
Received July 6, 2021, accepted July 30, 2021, date of publication August 23, 2021, date of current version August 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106698

Multi-Perspective Attention Network for
Fast Temporal Moment Localization
JUNGKYOO SHIN , (Member, IEEE), AND JINYOUNG MOON
Department of ICT, University of Science and Technology, Daejeon 34113, Republic of Korea
Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea

Corresponding author: Jinyoung Moon (jymoon@etri.re.kr)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant through
the Ministry of Science and ICT (MSIT), Government of Korea (Development of Previsional Intelligence Based on Long-Term Visual
Memory Network and Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis)
under Grant 2020-0-00004 and Grant 2014-3-00123.

ABSTRACT Temporal moment localization (TML) aims to retrieve the temporal interval for a moment
semantically relevant to a sentence query. This is challenging because it requires understanding a video,
a sentence, and the relationship between them. Existing TML methods have shown impressive perfor-
mances by modeling interactions between videos and sentences using fine-grained techniques. How-
ever, these fine-grained techniques require a high computational overhead, making them impractical.
This work proposes an effective and efficient multi-perspective attention network for temporal moment
localization. Inspired by the way humans understand an image from multiple perspectives and different
contexts, we devise a novel multi-perspective attention mechanism consisting of perspective attention and
multi-perspectivemodal interactions. Specifically, a perspective attention layer based onmulti-head attention
takes two memory sequences, one as the base and the other as the reference memory, as inputs. Perspective
attention assesses the two different memories, models the relationship, and encourages the base memory to
focus on features related to the reference memory, providing an understanding of the base memory from the
perspective of the reference memory. Furthermore, multi-perspective modal interactions model the complex
relationship between a video and sentence query, and obtain the modal-interacted memory, consisting of
a visual feature that selectively learned query-related information. Similar to the heavyweight fine-grained
TML methods, the proposed network obtains the accurate complex relationship while being lightweight like
coarse-grained TML methods. We also adopt a fast action recognition network to efficiently extract visual
features, which reduce the computational overhead. Through experiments on three TML benchmark datasets,
we demonstrate the effectiveness and efficiency of the proposed network.

INDEX TERMS Cross-modal interaction, fast temporal moment localization, temporal moment localization,
and temporal sentence grounding.

I. INTRODUCTION
As a large number of videos are being created and consumed
every day, there is a growing need for an efficient method
to search for content. To achieve this, deep learning-based
methods that understand untrimmed videos and can local-
ize a specific temporal interval have been proposed. Early
works focused on temporal action localization, which aims
to retrieve all temporal intervals with the start and end times
of action instances belonging to predefined action classes
in a video. Recently, temporal moment localization (TML)
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with a sentence query, whose goal is to retrieve the tem-
poral interval consisting of the start and end times for a
moment described by a sentence query, was proposed [1], [2].
In contrast to predefined action labels with a single key-
word, queries in a natural language can describe a wide
range of semantic information within a video spatially and
temporally. This enables TML methods to understand and
localize moments that involve spatiotemporally complex
activities, including sub-actions related to human–human and
human–object interactions.

TML is more challenging than temporal action localization
because of the complex relations between the whole and
multiple parts of an input video and sentence query for a
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FIGURE 1. TML aims to find the best corresponding moment of the given query in the video. The above figure shows an example of the
TML task. Natural language query requires the understanding of the local–global relationship between complex objects within a video.
Words colored in cyan signify global information, while those in red signify local information.

TML task. Understanding the complex relations spatially
and temporally requires local as well as global information.
Fig 1 shows the local and global information necessary to
obtain precise TML results for a given input video and query.
In Fig. 1, understanding local information from the query Q
colored in red, which is visual semantic information from a
single scene, requires a TMLmethod to recognize the jumper
performing a jumping action in a scene and to distinguish
the jumper from other objects within the same scene, such
as the referees or the crowd. To identify the jumper, the net-
work must focus on visual semantic information relevant
to the jumper and ignore the information irrelevant to the
jumper from unrelated objects within a scene simultaneously.
In addition, understanding global information from the query
Q colored in cyan, such as previous, returns, and second
longer, require the TML method to gather the integrated
contextual information from multiple scenes and relate them.
To understand and localize the previous jumper, the TML
method should discriminate two different jumpers, Jumper A
and Jumper B, from three different semantic scenes, under-
stand the temporal order of the two jumpers in the three scenes
(i.e. A in SS1, B in SS2, and again A in SS3), and finally align
the temporal interval relevant to A occurring second in the
third scene and irrelevant toA occurring first in the first scene.
Therefore, understanding local–global information simulta-
neously is an important concern in TML tasks.

The first limitations of the recently proposed TML mod-
els [4]–[7] are that they are heavy and slow, which is
inadequate for practical scenarios. Early TML methods
[1]–[3] integrate visual and query features in a coarse-grained
manner, which interact the entire sentence and entire video
at once, and have shown relatively low performance. They
relate the entire input at once and neglect spatiotemporal
information, thus failing to obtain local–global information.
To address this issue, recent methods have modeled the rela-
tionship in a fine-grained manner, which divides the inter-
action subprocess into multiple steps for deeper interactions.
For instance, some fine-grained methods attend a sentence
to every time-step of a video [4], [5] or pool the visual
feature into the size of predefined labels and interact each
pooled feature with the query, respectively [6]. Mun et al. [7]
proposed a method that divides query features into several

parts and interacts each part with the video, respectively.
These methods have shown better performance as they enable
a deeper understanding of complex relationships but require
a large computational overhead.

To this end, we propose a multi-perspective attention
network (MPAN) for TML that interacts with two modal
memories in two different coarse-grained interaction layers
to learn complex relations at a low cost and a high speed.
MPAN relates videos and sentences via multi-perspective
interactions to understand the deeper relationships through
interactions between attended and unattended memories. The
original attention layer for modal interactions takes two
sequential inputs, one as a base memory and the other as a
referencememory. The attentionmechanisms used in existing
TML methods interact with two input memories and empha-
size the part of the base memory that is related to the refer-
ence memory. For example, with the visual feature as a base
memory and query feature as a reference memory, the atten-
tion layer interacts two different memories and emphasize
the parts of the video memory that are related to the query
memory. This is a simple and lightweight method for modal
interactions. However, relying entirely on a single modal
interaction using a single attention layer may emphasize the
incorrect locations of a memory. This could suppress crucial
information, interfere in the understanding of deeper infor-
mation, and thus hinder the localization subprocess. To avoid
losing essential information, we fused attended memories
obtained from multiple cases of attention.

