature on auto-encoder (AE).

No. Ref. Authors Year  Learning Model Problem Solved Data No. of Augmentation Imbalance Management
Method Classes
Synthetic Real Robust Data Under- Over- Weight
Training  Generation ~ Sampling  sampling ed Cost
1 [28] Tulala et al. 2018 Unsupervised ~ Variational Autoencoders  Clustering, X v 8 - - -
(VAE), K-means Feature extraction
2 [33] Yu, Zheng 2019  Hybrid Stacked Convolutional Classification v v 9 X X v v X
and Liu Sparse Denoising Auto- WM-811k
encoders
3 [39] Yu 2019 Unsupervised Stacked denoising Auto- Classification X v 8 X X X X v
encoders and Manifold WM-811k
regularization
4 [50] Hwang and 2020  Unsupervised Gaussian model, Clustering X v - -
Kim variational autoencoder,
Dirichlet
5 [57] Yu and Liu 2020 Hybrid (Semi-  Two dimensional Classification X v 9 - - -
supervised) Principal Component WM-811k
Analysis Convolutional
Auto-Encoder
(PCACAE)
6 [29] Nakazawa 2019  Unsupervised ~ CAE Detection and v v - - - -
and Kulkarni segmentation (Only for
testing)
7 [42] Kongand Ni 2020  Hybrid (Semi- ~ SVAE, Ladder network Classification, X v 22
supervised) Labeling (2 real)
TABLE 9. Network architectures.
Model Type Task References
CNN Custom-made Single defect classification [23], [24], [25], [30], [37], [38], [40], [42], [44], [46], [48], [49], [52], [53], [55], [56], [58], [61], [62], [66]
Multi-label defect classification  [26], [27], [32], [34], [45], [51], [54], [59], [60], [63]
Feature Extraction [43]
Pre-defined Single defect classification [31], [36], [41], [47], [48], [56], [58], [64] [59], [60], [61], [62], [64], [65], [66]
GAN Advanced Balancing Single defect classification [35]
Standard GAN Single defect classification [58]
AE Stacked Convolutional Sparse Denoising Single defect classification [33]
Variational Feature extraction [28], [50]
Semi-supervised Variational Single defect classification [42]
Stacked denoising Single defect classification [39]
Convolutional Single defect classification [57]

transfer learning have also been practiced. GAN has been
used for data synthesis and classification. AE has been used
for CNN weights initialization, features extraction, classifi-
cation, clustering, and data synthesis. The combination of
these architectures has also been investigated. However, there
is still a need to experiment with network configurations,
investigating the effects of the cost function, learning rate,
and other network parameters. Also, there is a lack of defect
monitoring systems tested in real environments and verified
by domain experts. A summary of the architectures and ref-
erences cited in answering RQ2 is presented in Table 9.

C. WHAT WAS THE NATURE OF THE DATA USED FOR THE
NETWORK TRAINING AND TESTING?

A review of the sources and types of the wafer map defect
data for the deep network training and evaluation has been
given below:

1) REAL AND SYNTHETIC DATA

Two types of datasets have been employed for the deep model
evaluation; real and synthetic. Since real defect data from
fab is not accessible, most researchers build their models
on the public domain data or artificially synthesized dataset.
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Public domain or open-source datasets act as a benchmark in
model comparison. Synthetic data are frequent, especially for
multi-defect applications where the real dataset lacks wafers
with multiple defects.

2) DATA AUGMENTATION

Various ways of data synthesis have been followed for gener-
ating wafer maps. In some cases, defect maps were produced
from scratch by statistical methods, following the probability
distribution algorithms. In others, newly generated images
were based on the actual wafer map images, created by
following the data augmentation techniques. The primary
purpose of data augmentation has been twofold; balancing
class distribution in the real data and generating a more com-
prehensive training set, reducing overfitting, and producing a
more generalized model.

3) IMBALANCE ADDRESSING STRATEGY

Wafer map data is imbalanced by nature; non-pattern class
carries maximum instances, and defect classes have vari-
able frequencies. Therefore, consistent use of data-level
imbalance addressing methods has been observed in the
preprocessing phase. The reason may be their ease of
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TABLE 10. Summary of learning outcomes in RQs 1, 2, and 3.

