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ABSTRACT This paper addresses the problem of resilient average consensus in the presence of Byzantine
agents in multi-agent networks. An event-triggered secure acceptance and broadcasting algorithm is pro-
posed in which full knowledge of the network and high computational capabilities of each regular node are
not required. The computational expense and communication times are also reduced for the event-triggered
mechanism. We analyze the conditions for such a fully distributed algorithm to succeed in the f-local
adversarial model. A new definition called an f-propagation graph, which is extended from r-robustness, turns
out to be more accurate in describing the required topology conditions. Based on the proposed algorithm
and topology conditions, we provide another algorithm to detect the adversarial nodes according to their
abnormal behavior. When the network topology is an f-propagation graph, regular nodes that are equipped
with the proposed algorithms update state values synchronously and eventually converge asymptotically
to resilient average consensus. Simulation results are provided to verify the effectiveness of our proposed
algorithms and the network topology conditions.

INDEX TERMS Multi-agent networks, resilient consensus, adversary detection, event-triggered, Byzantine
agents.

I. INTRODUCTION
The consensus problem is widely recognized as one of the
most fundamental problems in distributed multi-agent net-
works. It has attracted significant attention from diverse con-
texts due to its widespread application, with examples such
as distributed computing [1], smart grids [2], sensor net-
works [3], and robotics teams [4]. In general, the consensus
objective requires that the nodes in the network collectively
reach agreement on global quantities of interest, such as a
certain state variable or set of state variables. Often, agree-
ment on the average, mean, or some other function of the state
variables is desired.

One of the major challenges in consensus in large-scale
multi-agent networks is their limited communication capabil-
ity [5]. Nodes obtain information by sensor measurements,
calculations, or communication only with neighbors in the
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network, due to limited communication channels, energy,
or computational capacity. Another major concern in net-
worked systems is security since large-scale distributed sys-
tems have many potential vulnerable points for failures or
attacks. Cyberattacks [6] on multi-agent networks can be
roughly classified into two types, denial-of-service attacks
and deception attacks, depending on the adversary’s secu-
rity goals of the data exchanged through communication
networks. Denial-of-service attacks [7] aim to disrupt data
availability and exchange ability by maliciously consum-
ing communication or computational resources. Deception
attacks [8] intend to compromise data integrity and trust-
worthiness by manipulating packets over communication
networks. To defend against these attacks, one common
approach is to increase the barriers to entry in security, such as
cryptographic techniques [9]. Another approach is to improve
the resilience of the application layer protocols, such as by
designing consensus algorithms so that even if a subset of the
nodes are compromised, the remaining regular nodes are still
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able to achieve their objective (possibly a relaxed version of
the objective).

In this paper, our focus is on security issues in consen-
sus dynamics and especially on averaging. While resilient
consensus has been studied for a long time in the litera-
ture, a number of papers devoted to designing consensus
algorithms in various scenarios have appeared during the
past decade (e.g., [10]–[12]). Average consensus means that
all nodes in the network reach the average of the initial
states by exchanging local information among nodes. In [13],
the authors first proposed a so-called weighted gossip algo-
rithm for solving the distributed averaging problem by using
weights calculated from the topological characteristics of the
communication graph. Yu et al. [14] proposed a periodic gos-
siping algorithm, where each pair of agents executes repeat-
edly following a prespecified periodic schedule. Relatedwork
on privacy preservation of initial states can be seen in [15],
where a privacy-preserving average consensus algorithm was
proposed to guarantee the privacy of the initial state and
asymptotic consensus on the exact average of the initial val-
ues by adding and subtracting random noise to the consen-
sus process. However, most of these consensus schemes are
easily disrupted in an uncertain environment where faults or
even adversarial attacks can be present. In particular, we deal
with so-called Byzantine attacks, where some of the nodes are
hijacked and do not follow the given algorithms or may even
attempt to keep the regular nodes from reaching consensus
by sending inconsistent or misguiding information to their
neighbors.