Inspired by the way humans understand an image with
objects of interest and relations between them from mul-
tiple perspectives, we devised a multi-perspective attention
mechanism.Humansmatch visual informationwith linguistic
information frommultiple attention stages [11]. For example,
finding a ‘‘horse in front of the cart’’ requires recognizing
the horse, cart, and the spatial relationship between the two
objects. Humans’ cognitive processes do not recognize the
three pieces of information at once but proceed to complete
this task through multiple steps. Humans localize a scene by
understanding the objects of interest in the scene without any
attention and then focus on the horse and cart, respectively,
in parallel [12]. As such, humans understand an image from
multiple perspectives by controlling their attention toward
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a specific target from a specific perspective to find deeper
information in the image.

Our MPAN attends to video and query memories in
various cases and interacts them with each other to under-
stand their relationship from multiple perspectives. Specifi-
cally, to obtain memories attended in various cases, we first
attended visual features to query features to gain attended
query memory. Then, we attended query features to visual
features to obtain attended video memory. We fed attended
and unattended video memories into the recurrent layer
separately to understand semantic information within the
video from two different perspectives. The outputs from the
two independent recurrent layers were then concatenated
as modal interacted video memory. Each timestep within
this memory represents visual semantic information obtained
from two different perspectives. As each feature is an output
of the recurrent layer, each contains different global infor-
mation from the different perspectives. By interacting with
the two different sets of global information, we assumed
that the model learns the local information for each timestep
focused on the related spatial feature. Finally, we attended
the original query feature to modal interacted video
memory.

The second limitation of existing TMLmethods is that they
adopt heavyweight visual feature extractors, which makes
them difficult to use in practical scenarios. For visual feature
extraction, most TML methods use C3D [13] and I3D [14],
which require a vast amount of time and excessive computa-
tional overhead. C3D and I3D require 38.5 and 53 GFLOPs
to convert 16 and 32 frames of video segments into a visual
feature, respectively. To address this limitation, we used the
fast-action recognition model PAN [15] as a visual feature
extractor. PAN requires 35.7 GFLOPs to extract 32 frames,
which is 4.2x and 2.1x lighter than I3D andC3D, respectively.
To the best of our knowledge, we are the first to consider its
practical usage by adopting a fast-action recognition network
as a feature extractor and a lightweight core TML architec-
ture. This opens the possibility of processing large volumes
of videos for TML in various practical situations.

The contributions of MPAN are primarily three-fold as
follows:

• We introduce a coarse-grained multi-perspective atten-
tion mechanism as a substitute for existing heavyweight
methods that rely on intensive fine-grained interactions.

• Adopting the latest fast AR model to MPAN as a visual
feature extractor, our MPAN showed improved results at
a speed above real time for practical uses.

• Extensive experiments using three TML benchmark
datasets showed that MPAN can achieve equivalent
performance compared to state-of-the-art methods with
remarkable efficiency and generalizability.

II. RELATED WORK
We reviewed previous studies related to our approach and
categorized these works into three research areas.

A. ACTION RECOGNITION
Action recognition (AR) is a basic research area related to
video understanding. For a well-trimmed video, AR aims
to classify an action instance contained in the given video
into a predefined action label. Recent studies have proposed
deep learning-based methods to understand the spatiotempo-
ral information within a given video and solve the AR prob-
lem. Similar to object recognition and detection, ARmethods
have significantly improved their performance compared to
early works using handcrafted features. A two-stream net-
work for AR [12], which was the first convolutional neu-
ral network (CNN) that surpassed traditional models using
handcrafted features, extracts appearance and motion infor-
mation from an RGB frame and stacked optical flow frames,
respectively, and then combines them through late fusion.
The C3D network [13] feeds 16 consecutive frames to 3D
CNNs to extract appearance and motion information directly
from raw RGB frames. The I3D network [14] feeds the RGB
and optical flows in 64 frames into two-stream 3D CNNs
to better learn the appearance and motion features simulta-
neously. The publicized models, including the two-stream,
C3D, and I3D networks pretrained on Sports-1M [21] and
Kinetics [14], are being widely employed as backbone net-
works to extract unit-level video segment features in video-
understanding areas, such as temporal action localization and
detection, temporal moment localization, video captioning,
and video QA.

B. FAST ACTION RECOGNITION
Proposed lightweight 2D CNNs have considered effective-
ness as well as efficiency in AR. Existing AR methods based
on 3D CNN or the use of optical flows have demonstrated
good performance in modeling spatiotemporal information
in a video, but they are computationally heavy. Compared
to the AR methods based on 3D CNNs, AR methods based
on 2D CNNs are comparatively lightweight. Temporal seg-
ment networks (TSN) [17] partition a video into multiple
segments, randomly sample a snippet within a video segment,
predict its action score for each snippet, and then fuse all
predicted action scores for the final prediction. However,
a TSN cannot consider the temporal relationship between
video segments when fusing predicted action scores and
cannot infer complicated temporal relationships. Temporal
shift modules (TSM) [18] modify the TSN model by shift-
ing the part of the channels along the temporal dimension.
This enables the model to facilitate information exchange
among neighboring frames; thus, TMSs achieve the perfor-
mance of 3D CNNs while maintaining the complexity of 2D
CNNS. The temporal memory network (TMnet) [19] was
proposed as a self-supervised network that explores spatial
and temporal information in a video based on a single frame.
The persistent appearance network (PAN) [15] is an efficient
and effective action recognition network based on a novel
motion cue called the persistence of appearance (PA) and
various-timescale aggregation pooling (VAP). Compared to
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optical flow via the exhaustive search of all possible motions,
PA is efficiently obtained by accumulating pixel-wise dif-
ferences in feature spaces. PAN used to devise the VAP
can model long-range temporal relationships across various
timescales and to aggregate the short-term dynamics in PA
to long-term dynamics. In this work, we applied PAN as
a backbone network to extract visual features from video
segments effectively.