No. Ref. Learning Model Problem Solved Data No. of Classes Augmentation Imbalance
Method Management
Real / Synthetic Robust Training/  Under-
Data generation sampling /
Oversampling /
Weighted cost /
Others
1 [23] Supervised CNN Auto disposition - - - -
2 [24] Supervised CNN Yield Real - - 4
enhancement
monitoring
3 [25] Supervised ~ CNN Classification Real (Private) 22 X v
and Retrieval, Synthetic
rare event (Private)
detection
4 [30] Supervised NN, CNN Bin Coloring, Real (private) - - 4
Classification
5 [37] Supervised ~ CNN and Classification Real (WM-811k) 9 Robust Training v
PCA and root cause
analysis
6 [42] Hybrid CNN Classification, 2 Real (Private) 22 - 4
(Semi- Ladder Labeling
supervised)  network,
autoencoder
7 [43] Supervised CNN- Classification Real (WM-811k) 8 (Near-full X Under-
ECOC-SVM excluded) sampling +
5 Oversampling
<
5; 8 [38] Supervised Submanifold  Classification (12,9) Data generation Under-sampling (12,9)
g Sparse ' + Oversampling
) Convolution
5 al Network
=
o) (SSCN),
< CNN
.‘_% 9 [55] Supervised CNN, Classification Real (WM-811k) 9,21 Robust training X
5 CAE Real (Private-21- and Data
2 defect dataset) generation
w2
b
< 10 [40] Supervised ~ CNN, CAE Detection and Real (WM-811k) 8 (Non-pattern Data generation Under-
% Classification excluded) sampling +
S Oversampling
<
g 11 [46] Supervised ~ CNN Classification Real (WM-811k) 9 Robust training Under-
g and Data sampling
2 generation
&)
12 [52] Supervised CNN Classification Real (Private) 13 X Under-
sampling
13 [66] Supervised ~ CNN Classification Real (WM-811k) 8 (Non excluded)  x X
14 [44] Supervised CNN Classification Real (WM-811k) 9 - 4
15 [48] Supervised ~ CNN, Resnet  Classification Real (Private) 10 Data generation Oversampling
34, MLP
16 [49] Supervised CNN Classification Real (WM-811k) 9 Robust training Oversampling
and Data
generation
17 [53] Supervised ~ CNN, CAE Classification Real (WM-811k) 9 Data generation Oversampling
(data
generation)
18 [58] Supervised ~ CNN, GAN Classification Real (WM-811k) 10 Data generation Oversampling

Synthetic
(Private)
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TABLE 10. (Continued.) Summary of learning outcomes in RQs 1, 2, and 3.

No. Ref. Learning Model Problem Solved Data No. of Classes Augmentation Imbalance
Method Management
Real / Synthetic Robust Training ~ Under-
/ Data generation ~ sampling /
Oversampling
/ Weighted
cost / Others
19 [61] Supervised ~ CNN Classification Real (WM-811k) 9 Data generation -
20 [62] Supervised ~ CNN Classification Real (WM-811k) 9 Robust training Oversampling
and Data
generation
21 [56] Supervised ~ CNN And Classification Real (Private) 4 X X
Faster
RCNN
1 [26] Supervised ~ CNN, Classification Real and 7 - -
RGRN, IG Synthetic
2 [27] Supervised ~ CNN Classification Real and (4, 16) - v
ensemble Synthetic
3 [34] Supervised ~ CNN Classification Real and 4 - -
Synthetic
g 4 [32] Supervised ~ CNN, seed Classification Real and (12,5),(9,5) - -
g filling, Synthetic (2
= pattern datasets)
§ matching
S 5 [60] Supervised ~ CNN Classification Real and (7, 8) - -
3 Unet synthetic
E (Boundary
< detection)
g 6 [45] Supervised  CNN, CAE Classification Real and 8,5) - -
= for weight Synthetic (WM-
é initialization 811k)
5 7 [54] Supervised ~ CNN Classification Real and (4, 16) - v
; (mapping Synthetic
Z function)
© 3 [59] Supervised ~ Deformable Classification Real and 38 - v
CNN Synthetic
9 [51] Hybrid DBN Classification Real 6 - -
10 [63] Hybrid CNN Classification Real and (4, 16) - -
(Semi- Synthetic
supervised)
1 [31] Supervised VGG, Classification Real (Private) 9 Data generation Oversampling
AlexNet, and and weighted
GoogLeNet cost
2
§ 2 [64] Supervised  Ensemble of  Classification Real (WM-811k) 9 X X
L: LeNet,
'*E AlexNet, and
§ GooglLeNet
5
§ 3 [36] Supervised ~ ResNet-50 Classification Real (Private) 6 X Oversampling
Z Synthetic
O (Private)
—02 4 [48] Supervised ~ CNN, Resnet  Classification Real (Private) 10 Data generation Oversampling
£ 34, MLP
'E 5 [65] Supervised ~ Xception, Classification Real (WM-811k) 9 Data generation Oversampling
& CAE (data
generation)
6 [41] Supervised ~ DenseNetl6  Classification Real (WM-811k) 9 X X
and 9
Transfer
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TABLE 10. (Continued.) Summary of learning outcomes in RQs 1, 2, and 3.

No. Ref.