In previous work, connectivity has been considered a fun-
damental metric in analyzing resilience to adversaries [16].
Under the classical point-to-point communication model,
f Byzantine nodes among n nodes can be overcome if and
only if two conditions are satisfied: n ≥ 3f + 1 and vertex
connectivity at least 2f + 1 [17], [18]. Under the wireless
broadcast communication model, it is also sufficient for reg-
ular nodes to achieve consensus in the presence of f malicious
nodes if the network connectivity is at least 2f + 1 [19], [20].
However, these proposed methods either require that regular
nodes have at least some full knowledge of the network
topology or assume that the network is complete.

Recent remarkable advances made in resilient consensus
include a novel definition of network robustness, termed
r-robustness, which facilitates purely local interaction rules
against adversarial nodes [21]. This property provides a
comprehensive characterization of network topologies for
algorithms such as Weighted Mean-Subsequence-Reduced
(W-MSR) to succeed despite the presence of broad class
adversaries. Vaidya et al. [22] provided a necessary and suf-
ficient condition for the algorithm to succeed under the
Byzantine model, which used different proof techniques but
had similar main results. In [23], this notion of robustness
in common random graph models for complex networks was
studied, and it was shown that the properties of robustness
and connectivity share the same values or threshold function
in particular graphs. Since a computationally efficient method

to check whether this property holds for an arbitrary graph is
not available, [24] provided algorithms to build an r-robust
graph, which starts with an r-robust graph and continually
adds new nodes with incoming edges from at least r nodes
in the existing graph. In [25], different algorithms to create
r-robust graphs with theminimum necessary number of nodes
were given, which are called F-elemental graphs. Larger
r-robust graphs can be built by appending these elemental
graphs sequentially to other r-robust graphs. The results for
r-robustness were later generalized to different cases. Dibaji
and Ishii [26] and [27] investigated resilient consensus of
second-order sampled-data multi-agent systems and derived
topological conditions in terms of graph robustness. The
resilient consensus problem for switchedmulti-agent systems
composed of continuous-time and discrete-time subsystems
was considered in [28], where a switched filtering strategy
for regular nodes based upon available local information
was proposed. Wang and Ishii [29] developed event-triggered
update rules that could mitigate the influence of the malicious
agents and, at the same time, reduce the communication.
Sundaram and Gharesifard [30] proposed a secure distributed
optimization algorithm that guarantees that the regular nodes
converge to the convex hull of the minimizers of their local
functions under certain conditions on the graph topology.
Dibaji et al. [31] proposed a fully distributed secure accep-
tance and broadcasting algorithm (SABA) in the presence
of adversarial Byzantine agents, which relies on the strong
robustness of the graph and is easy to implement in prac-
tice. Robust graphs have been proved useful in the context
of resilient consensus problems. However, in these works,
r-robustness is only applicable to a specific class of algo-
rithms. When the update rules of the algorithm change, the
r-robustness may not be suitable for the required topological
properties.

Recently, there have been a growing number of research
results on event-triggered control, the aim of which is to
reduce the computational and communication burden while
ensuring satisfactory system performance. Wu et al. [32]
developed a distributed algorithm derived from the event-
triggered strategy for achieving resilient consensus multi-
agent networks under deception attacks. Rahnama and
Antsaklis [33] proposed an event-triggered control design
that guarantees synchronization for output passive agents.
Learning-based control methods for mitigating adversar-
ial effects are used, which are based on the passivity
of agents and the statistical distribution of agents’ out-
put. Zegers et al. [34] investigated the approximate leader-
follower consensus problem in the presence of Byzantine
adversaries using event- and self-triggered controllers.
A Lyapunov-based detection strategy is used to iden-
tify Byzantine agents in the neighborhood. The stability
of the developed event- and self-triggered control strate-
gies is proved through a non-smooth Lyapunov analysis.
Zegers et al. [35] investigated formation control and leader
tracking with robustness to Byzantine adversaries using
event-triggered controllers. A reputation-based strategy was
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developed for each agent to detect Byzantine agent behaviors
within their neighbor set. Zhao et al. [36] studied edge-based
event-triggered strategies for the average consensus problem
in multi-agent systems. A distributed event-triggered algo-
rithm was presented based on edge information rather than
neighbor information. However, in these works, high compu-
tational capabilities of nodes are needed for state updating,
and extra resources are needed for computation of the event
triggering functions or for monitoring node states to detect
when the states reach the thresholds for triggering events.