C. TEMPORAL MOMENT LOCALIZATION
TML, which is a relatively new task proposed by [1] and [2],
aims to find the best temporal interval within an untrimmed
video that matches a given sentence query. TML requires
the understanding of the semantic contexts within a video
and query and the successfully modeling of the relationship
between those two inputs.

Earlyworks [1], [2] were based on slidingwindowmethods
in which candidate moments are obtained by scanning the
entire video and calculating the matching scores for all the
candidate moments. Hendricks et al. [2] proposed a moment
context network (MCN) to calculate the distance between a
candidate moment feature with a given query feature by pro-
jecting the two features in the same space. Gao et al. [1] devel-
oped a cross-modal temporal regression localizer (CTRL) to
estimate the alignment scores between candidate moments
and a query by element-wise addition, multiplication, and
concatenation followed by a fully connected layer. The slid-
ing window-based approaches are not only time-consuming,
but they also fail to model the global information within a
video. As untrimmed videos may contain complex informa-
tion, understanding each moment within a video indepen-
dently may cause the temporal relation between moments in
the video to be neglected. Methods to model the relationship
between a given query and video in a more effective and
efficient manner have been proposed.

Based on interaction granularity, recent TML methods
can be summarized into two categories: methods with a
coarse-grained manner that interact input features across
entire videos and the sentence query and methods with a
fine-grained manner that divide a video into video seg-
ments and a sentence into words and then model interactions
between the divided cross-modal features.

The coarse-grained methods are relatively light, fast, and
simple. Temporal moment localization using guided atten-
tion (TMLGA) [9] uses a single dynamic filter to transfer
language information to the visual domain. Attention-based
location regression (ABLR) [3] includes a multi-modal co-
attention mechanism that attends the sentence to video, video
to sentence, and attended sentence to attended video, sequen-
tially. However, the coarse-grained approach cannot model
the complex relationship between video and query, thus
showing a poor performance.

Fine-grained methods require a higher computational
weight than coarse-grained methods but can obtain deeper
information. Yuan et al. [5] proposed a semantic conditioned
dynamic modulation (SCDM) mechanism that interacts

the sentence with each visual feature unit, respectively,
for temporal convolutions to better correlate and compose
sentence-related video contents. Contextual boundary-aware
prediction (CBP) [4] incorporates the match-long short-
term memory (LSTM), which is composed of three LSTMs,
as each timestep of the video is attended, respectively, by sen-
tences to obtain the next step. The 2D-temporal adjacent
network (2D-TAN) [6] pools the visual feature into the two-
dimensional map, where one dimension indicates the start
time of a moment and the other indicates the end time. After
applying the Hadamard product to the 2D temporal feature
map and query feature, multiple convolution networks encode
and interact diverse moments with different lengths to repre-
sent adjacent relations. The local–global interaction network
(LGI) [7] divides query features into several segments to
interact with the video to reflect multi-modal interactions
between the query–segment features and visual features on
multiple levels. Chen et al. [8] devised a pairwise modality
interaction (PMI) mechanism that models modality interac-
tions in the sequence of videos and the sequence of queries in
a pairwise fashion.

Our MPAN performs the TML task in a coarse-grained
manner but can learn the deeper local–global relationship
between two inputs using our multi-perspective attention
mechanism, as fine-grained methods do.

III. PROPOSED METHOD
Our proposed network takes a sentence query and an
untrimmed video as inputs. The main purpose of our MPAN
is to retrieve the temporal interval that consists of the start
and end times that match the best moment specified by
the sentence query. We first introduce feature extraction for
MPAN. Then, we explain the architecture of our MPAN in
detail. As illustrated in Fig. 2, our model consists of three
main components: 1) feature extraction, 2) multi-perspective
modal interaction, and 3) temporal localization modules.

A. FEATURE EXTRACTION
Weused pretrainedmodels to extract word and visual features
from a sentence query and untrimmed video and fed the
extracted features into our proposed MPAN as inputs. For
a sentence query Q that consisted of M words, we used
the Glove300 word2vec model, which was pretrained on
Common Crawl [23] to extract a sequence of word features.
Each word feature represents information inherited within
each word inferred by a linguistic relation. We denoted the
sentence feature as a sequence of word features, as S =
{w1 · · ·wm} ∈ Rm×ds , where m is the number of words in
the sentence and ds is the size of extracted word feature.
For an untrimmed video V with L frames, we divided the

video into video segments with a fixed size of frames. The
fixed-sized frames from each video segment were fed into
PAN [15] for fast visual feature extraction. We extracted the
visual feature right before the classification layer to represent
each video segment. We denoted the extracted visual feature
as V = {v1 · · · vt } ∈ Rt×dv , where t is the number of video
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FIGURE 2. MPAN architecture can be organized into three parts: 1) feature extraction, 2) multi-perspective modal interaction,
and 3) moment localization modules. Through the multi-perspective attention mechanism based on perspective attention,
we added modal interaction in multiple perspectives. This enables MPAN to learn deeper information in a lightweight
coarse-grained way instead of in a fine-grained way.

segment within the video, which can be denoted as L/32, and
dv is the size of extracted video feature.

B. PERSPECTIVE ATTENTION
In this section, we present a perspective attention module to
understand a memory from a specific perspective of another
memory. As mentioned earlier, the attention layer between
two different modalities is used to interact with the two
memories and learn the modal relationship between them
[4], [9]. We applied a multi-head attention layer based on
a scaled-dot product, which was originally proposed in the
field of machine translation [26]. With two inputs X and Y
memories, our multi-head attention is as understanding X
from the perspective of Y.