Learning
Method

Model

Problem Solved

Data

Real / Synthetic

No. of Classes

Augmentation

Robust Training /
Data generation

Imbalance
Management

Under-
sampling /
Oversampling
/ Weighted
cost / Others

7 [56]

8 [47]

1 [35]

GAN

2 [58]

1 [28]

2 [33]

3 [39]

S84 [50]

5 [57]

6 [29]

7 [42]

Supervised
and Transfer

Unsupervised

Hybrid

Supervised

Unsupervised

Hybrid

Unsupervised

Unsupervised

Hybrid
(Semi-
supervised)

Unsupervised

Hybrid
(Semi-
supervised)

CNN, and
Faster
RCNN

Siamese
network
(discriminati
ve features),
G-means
clustering

GAN

CNN, GAN

Variational
Autoencoder
s (VAE), K-
means
Stacked
Convolution
al Sparse
Denoising
Auto-
encoders

Stacked
denoising
Auto-
encoders and
Manifold
regularizatio
n

Gaussian
model,
variational
autoencoder,
Dirichlet
Two
dimensional
Principal
Component
Analysis
Convolution
al Auto-
Encoder
(PCACAE)
CAE

SVAE,
Ladder
network

Classification

Uncertain class
label
reconstruction

Classification

Classification

Clustering,
Feature
extraction

Classification

Classification

Clustering

Classification

Detection and
segmentation

Classification,
Labeling

Real (Private)

Real (WM-811k)

Real (WM-811k)

Real (WM-811k)

Real (Private)

Real (WM-811k)
Synthetic
(Private)

Real (WM-811Kk)

Real (Private)

Real (WM-811k)

Synthetic
(Private)

Real (Private-
testing only)

2 Real (Private)

10

Data generation

X

Data generation

Oversampling

Oversampling

Oversampling

Undersamplin
gand
Oversampling

Weighted cost
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Deep Learning for Wafer Map Defect Recognition

Learning
Algorithms

Applications

Deep
Networks

Challenges

FIGURE 8. A summary of the algorithms, networks, applications and challenges of deep learning for

wafer map defect recognition.

TABLE 11. Challenges and solutions.

Challenge Solution Reference

Unavailability of Synthetically [25], [26], [27], [33], [34],

real data generated data [36], [45], [59]

Lack of Labeled Clustering, Semi [281, [42], [44], [54], [57]

data / limitations of ~ supervised

manual labeling learning

Imbalance class imbalance [311, [33], [35], [36], [39],

distribution addressing [43], [44], [46], [49], [55],
mechanism [58],[62]

Multiple defect Multi-label [26], [27], [34], [45], [59]

patterns on a single  classification

wafer

The emergence of
new defect patterns

Anomaly
detection and
selective learning

[29], [53]

implementation as compared to the algorithmic-level imbal-
ance handling strategies. Also, it is customary to generate
more data by augmentation as deep networks like abundance
of training data. So, it is a natural tendency to opt for over-
sampling for class equalization and robust training.

D. LEARNING OUTCOMES FROM THE RQs

A review of the RQs shows that deep learning has made
a strong presence in silicon wafer defect recognition in a
short span of only four years. A massive volume of research
covering all aspects of defect pattern recognition with deep
learning has been contributed. We see simple feature extrac-
tors, small binary class detectors and complex classifiers,
a combination of various architectures, and learning algo-
rithms. Table 10. summarizes the learning outcomes from the
RQs 1, 2 and 3.

E. GENERAL DISCUSSION ON ADDRESSING THE SPECIFIC
ISSUES

Table 11. lists the challenges tried to be solved by the stud-
ies presented in this review. On the top of the list is the
unavailability of real data for research and development. Lack
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of labeled data because of the limitations of manual data
labeling is also a hurdle. Imbalanced class distribution of real
data is a major issue that needs to be solved while working
with defect data. Identification of multiple defect patterns
on a single wafer and the emergence of new defect patterns
that were unknown at the model training time are also big
challenges for the researchers.

V. CONCLUSION AND FUTURE RECOMMENDATIONS

We conclude this SLR by summarizing the findings and
giving some future directions. A complete picture of what has
been learnt so far is shown in Fig. 8. It shows the learning
algorithms, network types, applications of deep learning for
wafer map defects, and the major challenges in this field.

A. CONCLUSION

The publications included in this SLR have employed various
deep learning algorithms and architectures, depending on the
scope of the research and the availability of data. Every paper
investigated some aspects of the wafer defect recognition
with deep learning. Alongside the general issues of classi-
fication and clustering, more specific issues of class imbal-
ance, instance labeling, data synthesis, and feature extraction
have been addressed. We see a range of learning algorithms,
including supervised learning, unsupervised learning, and
hybrid learning. The types of deep networks and architectures
comprise CNN, GAN, and various kinds of AEs. The use
of pre-trained networks through transfer learning has also
been explored widely. Some of the studies investigated the
combination of multiple deep algorithms and other machine
learning techniques.