Motivated by these observations, in this paper, we approach
the resilient average consensus problem in the presence of
Byzantine nodes through a retrieval procedure and an adver-
sary detection procedure. First, an algorithm is developed
for resilient distributed retrieval, in which global knowledge
of network topology and high computational capabilities
of each regular node are not required. One reason for this
drastic change is that, unless the method of [19] is used,
the retrieval process does not involve the node dynamics
or global graph knowledge. Furthermore, computational
expense and broadcasting times are reduced, benefitting from
the event-triggered mechanism. However, the cost of such
fully distributed algorithms appears in more restrictive topol-
ogy. Second, we analyze the topological properties as part of
the convergence conditions, which shows that f-propagation
graphs are more accurate than r-robust graphs [31] in describ-
ing the topological properties needed for the algorithms to
succeed. Third, an adversary detection algorithm is devel-
oped. This adversary detection strategy relaxes the limitations
of the adversarial model in [31], where it is supposed that
adversarial nodes do not send faulty initial states. Finally,
state update functions are given for regular nodes that use the
accepted initial state values and converge to resilient average
consensus asymptotically. Simulation results are provided
to verify the effectiveness of the proposed algorithms, and
comparisons are made with the Linear Consensus Protocol
(LCP) [10] and the W-MSR algorithm. The main contribu-
tions are summarized as follows:

1) An event-triggered secure acceptance and broadcast-
ing algorithm (E-SABA) is developed for resilient dis-
tributed retrieval of initial states.

2) We analyze the topological properties in terms of
f-propagation graphs and calculate the lower-bounded
number of time steps for nodes to run the algorithms as
part of the convergence conditions.

3) An adversary detection algorithm (ADA) is developed
to detect the adversarial nodes that deviate from the pre-
scribed rules of E-SABA and then broadcast through
the network.

The rest of the paper is organized as follows: In Section II,
we introduce the preliminaries of graph theory and the adver-
sary model, and we give a problem statement. In Section III,
we introduce the systemmodel and present E-SABA, the net-
work topology conditions, and the time steps for E-SABA to
succeed. The ADA and state update functions are provided in
Section IV and Section V. The simulation results are given

in Section VI. Finally, the conclusion and future work are
provided in section VII.

FIGURE 1. An example of network topology that is not a strongly
3-robust graph but a 1-propagation graph.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this section, first, some basic concepts in graph theory and
the adversary model that will be used throughout the paper
are reviewed; then, the adversary model is introduced, and
the problem to be considered is formulated.

A. NOTATION AND GRAPH THEORY
Throughout this paper, the symbols Z, Z+, N, R and R+
denote the set of integers, positive integers, natural numbers,
real numbers, and positive real numbers, respectively. The
cardinality of a set S is denoted by |S|. Given two sets S1
and S2, the union and intersection of the sets are denoted by
S1 ∪S2 and S1 ∩S2, respectively. The reduction of S1 by S2
is denoted by S1\S2 = {x ∈ S1 : x /∈ S2}.
A network modeled by an undirected graph is denoted as

G = (V, E), where V = {1, 2, . . . , n} is the set of nodes and
E ⊂ V×V is the set of edges. An edge (j, i) ∈ E indicates that
node i and node j can share information with each other. The
neighbor set of node i is denoted as the set Ni = {j, |(j, i) ∈
E}, and the degree of node i is denoted by di = |Ni|. The
index of each node is used as a unique ID.

In this paper, the main result is closely related to the
network topology. We introduce a graph property known
as network robustness, which has been widely used in the
literature on resilient distributed computation over networks.
Definition 1 (r-Reachable Set [24]): For a given graph G,

a nonempty subset S of nodes of G is said to be r-reachable
if ∃i ∈ S such that |Ni\S| ≥ r , where r ∈ Z+.
Definition 2 (Strongly r-Robust Graph [24]): A graph is

strongly r-robust if for any nonempty subset S ⊆ V , either S
is r-reachable or ∃i ∈ S such that V\S ⊆ Ni, r ∈ Z+.
For a better description of the conditions for the network

topology, we introduce two new concepts extended from the
above definitions. An example can be seen in Fig. 1.