X and Y can be both video or query feature, and we assume
the shape of the matrix as x = Rnx×d and y = Rny×d , where
nx and ny is the length of input feature and d is the dimension
size of each feature. Each dimension size of the video and
the sentence feature are fixed to d for modal interaction.
We denote our scaled-dot product attention as

Mr(X ,Y ) = softmax(
(X ×Wq)× (Y ×Wk )T

√
d

)

Mr(X ,Y ) ∈ Rnx×ny (1)

Att(X ,Y ) = Mr(X ,Y )× (Y ×Wv) ∈ Rnx×d (2)

where Wq,Wk ,Wv ∈ Rd×datt is a learnable matrix and a
softmax operation is applied to every row.Mr(X ,Y ) directly
interacts with the two modal memories via dot-product atten-
tion. We designed Att(X ,Y ) as a weight that gives guidance
to X to pay attention to the modal of the Y-related location.

Multi-head attention involves a fixed number of indepen-
dent attention in parallel, and is formulated as

att = Att(X ,Y ) (3)

multi(X ,Y ) = {att1||att2|| · · · ||attN } (4)

persp(X ,Y ) = (Wm × multi(X ,Y ))+ X

persp(X ,Y ) ∈ Rnx×d (5)

where N stands for the predefined number of heads, and ||
stands for the concatenation of two matrix. The results of N
parallel attentions are stacked, and then multiplied by linear
projection matrix Wm ∈ Rd×(N×d) to interact the results
of attention with each other. We then added the outputs of
multi-head attention with the original feature X, and denote
it as persp(X ,Y ). The obtained persp(X ,Y ) represents the X
memory understood from the Y memory’s perspective.

However, modal interaction obtained by a single perspec-
tive attention lacks the consideration of local-global infor-
mation. Therefore, we propose a multi-perspective attention
mechanism to understand complex local-global information.

C. MULTI-PERSPECTIVE MODAL INTERACTION
To understand the contextual information implicated in the
relation among words within a sentence, we fed the sen-
tence feature, a sequence of word features, into bi-directional
LSTM (Bi-LSTM).

qtwf = LSTMS (wt , q
t−1
wf ) (6)

qtwb = LSTMS (wt , q
t+1
wb ) (7)

Q =
{
(q1wf ||q

1
wb) · · · (q

m
wf ||q

m
wb)
}

(8)

Bi-LSTM consists of two independent LSTM, which takes
the querymemory sequentially both forward and backward as
an input. The hidden states of the two LSTMs are then stacked
as a query memory Q to represent the contextual information
fromwords in a query. Tomatch the dimensional size between
the sentence feature and the video feature, we fed the video
feature into a single linear layer.
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Based on the parts of the videos, different parts of
a sentence can be considered important. To selectively
focus on video-related information within a query, we first
applied video-perspective attention to the query memory. Our
video-perspective attention to the query is as follows:

Qatt = perspQ(Q,V ) (9)

where perspQ represents the video-perspective attention.Qatt
represents the query memory reinterpreted in the video per-
spective. Qatt focuses on the part related to the video mem-
ory. For query-related multi-perspectivity, we saved both the
original query memory Q and Qatt . Using the attended query
memory from the video perspective, we then obtained the
attended video memory from the query perspective as follows

Vatt = perspV (V ,Qatt ) (10)

where perspV represents the query-perspective attention. Vatt
is the attended video memory from the video perspective,
which focus on the query-related visual feature. For video-
related multi-perspectivity, we saved the original video mem-
ory V and Vatt . To understand the temporal information
from the video memory V and Vatt , we employ another
Bi-LSTM. The Bi-LSTM for video memory obtains a rela-
tionship between visual features and understands the global
context. However, during the process, our model must be able
to selectively focus only on the information relevant to the
query and neglect the irrelevant information as background.
To successfully distinguish related information, we average-
pooled the query features and concatenate them with each
visual feature of every timestep in a given video memory Vatt .
We fed this memory into a Bi-LSTM as follows

qatt = θ (Qatt ) (11)

htf = LSTMh
f (v

t
att ||qatt , h

t−1
f ) (12)

htb = LSTMh
b (v

t
att ||qatt , h

t+1
b ) (13)

ht = (htf ||h
t
b) (14)

where θ stands for average pooling. We assumed that
by feeding the average pooled query and visual features
of each time-step into a Bi-LSTM simultaneously, the
Bi-LSTM effectively handled the query-relevant information
and passed them to the hidden state while the Bi-LSTM dis-
tinguished and forgot the irrelevant background information.

We applied the same process in parallel for the raw video
memory to learn the relationship in multiple perspectives,
as follows

ptf = LSTMp
f (v

t
||qatt , p

t−1
f ) (15)

ptb = LSTMp
b (v

t
||qatt , p

t+1
b ) (16)

pt = (ptf ||p
t
b) (17)

The two Bi-LSTM enables our model to understand a
video in two-stream from two different perspectives. pt and ht

represent both pieces of query-related contextual information
in each timestep of the video. We assumed that interact-
ing information from different perspectives is similar to a

human’s cross-checking process. By interacting the obtained
visual features in a two-stream manner, our model compares
information from each timestep and upholds the overlapping
information, distinguishes inconsistent information, and suc-
cessfully provides local cues for modal relation. We denote
this interaction as follows

mt = (pt ||ht ) (18)

M = {m1,m2, · · · ,mt } (19)

We then attended the original query memory to obtain M ,
as a recall layer. In the previous modal interaction,
we only used the attended query memory. As mentioned
before, attended memories may neglect crucial information.
By applying attention from the perspective of the original
query memory, we designed our network to recall the context
from the original query and name it as the recall perspective.
Applying modal interactions with the original query gives
additional guidance as to what needs to be searched for.
We denote this recall perspective as follows:

L = perspL(M ,Q) (20)

where perspL represents the recall layer, and L is the modal
interacted memory that represents the query-related visual
feature obtained by the multi-perspective attention mecha-
nism. The key purpose of the multi-perspective modal inter-
action is to selectively understand the video memory that
corresponds to the given query.