The choice of a particular method has been subjected to the
availability of the data and the research objectives. Some of
the models have been used more than others. We observed
that CNN is the most preferred deep network. However,
the frequent use does not mean that it is the best choice for
the task, as in some cases, other architectures like AE and
GAN applied for the problem performed better than CNN.
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The fusion of deep algorithms with other machine learning
and image processing techniques was also promising.

We believe this SLR will pave the way for further research
on developing more effective solutions for the wafer map
defect-recognition problem. There is a need for more accurate
frameworks able to be applied in actual industrial setups.

In our future work, we aim to build on the outcomes of this
study, focusing on designing deep classifiers for wafer map
defects taking into account the class imbalance of the data.

B. FUTURE DIRECTIONS AND RECOMMENDATIONS
Based on the findings of this SLR, following directions
should be focused for further contribution to the field:

1) Providing real data for the research purpose. Accu-
rately labeled defect data for deep network training is
a must for exact feature learning. The industry should
take a step forward, engaging more collaborations from
academia.

2) Producing synthetic data similar to the real defect pat-
terns. The artificial wafers should reflect more realistic
trends of class sizes and defects morphology to develop
more effective models to handle the real data.

3) More imbalance management methods should be
examined, for example, algorithmic level methods,
cost-sensitive networks, and new cost functions.

4) More attention should be given to evaluate network
parameters; number of layers, activation and loss func-
tions, kernel and stride size, and regularization meth-
ods.

5) Fusion of networks and transfer learning have shown
better performance and need to be investigated more.

6) More accurate defect identification systems. The
accuracy of the defect learning networks should be
improved in working conditions to allow real-time
identification.

7) Reduction in the computational burden. Efficient learn-
ing algorithms should be developed to reduce training
time, memory, and processing resources.

REFERENCES

[1] T.Zanni, L. Clark, C. Gentle, S. Lohokare, and S. Jones, ‘“Semiconductors:
As the backbone of the connected world, the industry’ s future is bright,”
in Proc. 14th Annu. Global Semiconductor Outlook Rep. (KMPG), 2019,
pp. 1-24.

[2] Semiconductors—The Next Wave, Opportunities and Winning Strategies
for Semiconductor Companies, Deloitte, New York, NY, USA, 2019.

[3] L. Milor, “A survey of yield modeling and yield enhancement methods,”
IEEE Trans. Semicond. Manuf., vol. 26, no. 2, pp. 196-213, May 2013.

[4] J.-S.Kim, S.-J. Jang, T.-W. Kim, H.-J. Lee, and J.-B. Lee, ““A productivity-
oriented wafer map optimization using yield model based on machine
learning,” IEEE Trans. Semicond. Manuf., vol. 32, no. 1, pp.39-47,
Feb. 2019.

[S] T. Yuan, W. Kuo, and S. J. Bae, “Detection of spatial defect patterns
generated in semiconductor fabrication processes,” IEEE Trans. Semicond.
Manuf., vol. 24, no. 3, pp. 392-403, Aug. 2011.

[6] C.-W.Liuand C.-F. Chien, “An intelligent system for wafer bin map defect
diagnosis: An empirical study for semiconductor manufacturing,” Eng.
Appl. Artif. Intell., vol. 26, nos. 5-6, pp. 1479-1486, May 2013.

[71 Y. S. Jeong, S. J. Kim, and M. K. Jeong, “Automatic identification of
defect patterns in semiconductor wafer maps using spatial correlogram and
dynamic time warping,” IEEE Trans. Semicond. Manuf., vol. 21, no. 4,
pp. 625-637, Nov. 2008.

VOLUME 9, 2021

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

L. Monch, J. W. Fowler, and S. Mason, Production Planning and Control
for Semiconductor Wafer Fabrication Facilities: Modeling, Analysis, and
Systems, vol. 52. New York, NY, USA: Springer, 2012. [Online]. Available:
https://www.springer.com/gp/book/9781461444718

C.-Y. Hsu, W.-J. Chen, and J.-C. Chien, “Similarity matching of wafer
bin maps for manufacturing intelligence to empower industry 3.5 for
semiconductor manufacturing,” Comput. Ind. Eng., vol. 142, Apr. 2020,
Art. no. 106358.

S.-H. Huang and Y.-C. Pan, “Automated visual inspection in the semicon-
ductor industry: A survey,” Comput. Ind., vol. 66, pp. 1-10, Jan. 2015.

A. R. Mickelson, Defect Recognition and Image Processing in Semi-
conductors 1995. USA, 1996. [Online]. Available: https://www.osti.gov/
biblio/405505-defect-recognition-image-processing-semiconductors

J. Doneker and I. Rechenberg. (1998). Defect Recognition and Image
Processing in Semiconductors 1997: Proceedings of the Seventh
International Conference on Defect Recognition and Image Processing in
Semiconductors (DRIP VII). Accessed: May 9, 2021. [Online]. Available:
https://books.google.com.pk/books?hl=en&lr=&id=ymeS 1HIt1 Y YC&oi
=fnd&pg=PR3&dq=Defect+recognition+and+image+processing+in+
semiconductors+1995&ots=UoRqWbHZbh&sig=IQNm8So0A52-
x1RSYm_jOh88z82Q#v=onepage&q=Defectrecognition and image
processing in semiconductor

F. Adly, P. D. Yoo, S. Muhaidat, and Y. Al-Hammadi, “Machine-learning-
based identification of defect patterns in semiconductor wafer maps:
An overview and proposal,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPS), May 2014, pp. 420-429.

S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey of deep
learning and its applications: A new paradigm to machine learning,” Arch.
Comput. Methods Eng., vol. 27, no. 4, pp. 1071-1092, Sep. 2020.

P. Chung and S. Y. Sohn, “Early detection of valuable patents using a deep
learning model: Case of semiconductor industry,” Technol. Forecasting
Social Change, vol. 158, Sep. 2020, Art. no. 120146.

H. Kim, D.-E. Lim, and S. Lee, “Deep learning-based dynamic schedul-
ing for semiconductor manufacturing with high uncertainty of automated
material handling system capability,” IEEE Trans. Semicond. Manuf.,
vol. 33, no. 1, pp. 13-22, Feb. 2020.

F. Beuth, T. Schlosser, M. Friedrich, and D. Kowerko, “Improving auto-
mated visual fault detection by combining a biologically plausible model
of visual attention with deep learning,” in Proc. 46th Annu. Conf. IEEE
Ind. Electron. Soc. (IECON), Oct. 2020, pp. 5323-5330.

S. Gupta and A. Gupta, “Dealing with noise problem in machine learn-
ing data-sets: A systematic review,” Procedia Comput. Sci., vol. 161,
pp. 466—474, Jan. 2019.

M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,
and E. Muharemagic, “Deep learning applications and challenges in big
data analytics,” J. Big Data, vol. 2, no. 1, p. 1, Dec. 2015.

S. Keele, “Guidelines for performing systematic literature reviews
in software engineering,” Keele Univ., Durham Univ. Joint Rep.,
U.K., Tech. Rep. EBSE-2007-01, 2007. [Online]. Available: https://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.471&rep=rep1 &
type=pdf and https://www.bibsonomy.org/bibtex/aed0229656ada843d3e3
f24e5e5¢c9eb9

B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in software
engineering—A tertiary study,” Inf. Softw. Technol., vol. 52, no. 8,
pp. 792-805, 2010, doi: 10.1016/j.infsof.2010.03.006.

D. Mobher, A. Liberati, J. Tetzlaff, and D. G. Altman, ‘“‘Preferred reporting
items for systematic reviews and meta-analyses: The PRISMA statement,”
PLoS Med., vol. 6, no. 7, Jul. 2009, Art. no. e1000097.

J. Lin, J. E. Kung, P. Cheng, A. Hwu, C. T. Wang, and Y. B. Hsu, ‘“Wafer
pattern classification and auto disposition by machine learning,” in Proc.
Joint Int. Symp. e-Manuf. Design Collaboration (eMDC) Semiconductor
Manuf. (ISSM), 2017, pp. 3-5.

K. Nakata, R. Orihara, Y. Mizuoka, and K. Takagi, “A comprehensive
big-data-based monitoring system for yield enhancement in semicon-
ductor manufacturing,” IEEE Trans. Semicond. Manuf., vol. 30, no. 4,
pp. 339-344, Nov. 2017.

T. Nakazawa and D. V. Kulkarni, *“Wafer map defect pattern classification
and image retrieval using convolutional neural network,” IEEE Trans.
Semicond. Manuf., vol. 31, no. 2, pp. 309-314, May 2018.

G. Tello, O. Y. Al-Jarrah, P. D. Yoo, Y. Al-Hammadi, S. Muhaidat, and
U. Lee, “Deep-structured machine learning model for the recognition
of mixed-defect patterns in semiconductor fabrication processes,” IEEE
Trans. Semicond. Manuf., vol. 31, no. 2, pp. 315-322, May 2018.

116591


http://dx.doi.org/10.1016/j.infsof.2010.03.006

IEEE Access

U. Batool et al.: Systematic Review of Deep Learning for Silicon Wafer Defect Recognition

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

K. Kyeong and H. Kim, “Classification of mixed-type defect patterns
in wafer bin maps using convolutional neural networks,” IEEE Trans.
Semicond. Manuf., vol. 31, no. 3, pp. 395402, Aug. 2018.

P. Tulala, H. Mahyar, E. Ghalebi, and R. Grosu, “Unsupervised wafermap
patterns clustering via variational autoencoders,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2018, pp. 1-8.