Inspired by TMLGA [9], we applied guidance loss to
guide our modal interaction process to the last perspective
attention layer of our multi-perspective modal interaction.
By minimizing the difference between the ground truth and
the Mr(M ,Q), guidance loss encourages the model to spec-
ify higher attention weights for segments related to queries,
We average-pooled the MRL(M ,Q) which is responsible for
the modal interaction in the last attention layer, and applied
guidance loss as follows.{

att(M ,Q)1|| · · · ||att(M ,Q)j
}
= perspL(M ,Q) (21)

Mr(M ,Q)× (Q×Wv) = att(M ,Q) (22)

MRL = (
j∑

u=1

(Mru(M ,Q)))/j (23)

Lossgd = −
T∑
k=1

(1− δT s≤k≤T e log(1−MRL)) (24)

where δ is Kronecker delta representing the temporal interval
of ground truth, T s and T e denote the ground truth of the
starting and ending points, and j denotes for the number of
heads in recall-layer.

D. LOCALIZATION LAYER
With the obtained modal-interacted memory in Section 3.C,
we calculated the start and end scores of each timestep within
a video and directly obtained the best moment consisting of
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TABLE 1. Summary of ActivityNet-Captions, Charades-STA, and TACoS. This table includes the number of videos, average seconds of videos, number of
samples in the training, test, and validation sets, the average number of queries per video, average seconds of moments to localization, and average
length of a query for the three datasets.

the start and end times with the maximums of the start and
end scores, respectively.

PS = convs(L) ∈ Rt×1

PE = conve(L) ∈ Rt×1 (25)

First, our model obtained the modal-interacted memory by
maintaining the temporal dimension of the original visual
features and supporting the processing of videos with a vari-
able size. Most of the existing methods applied temporal
dimension-related layers of neural networks, such as a fully
connected layer and temporal convolution layer, along the
temporal dimension to interact with adjacent visual features,
summarize the interaction results to regress the relative start
and end times, or rank all predefined proposals. The methods
of applying the layers require the size of the input video to
be fixed and require the relative start and end times of each
moment to be obtained. Owing to the fixing of the input size,
the methods may lose integrated contextual information via
temporal interpolation. Furthermore, they may lack perfor-
mance generalizability depending on the length of the input
video because the trained model may be unsuitable for test
videos that are much longer or shorter than trained videos.

Second, we predicted start and end scores at all timesteps
within a video, which were used as the indicators of the start
or end times of the best-matching temporal moment inMPAN
as inspired by [9], [20]. We normalized the start and end
scores using a softmax function to obtain their probabilities
and pick the temporal interval with the highest scores for
start and end times, respectively, as the final output. To rank
multiple proposals, calculating a score for all predefined
moment proposals requires a high computational overhead.

Inspired by TMLGA [9], we set the final output of our
MPAN as the probability distributions of start and end scores
and trained our model to minimize the Kullback–Leibler
divergence loss between the predicted output probability and
the ground truth as follows:

K (PS |GT S ) =
T∑
k=1

PS (k)log(PS (k)/S(K ))

Lossloc = K (Ps|GT S )+ K (Pe|GT E ) (26)

where GT S is a 1–D array that has the value of 1 at the start
and end times of the match moment and 0 at the rest. This
encourages our MPAN to understand the modal relationship
between linguistic and visual information and localize the
best matching moment.

Our loss function is expressed as

Loss = Lossgd + αLossloc (27)

where α is a hyperparameter used to balance the importance
between the two loss scores.

IV. EXPERIMENTS
A. DATASETS
The details of three benchmark TML datasets, ActivityNet-
Captions, Charades-STA, and TACoS, are summarized
in Table 1.

The ActivityNet-Captions dataset consists of
14,926 diverse and open videos gathered from YouTube.
It was originally from the ActivityNet dataset with
19,209 videos developed for the task of dense video cap-
tioning. The dataset contains untrimmed videos and multiple
sentence descriptions with temporal annotations. As annota-
tions for video captioning and TML are reversible, each mul-
tiple natural language description with temporal annotations
becomes the query for TML. The average length of a video
is about 117.60 seconds, with an average of 4.82 queries
per video. Each query sentence consists of 13.22 words
on average. The length of a matching temporal moment is
37.14 seconds on average. However, the length varies from
a few seconds to a few minutes at most. Following the
experimental protocol in [10], we took val_1 and val_2 as the
validation and test sets, respectively. ActivityNet-Captions
has 37,417 queries for the training set, 17,031 queries for the
test set, and 17,505 queries for the validation set.

The Charades-STA dataset consists of 6,672 videos on
daily indoor activities. Videos in Charades-STA are from
the Charades dataset, which consists of 9,848 videos orig-
inally proposed for the video AR task. The original Cha-
rades only provided a video-level description, so Gao et al.
[1] extended the dataset using semi-automatic annotation
methods. Gao et al. [1] applied sentence-level decomposition
to video-level description and a matched keyword for each
annotated action moment, creating a new sentence to cre-
ate a moment–query annotation. Each annotation was then
verified by human checking. The average length of a video
is 30.59 seconds with an average of 2.42 queries per video.
Each query sentence consists of 7.23 words, with a matching
temporal moment of 8.10 seconds on average. Charades-
STA has 12,408 queries for training and 3,720 queries for
evaluation.

The TACoS dataset consists of 127 long videos on cooking
scenarios in the kitchen. Videos in the TACoS dataset are
from the MPII Cooking dataset. Regneri et al. [24] extended
this dataset by adding sentence descriptions in moments
within the video via crowd sourcing. The average length of
a video is 287.13 seconds with an average of 148.17 queries
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per video. Each query sentence consists of 8.79 words with
a matching temporal moment of 6.10 seconds on average.
The TACoS dataset has 10,146 queries for the training set,
4,083 queries for the test set, and 4,589 queries for validation
set.

The videos in ActivityNet-Captions consist of the most
diverse content because they were originally gathered from
YouTube. It also consists of the longest and most complex
queries between the three datasets. Charades-STA is com-
posed of relatively short indoor videos compared to the other
datasets. Its query annotations also have the lowest complex-
ity, making this dataset relatively easy. TACoS is composed
of the longest videos between the three datasets and has
the smallest number of videos. The videos contain action
sequences related only to cooking in the same background,
showing the lowest diversity among all the datasets. Thus,
temporal moment matching the given query is relatively short
compared to the other datasets, which makes this dataset dif-
ficult for TML. Each dataset has different properties, and we
show the performance comparisons among the three datasets.