T. Nakazawa and D. V. Kulkarni, ““Anomaly detection and segmentation
for wafer defect patterns using deep convolutional encoder—decoder neu-
ral network architectures in semiconductor manufacturing,” IEEE Trans.
Semicond. Manuf., vol. 32, no. 2, pp. 250-256, May 2019.

J. Kim, H. Kim, J. Park, K. Mo, and P. Kang, “Bin2Vec: A better wafer
bin map coloring scheme for comprehensible visualization and effective
bad wafer classification,” Appl. Sci., vol. 9, no. 3, p. 597, Feb. 2019.

T. Ishida, I. Nitta, D. Fukuda, and Y. Kanazawa, “Deep learning-based
wafer-map failure pattern recognition framework,” in Proc. 20th Int. Symp.
Qual. Electron. Design (ISQED), Mar. 2019, pp. 291-297.

Y. Kong and D. Ni, “Recognition and location of mixed-type patterns in
wafer bin maps,” in Proc. IEEE Int. Conf. Smart Manuf., Ind. Logistics
Eng. (SMILE), Apr. 2019, pp. 4-8.

J. Yu, X. Zheng, and J. Liu, ““Stacked convolutional sparse denoising auto-
encoder for identification of defect patterns in semiconductor wafer map,”
Comput. Ind., vol. 109, pp. 121-133, Aug. 2019.

B. Devika and N. George, ‘“Convolutional neural network for semiconduc-
tor wafer defect detection,” in Proc. 10th Int. Conf. Comput., Commun.
Netw. Technol. (ICCCNT), Jul. 2019, pp. 1-6.

J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T.-K. Chien, “AdaBalGAN:
An improved generative adversarial network with imbalanced learning
for wafer defective pattern recognition,” IEEE Trans. Semicond. Manuf.,
vol. 32, no. 3, pp. 310-319, Aug. 2019.

K. Maksim, B. Kirill, Z. Eduard, G. Nikita, B. Aleksandr, L. Arina,
S. Vladislav, M. Daniil, and K. Nikolay, “Classification of wafer maps
defect based on deep learning methods with small amount of data,” in Proc.
Int. Conf. Eng. Telecommun. (EnT), Nov. 2019, pp. 1-5.

N. Yu, Q. Xu, and H. Wang, ‘““Wafer defect pattern recognition and analysis
based on convolutional neural network,” IEEE Trans. Semicond. Manuf.,
vol. 32, no. 4, pp. 566-573, Nov. 2019.

R. di Bella, D. Carrera, B. Rossi, P. Fragneto, and G. Boracchi, “Wafer
defect map classification using sparse convolutional networks,” in Proc.
Int. Conf. Image Anal. Process., 2019, pp. 125-136.

J. Yu, “Enhanced stacked denoising autoencoder-based feature learning for
recognition of wafer map defects,” IEEE Trans. Semicond. Manuf., vol. 32,
no. 4, pp. 613-624, Nov. 2019.

A. Shawon, M. O. Faruk, M. B. Habib, and A. M. Khan, “Silicon wafer
map defect classification using deep convolutional neural network with
data augmentation,” in Proc. IEEE 5th Int. Conf. Comput. Commun.
(ICCC), Dec. 2019, pp. 1995-1999.

Z. Shen and J. Yu, “Wafer map defect recognition based on deep transfer
learning,” in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage. (IEEM),
Dec. 2019, pp. 1568-1572.

Y. Kong and D. Ni, “A semi-supervised and incremental modeling frame-
work for wafer map classification,” IEEE Trans. Semicond. Manuf.,
vol. 33, no. 1, pp. 62-71, Feb. 2020.

C. H.Jin, H.-J. Kim, Y. Piao, M. Li, and M. Piao, ““Wafer map defect pattern
classification based on convolutional neural network features and error-
correcting output codes,” J. Intell. Manuf., vol. 31, no. 8, pp. 1861-1875,
Dec. 2020.

J. Shim, S. Kang, and S. Cho, “Active learning of convolutional neural
network for cost-effective wafer map pattern classification,” IEEE Trans.
Semicond. Manuf., vol. 33, no. 2, pp. 258-266, May 2020.

Y. Byun and J.-G. Baek, “Mixed pattern recognition methodology on wafer
maps with pre-trained convolutional neural networks,” in Proc. 12th Int.
Conf. Agents Artif. Intell. (ICAART), 2020, pp. 974-979.

U. Batool, M. I. Shapiai, H. Fauzi, and J. X. Fong, “Convolutional neural
network for imbalanced data classification of silicon wafer defects,” in
Proc. 16th IEEE Int. Collogq. Signal Process. Appl. (CSPA), Feb. 2020,
pp. 230-235.

S. Park, J. Jang, and C. O. Kim, “Discriminative feature learning and
cluster-based defect label reconstruction for reducing uncertainty in
wafer bin map labels,” J. Intell. Manuf., vol. 32, no. 1, pp. 251-263,
Jan. 2021.

P.-C. Shih, C.-C. Hsu, and E.-C. Tien, “Automatic reclaimed wafer clas-
sification using deep learning neural networks,” Symmetry, vol. 12, no. 5,
pp. 1-19, 2020.

116592

(49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

(65]

[66]

[67]

M. Saglain, Q. Abbas, and J. Y. Lee, ““A deep convolutional neural network
for wafer defect identification on an imbalanced dataset in semiconductor
manufacturing processes,” IEEE Trans. Semicond. Manuf., vol. 33, no. 3,
pp. 436444, Aug. 2020.

J. Hwang and H. Kim, ““Variational deep clustering of wafer map patterns,”
1EEE Trans. Semicond. Manuf., vol. 33, no. 3, pp. 466475, Aug. 2020.

J. Zhuang, G. Mao, Y. Wang, X. Chen, and Z. Wei, “A neural-network
approach to better diagnosis of defect pattern in wafer bin map,” in Proc.
China Semiconductor Technol. Int. Conf. (CSTIC), Jun. 2020, pp. 1-3.

Y. Kim, D. Cho, and J.-H. Lee, ‘““Wafer map classifier using deep learning
for detecting out-of-distribution failure patterns,” in Proc. IEEE Int. Symp.
Phys. Failure Anal. Integr. Circuits (IPFA), Jul. 2020, pp. 1-5.

M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect patterns
classification using deep selective learning,” in Proc. 57th ACM/IEEE
Design Automat. Conf. (DAC), Jul. 2020, pp. 1-6.

Y. Hyun and H. Kim, “Memory-augmented convolutional neural networks
with triplet loss for imbalanced wafer defect pattern classification,” IEEE
Trans. Semicond. Manuf., vol. 33, no. 4, pp. 622—-634, Nov. 2020.

T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer
map classification based on data augmentation,” IEEE Trans. Semicond.
Manuf., vol. 33, no. 4, pp. 663-672, Nov. 2020.

J. C. Chien, M. T. Wu, and J. D. Lee, “Inspection and classification of
semiconductor wafer surface defects using CNN deep learning networks,”
Appl. Sci., vol. 10, no. 15, pp. 1-13, 2020.

J. Yu and J. Liu, “Two-dimensional principal component analysis-based
convolutional autoencoder for wafer map defect detection,” IEEE Trans.
Ind. Electron., vol. 68, no. 9, pp. 8789-8797, Sep. 2021.

Y. Ji and J.-H. Lee, “Using GAN to improve CNN performance of wafer
map defect type classification: Yield enhancement,” in Proc. 31st Annu.
SEMI Adv. Semiconductor Manuf. Conf. (ASMC), Aug. 2020, pp. 1-6.

J. Wang, C. Xu, Z. Yang, J. Zhang, and X. Li, “Deformable convolutional
networks for efficient mixed-type wafer defect pattern recognition,” IEEE
Trans. Semicond. Manuf., vol. 33, no. 4, pp. 587-596, Nov. 2020.

Y. Kong and D. Ni, “Qualitative and quantitative analysis of multi-
pattern wafer bin maps,” IEEE Trans. Semicond. Manuf., vol. 33, no. 4,
pp. 578-586, Nov. 2020.

S. Kang, “‘Rotation-invariant wafer map pattern classification with convo-
lutional neural networks,” IEEE Access, vol. 8, pp. 170650-170658, 2020.
U. Batool, M. I. Shapiai, N. Ismail, H. Fauzi, and S. Salleh,
“Oversampling based on data augmentation in convolutional neu-
ral network for silicon wafer defect classification,” in Frontiers
in Artificial Intelligence and Applications, vol. 327. Amsterdam,
The Netherlands: 10S Press, 2020, pp.3-12. [Online]. Available:
https://ebooks.iospress.nl/volumearticle/55467

H. Lee and H. Kim, “Semi-supervised multi-label learning for classifi-
cation of wafer bin maps with mixed-type defect patterns,” IEEE Trans.
Semicond. Manuf., vol. 33, no. 4, pp. 653-662, Nov. 2020.

C.-Y. Hsu and J.-C. Chien, “Ensemble convolutional neural networks
with weighted majority for wafer bin map pattern classification,” J. Intell.
Manuf., pp. 1-14, Oct. 2020, doi: 10.1007/s10845-020-01687-7.

J. Cha, S. Oh, D. Kim, and J. Jeong, “A defect detection model for
imbalanced wafer image data using CAE and xception,” in Proc. Int. Conf.
Intell. Data Sci. Technol. Appl. (IDSTA), Oct. 2020, pp. 28-33.

D. Du and Z. Shi, “A wafer map defect pattern classification model based
on deep convolutional neural network,” in Proc. IEEE 15th Int. Conf.
Solid-State Integr. Circuit Technol. (ICSICT), Nov. 2020, pp. 2—4.