B. VIDEO FEATURE EXTRACTION
In this section, we compare the amount of time and com-
putation the visual feature extraction process takes between
existing popular methods and PAN [15]. Table 2 summa-
rizes the cost of visual feature extraction for commonly used
AR networks and PAN, which we first use for fast TML.
By using lite-PAN, we extracted visual features 2.48× faster
than C3D [13] and 5.61× faster than I3D [14]. Additionally,
the GFLOPs required per frame were 0.46× and 0.12× less
than those of C3D and I3D, respectively. The total length
of all videos for the ActivityNet-Captions, Charades-STA,
and TACoS added up to 487.58 hours, 56.69 hours, and
10.13 hours, respectively. We denote the total time taken to
extract features for all the videos contained in each dataset.
Based on the total time, we calculate the frames per sec-
ond (fps) for feature extraction. For I3D feature extrac-
tion, it took 189.40 hours, 22.02 hours, and 3.93 hours
for ActivityNet-Captions, Charade, and TACoS, respectively.
Extracting visual features using C3D took 84.00 hours,
9.76 hours, and 1.75 hours in ActivityNet-Captions, Cha-
rade, and TACoS, respectively. For PAN feature extraction,
the feature extraction time was 33.78 hours, 3.93 hours, and
0.70 hours, respectively, which is far faster than real time,
showing the possibility of the practical use of TML. Our
results by PANwere based on a pretrained model trained with

TABLE 2. Comparisons of used visual features between PAN, C3D, and
I3D. The GFLOPs, frames, and fps stand for the computational cost,
the number of frames used to extract a feature for a video segment, and
the speed of feature extraction, respectively. In addition, ANet and Cha
stand for the hours taken to extract features for all videos in
ActivityNet-Captions and Charades-STA, respectively.

the Something-Something V2 [22] dataset, which was orig-
inally released by the author. As C3D and I3D models were
pretrained based on amuch larger dataset with higher quantity
and diversity, such as Sports-1M and Kinetics, we assumed
that there was a possibility for the pretrained model to show
better performance when it was pretrained using a larger
dataset.

C. IMPLEMENTATION DETAILS
For ActivityNet-Captions, we set the hidden state of all three
LSTMs to 256 and the hidden state of three attention layers
to 128. We set the number of heads for multi-head attention
as 1 forMultiS , 2 forMultiV , and 3 forMultiL . For Charades-
STA, we set the hidden state of all three LSTMs to 64 and
the hidden state of three attention layers to 128. We set the
number of heads for multi-head attention as 1 for MultiS ,
2 forMultiV , and 2 forMultiL . For TACoS, we set the hidden
state of all three LSTMs to 64 and the hidden state of the
three attention layers to 32. We set the number of heads for
multi-head attention to 2 for MultiS , 2 for MultiV , and 1 for
MultiL . For all three datasets, we used Adam [18] with a
fixed learning rate of 1 × 10−4. We set the batch size to
32 when training ActivityNet-Captions, and set the batch
size to 128 when training Charades-STA and TACoS dataset.
We adopted batch normalization for normalization and set the
dropout rate to 0.1 for every multi-head attention.

D. EVALUATION METRIC
Following [1], we adopted Rank 1@m to evaluate and com-
pare our performance. Rank n@m stands for the probabil-
ity of at least one top-n retrieved moment to exceed the
certain threshold m of the temporal intersection over union
(tIoU). In this study, we only denoted Rank 1 results because
our method localizes moments based on the proposal-free
method, returning only a single moment without ranking
multiple candidate moments. For runtime measurements,
we measured the total runtime for PyTorch code that took
extracted visual and word features as inputs and returned a
single localized moment as the output. Each runtime was
measured using the fixed-size batch that is identical to the
size of the batch used to learn our model. We compared the
runtime on the same environment, using i7-10700 and a single
GTX 1080ti.

E. COMPARISON WITH OTHER TML METHODS
We compared the performance of our MPAN with sev-
eral TML methods divided into two groups: modal inter-
acted methods in a coarse-grained manner that include
CTRL, MCN, ABLR, and TMLGA and modal interac-
tion methods in a fine-grained manner that include SCDM,
CBP, CMIN, 2D-TAN, LGI, and PMI. The results on the
ActivityNet-Captions, Charades-STA, and TACoS datasets
are summarized in Tables 3, 4, and 5, respectively. On the
ActivityNet Captions dataset, our MPAN outperformed the
existing TML methods, except 2D-TAN and CMIN, includ-
ing more recent TML methods, such as LGI and PMI, with a
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FIGURE 3. Models for the ablation study showed the effectiveness of the component perspective attention
layers in a multi-perspective mechanism. Ori means full MPAN. TwSt, Qry, and Rc consist of a single
perspective layer for modal interaction, which are a two-stream video perspective layer, query perspective
layer, and recall layer, respectively.

TABLE 3. Comparisons of performance, runtime for test sets, and the
number of parameters on the ActivityNet-Captions dataset.

TABLE 4. Comparisons of performance, runtime for test sets, and model
size, the number of parameters on the Charades-STA dataset.

lightweight architecture. Compared to 2D-TAN and CMIN,
which showed the best and second-best performances until
now, MPAN achieved more than 86.89% and 98.1% of their
performances at 22.3x and 3.7x faster and with 63.0x and
39.8x fewer parameters, respectively.

On the Charades-STA dataset, our MPAN trained by using
PAN feature outperformed the TML methods using C3D
and VGG except TML methods that used I3D, such as
SCMD, TMLGA, and LGI. Given that extracting I3D fea-
tures requires a high computational overhead, we show the
usefulness of PAN features as a practical alternative for TML.

TABLE 5. Comparisons of performance, runtime for test sets, and the
number of parameters on the TACoS dataset.

Our MPAN trained by using I3D features outperformed
existing state-of-the-art methods at tIoU = 0.7 by 1.19, but
showed lower performance on tIoU = 0.5 by 4.76. At the
same time, ourMPAN achieved 2.4× faster speed with 81.8×
fewer parameters.

On the TACoS dataset, MPAN outperformed existing mod-
els except 2D-TAN at R1@0.5 and CBP at R1@0.7 Com-
pared to CBP and 2D-TAN, our MPAN achieved comparable
but slightly lower performance at tIoU = 0.5 by 0.29 and
tIoU = 0.7 by 0.98 with a lightweight architecture. Our
MPAN achieved comparable performances in shorter runtime
periods with fewer parameters. Compared to 2D-TAN, our
MPAN is 46.0× faster at 203.0× fewer parameters.

Thus, by learning deeper information through the coarse-
grained multi-perspective attention mechanism, our model
showed significantly good performance with an excellent
speed-to-accuracy trade-off for the practical use of TML in
real-world service scenarios.

F. ABLATION STUDIES
To analyze the effectiveness of a multi-perspective modal
interaction mechanism in our MPAN, we investigate the con-
tribution of each attention in the multi-perspective mecha-
nism. For this, We defined the eight variants of our model:
(1) None: did not use any attention layer. (2) TwSt: only
used the perspV attention layer and two-stream interaction as
mentioned in Fig. 3, (3) Qry: only used the perspQ attention
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layer as mentioned in Fig. 3, (4) Rc: only used the perspL
attention layer as mentioned in Fig. 3, (5) Qry+Rc: excluded
the perspV layer and two-stream interaction, (6) TwSt+Rc:
excluded the perspQ, (7) TwSt+Qry: excluded the query
recall, perspL and (8) MPAN: our full model using the three
attention layers.

Table 6 summarizes the observed results.

TABLE 6. Ablation study of the effectiveness of the combination of the
three attention layers in a multi-perspective mechanism.

First, we show three of the cases, in which applying only
a single attention layer that led to worse consequences than
applying no attention at all in the three datasets. Especially
in the Charades-STA and TACoS datasets, most results from
models using only a single attention were lower than the
models that did not apply any attention layer. We reason
that a single attention layer is insufficient for understand-
ing the modal relationship because the relations between
a video and sentence are complex. As a single attention
layer focusses on a location that seems to be related, it may
suppress meaningful information and hinder the relation-
understanding process. However, in all datasets, models that
used two or three (full) attention layers showed superior
performances compared to models that used only one of the
attention layers. According to these results, we demonstrate
the effectiveness of a multi-perspective attention mechanism
that allows our model to understand deeper contexts and
relations by applying various cases of attention layers.

Second, we show a different level of effectiveness in
each perspective-attention layer depending on the char-
acteristics of the dataset. The TwST+Rc model on the
closed indoor datasets, such as Charades-STA and TACoS,
showed good performance while the same model on the
ActivityNet-Captions dataset showed relatively worse perfor-
mance compared to models that used the other two atten-
tion layers. Conversely, the (Qry+Rc) model showed high
performance on ActivityNet-Caption but relatively low per-
formance on TACoS and Charades-STA. This is because
the importance of each perspective layer depends on the
characteristics of the three datasets. The importance of some
specific perspective attentions can be higher than that of
others in a dataset, while they may not be significant in the
other datasets. However, with all the perspective attention
layers, themodel showed the best or comparable performance
on all three datasets. This is because by interacting with
more perspective layers, the network learns and balances the

importance of each perspective and coordinates the optimal
weight of each perspective, thus improving performance.

G. QUALITATIVE EVALUATION
For qualitative evaluation, we visualized the localization
results on the ActivityNet-Captions dataset in Fig. 4. The
results showed the attention weights for the input query
obtained by original MPAN model as well as the four pairs
of start and end scores predicted by none, TwSt, Rc+TwSt,
and MPAN models, which are described in Table 6. The one-
dimensional heatmap depicted the average pooled attention
weight within MultiV , denoted as MR. This heatmap shows
which word within the query was more focused on when
the perspective layer interacted with the modal relationship
between the video and the query. From the given query, ‘‘The
outside of a building is shown on a snowy day’’, the atten-
tion weight showed the focus was on building and day. The
network understood the context of the query that was focused
on building and day, interacted with the given video to find
the scene that matched the understood contexts. However,
interaction using a single perspective layer may omit infor-
mation within words with low attention weights, such as
outside or snowy, which can cause the model to be misin-
formed. Interaction using this single perspective layer may
omit information within words with low attention weights.
Figure 4 shows the original MPAN model outperforms the
other three models, which are used in the ablation study, for
predicting start and end times. By stacking multiple perspec-
tive layers, our proposed multi-perspective attention mecha-
nism complements the understanding of information within
multiple attended memories, thus successfully localized the
moments.

FIGURE 4. Qualitative evaluation of MPAN on the ActivityNet-Captions
dataset. Below the sentence query is a attention map visualizing the
weight within the sentence-perspective attention. The dotted green lines
represent the GT start and end times for this test sample, respectively.

V. CONCLUSION
In this paper, we proposed a novel fast moment localiza-
tion method using a multi-perspective attention mechanism.
To the best of our knowledge, our MPAN is the first attempt
that considered the computational overhead for the practical
use of TML. Specifically, we devised a multi-perspective
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attention mechanism based on multiple perspective attention
layers and modal interactions in a coarse-grained manner.
In addition, we adopted PAN, a fast AR network, to extract
visual features faster than real time. With the extracted
PAN features, we employed the multi-perspective mecha-
nism that obtained modal-related information in videos and
queries based on three LSTM and attention layers. Then,
we employed a one-dimensional convolution layer to local-
ize the best-matching moment in a proposal-free manner
by predicting the start and end time scores. On the three
benchmark TML datasets, our MPAN achieved compara-
ble performances with a lightweight architecture having far
fewer parameters and with even lower prediction and feature
extraction times compared to state-of-the-art TML models.
As future work, we plan to employ the multi-perspective
approach to other tasks requiring modal interactions between
video and text, such as VQA and video captioning.

REFERENCES
[1] J. Gao, C. Sun, Z. Yang, and R. Nevatia, ‘‘TALL: Temporal activity

localization via language query,’’ in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit. (CVPR), Oct. 2017, pp. 5267–5275.