M. B. Korzenski and P. Jiang, “Wafer reclaim,” in Handbook for Clean-
ing for Semiconductor Manufacturing: Fundamentals and Applications.
Hoboken, NJ, USA: Wiley, 2011, pp. 473-500.

UZMA BATOOL received the B.S. degree in com-
puter science from the University of the Pun-
jab, Lahore, Pakistan, and the M.S. degree in
computer science from the National University
of Computer and Emerging Sciences, Islamabad,
Pakistan. She is currently pursuing the Ph.D.
degree with Malaysia-Japan International Institute
of Technology, Universiti Teknologi Malaysia,
Kuala Lumpur, Malaysia. She has over a decade of
experience in the software industry and academia.

Her research interests include pattern recognition using deep learning algo-
rithms, data mining, machine learning, and image processing.

VOLUME 9, 2021


http://dx.doi.org/10.1007/s10845-020-01687-7

U. Batool et al.: Systematic Review of Deep Learning for Silicon Wafer Defect Recognition

IEEE Access

MOHD IBRAHIM SHAPIAI (Member, IEEE)
received the M.Eng. degree from the University
of York, UK., in 2007, and the Ph.D. degree in
the area of machine learning from the Universiti
Teknologi Malaysia, in 2013. From March 2010 to
April 2010, he was a Visiting Researcher with
the Graduate School of Information, Production
and Systems, Waseda University, Japan, under the
supervision of Dr. Junzo Watada, and the Fac-
ulty of Engineering, Leeds University, U.K., from
June 2012 to July 2012, under the supervision of Dr. Vassili Toropov. He is
currently a Senior Lecturer with the Universiti Teknologi Malaysia and a
Researcher with the Center of Artificial Intelligence and Robotics (CAIRO).
He has also been appointed as a Certified NVIDIA Deep Learning Instruc-
tor. His research interests include artificial intelligence, machine learning,
brain—computer interface, and swarm intelligence.

MUHAMMAD TAHIR received the Ph.D. degree
in chemical engineering from the University of
Technology Malaysia (UTM), Malaysia. He is cur-
rently an Assistant Professor and the Head of
the Photocatalysis Laboratory, School of Chemical
and Energy Engineering, University of Technol-
ogy Malaysia. He is an active researcher in the
areas of modeling and simulation, heterogeneous
photocatalysis, design of new functional materials,
and reaction engineering for greenhouse gas con-
version and hydrogen production application. His current research interest
includes the simulation, DFT, and development of advanced structured mate-
rials for environmental and energy applications.

ZOOL HILMI ISMAIL (Senior Member, IEEE)
received the B.Eng. and M.Eng. degrees in mecha-
tronics engineering from the Universiti Teknologi
Malaysia, Skudai, Johor, Malaysia, in 2005 and
2007, respectively, and the Ph.D. degree in elec-
trical engineering from Heriot-Watt University,
Edinburgh, U.K., in 2011. He was appointed as
a Senior Lecturer with the Universiti Teknologi
Malaysia (UTM), Kuala Lumpur, in 2011. He was
also appointed as a Visiting Researcher with Kyoto
University and Jordan University of Science and Technology, in 2014 and
2016, respectively. He is currently a Research Member of Malaysia-Japan

VOLUME 9, 2021

International Institute of Technology and the Center for Artificial Intelli-
gence and Robotics, UTM. His current research interests include the area of
edge computing, model-predictive control, path planning, and task allocation
based on deep-reinforcement learning. He is a member and a Registered
Professional Engineer of the Board of Engineers Malaysia, a member of
the Society for Underwater Technology, The Institution of Engineering and
Technology, the Institute of Electrical and Electronics Engineers—Oceanic
Engineering Society, and the Asian Control Association, and a member
and a Registered Chartered Marine Engineer of the Institute of Marine
Engineering, Science and Technology. In 2017, he was appointed as one
of the committee members of International RoboCup@Home Education.
He has many awards from International RoboCup Competitions (Service
Robot Category).

NOOR JANNAH ZAKARIA received the B.E.
and M.Phil. degrees in electronic system engineer-
ing from Malaysia-Japan International Institute of
Technology, Universiti Teknologi Malaysia, Kuala
Lumpur, Malaysia, where she is currently pursuing
the Ph.D. degree. Her research interests include
artificial intelligence, supervised learning, deep
learning, reinforcement learning, and object detec-
tion in autonomous vehicle field of interest.

AHMED ELFAKHARANY received the B.Sc.
degree in mechatronics from the Arab Academy
for Science, Technology and Maritime Transport,
Egypt, and the M.Phil. degree from Malaysia-
Japan International Institute of Technology,
Universiti Teknologi Malaysia, Kuala Lumpur,
Malaysia.

116593