[2] L. A. Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Darrell, and
B. Russell, ‘‘Localizing moments in video with natural language,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5803–5812.

[3] Y. Yuan, T. Mei, and W. Zhu, ‘‘To find where you talk: Temporal sentence
localization in video with attention based location regression,’’ in Proc.
AAAI, 2017, pp. 9159–9166.

[4] J. Wang, L. Ma, and W. Jiang, ‘‘Temporally grounding language queries
in videos by contextual boundary-aware prediction,’’ in Proc. AAAI, 2020,
pp. 12168–12175.

[5] Y. Yuan, L. Ma, J. Wang, W. Liu, and W. Zhu, ‘‘Semantic conditioned
dynamic modulation for temporal sentence grounding in videos,’’ in Proc.
NeurIPS, 2019, pp. 8199–8206.

[6] S. Zhang, H. Peng, J. Fu, and J. Luo, ‘‘Learning 2D temporal adjacent
networks for moment localization with natural language,’’ in Proc. AAAI,
2020, pp. 12870–12877.

[7] J. Mun, M. Cho, and B. Han, ‘‘Local-global video-text interactions for
temporal grounding,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10807–10816.

[8] S. Chen,W. Jiang,W. Liu, and Y.-G. Jiang, ‘‘Learning modality interaction
for temporal sentence localization and event captioning in videos,’’ inProc.
Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 333–351.

[9] C. Rodriguez-Opazo, E. Marrese-Taylor, F. S. Saleh, H. Li, and S. Gould,
‘‘Proposal-free temporal moment localization of a natural-language query
in video using guided attention,’’ inProc. IEEEWinter Conf. Appl. Comput.
Vis. (WACV), Mar. 2020, pp. 2453–2462.

[10] Z. Zhang, Z. Lin, Z. Zhao, and Z. Xiao, ‘‘Cross-modal interaction networks
for query-based moment retrieval in videos,’’ in Proc. SIGIR, Jul. 2019,
pp. 655–664.

[11] G. D. Logan, ‘‘Linguistic and conceptual control of visual spatial atten-
tion,’’Cogn. Psychol., vol. 28, no. 2, pp. 103–174, Apr. 1995, doi: 10.1006/
cogp.1995.1004.

[12] C. D. Gilbert and W. Li, ‘‘Top-down influences on visual processing,’’
Nature Rev. Neurosci., vol. 14, no. 5, pp. 350–363, May 2013, doi:
10.1038/nrn3476.

[13] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learning
spatiotemporal features with 3D convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

[14] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new
model and the kinetics dataset,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(CVPR), Jul. 2017, pp. 6299–6308.

[15] C. Zhang, Y. Zou, G. Chen, and L. Gan, ‘‘PAN: Towards fast action recog-
nition via learning persistence of appearance,’’ 2020, arXiv:2008.03462.
[Online]. Available: http://arxiv.org/abs/2008.03462

[16] K. Simonyan and A. Zisserman, ‘‘Two-stream convolutional networks for
action recognition in videos,’’ in Proc. NeurIPS, 2014, pp. 568–576.

[17] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van
Gool, ‘‘Temporal segment networks: Towards good practices for deep
action recognition,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV). Amsterdam,
The Netherlands: Springer, 2016, pp. 20–36.

[18] J. Lin, C. Gan, and S. Han, ‘‘TSM: Temporal shift module for efficient
video understanding,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 7083–7093.

[19] Z. Liu, J. Li, G. Gao, and A. K. Qin, ‘‘Temporal memory network towards
real-time video understanding,’’ IEEE Access, vol. 8, pp. 223837–223847,
2020, doi: 10.1109/ACCESS.2020.3043386.

[20] J. Lei, L. Yu, T.-L. Berg, and M. Bansal, ‘‘TVR: A large-scale dataset for
video-subtitle moment retrieval,’’ inProc. Eur. Conf. Comput. Vis. (ECCV),
2020, pp. 447–463.

[21] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2014, pp. 1725–1732.

[22] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,
V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thurau,
I. Bax, and R. Memisevic, ‘‘The ‘something something’ video database for
learning and evaluating visual common sense,’’ in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5843–5851.

[23] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. EMNLP, 2014, pp. 1532–1543.

[24] M. Regneri, M. Rohrbach, D. Wetzel, S. Thater, B. Schiele, and M. Pinkal,
‘‘Grounding action descriptions in videos,’’ Trans. Assoc. Comput. Lin-
guistics, vol. 1, pp. 25–36, Dec. 2013, doi: 10.1162/tacl_a_00207.

[25] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles, ‘‘Dense-
captioning events in videos,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 706–715.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. NeurIPS,
2017, pp. 6000–6010.

[27] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

JUNGKYOO SHIN (Member, IEEE) received
the B.S. degree in information and communica-
tion engineering from Dongguk University, Seoul,
South Korea, in 2019. He is currently pursuing the
M.S. degree under the supervision of Prof. Jiny-
oung Moon. His current research interests include
computer vision, pattern recognition, and machine
learning.

JINYOUNG MOON received the B.S. degree in
computer engineering from Kyungpook National
University (KNU), Daegu, Republic of Korea,
in 2000, and the M.S. degree in computer science
and the Ph.D. degree in industrial and systems
engineering fromKorea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, Republic
of Korea, in 2002 and 2018, respectively. Since
2002, she has been working with the Artificial
Intelligence Research Laboratory, Visual Intelli-

gence Research Section, Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Republic of Korea. Since 2019, she has been with
ICT Department, University of Science and Technology (UST), where she is
currently an Assistant Professor. Her research interests include action recog-
nition, online and offline action detection, temporal moment localization, and
video QA.

116972 VOLUME 9, 2021

http://dx.doi.org/10.1006/cogp.1995.1004
http://dx.doi.org/10.1006/cogp.1995.1004
http://dx.doi.org/10.1038/nrn3476
http://dx.doi.org/10.1109/ACCESS.2020.3043386
http://dx.doi.org/10.1162/tacl_a_00207