VOLUME 9, 2021 121433



P. Zhang et al.: Event-Triggered Resilient Average Consensus With Adversary Detection

Definition 3 (f-Propagation Graph): A graph is an
f-propagation graph if for any nonempty subset S ⊆ V ,
S satisfies at least one of the following conditions:

(i) ∃i ∈ S , |Ni\S| ≥ 2f + 1.
(ii) ∀i /∈ S, |Ni ∩ S| ≥ f + 1.
Definition 4 (Regular f-Propagation Graph): A graph is

a regular f-propagation graph if for any nonempty subset
S ⊆ V , S satisfies at least one of the following conditions:
(i) ∃i ∈ S, |Ni\S| ≥ f + 1.
(ii) ∀i /∈ S, |Ni ∩ S| ≥ 1.

B. ADVERSARY MODEL
We consider a consensus problem with Byzantine nodes in
the network. Byzantine nodes can obtain complete knowledge
of the network topology and all the communications between
nodes in the network at every time step. They can deviate from
any predefined algorithm rules, such as by updating their state
values arbitrarily or transmitting different values to different
neighbors, perhaps colliding with other Byzantine nodes.

It is quite clear that no distributed consensus among nodes
can be achieved without constraining the adversary if there
are too many adversarial nodes. We partition the set of nodes
V into two subsets: the subset R of regular nodes and the
subset A = V\R of adversarial nodes. Thus, it is necessary
to restrict the number of adversarial nodes in the network
or the neighborhood of regular nodes. For dealing with dis-
tributed fault-tolerant algorithms, there are two adversarial
node distribution models, the f-total model and the f-local
model, that have been widely used in the literature. Under
the f-total model, the total number of adversarial nodes in the
network is upper bounded by the number of f ∈ N. However,
to allow for a large number of adversarial nodes in large-scale
networks, we consider the locally bounded fault model taken
from [37], [38], defined as follows:
Definition 5 (f-Local Adversarial Model): Each regular

node i in the network has at most f adversarial nodes in the
set of neighbors; i.e., |Ni ∩A| ≤ f ,∀i ∈ R.
In this paper, we consider a time-invariant network mod-

eled by a graph G = (V, E). Once a node is categorized
as a Byzantine node, it cannot be reincorporated into the
regular node set even if it becomes cooperative. This strategy
seems strict but ensures the accuracy of information sharing
while considering the information from a node that was once
Byzantine to be suspicious.

C. PROBLEM STATEMENT
Suppose that each node i has an initial state value given
by xi [0] at time step k = 0. The goal is for each regular
node i to gather sufficient information from its neighbors and
to calculate some functions that depend on (some of) these
initial values and then update its state value. To achieve this,
nodes can exchange values with neighbors, securely identify
and accept the values of other regular nodes and broadcast
them through the network based on a strategy that adheres to
the constraints imposed by the network topology. The average
consensus problem involves designing distributed algorithms

where each node updates its states using only the local infor-
mation from neighbors so that all nodes xi [k] eventually
converge to the initial state average x̄ =

∑n
i=1 xi [0]/n,

defined as follows:
Definition 6 (Average Consensus [31]): A network of n

nodes over graph G is said to achieve average consensus if
∀i ∈ V , lim

k→∞
xi [k] = x̄, where x̄ =

∑n
i=1 xi [0]/n, k ∈ Z+.

The average consensus problem in the presence of
Byzantine adversarial nodes is defined as follows:
Definition 7 (Resilient Average Consensus [31]): A net-

work of n nodes over graph G under Byzantine adversar-
ial attacks is said to achieve resilient average consensus if
∀i ∈ R, lim

k→∞
xi [k] = x̄, where x̄ =

∑
i∈R xi [0]/|R|,

k ∈ Z+.
Unlike average consensus, the value x̄ to be calculated is

only the average of the initial state values of regular nodes
which is despite the engagement of adversarial nodes in the
process. In this paper, we aim to present a solution for the
resilient average consensus problem.We describe the solution
in three parts: the resilient distributed retrieval of the initial
state values, the adversary detection process, and the state
update rule each node has to execute. First, Algorithm 1 is
for initial state information diffusion between nodes, which
is described as resilient distributed retrieval. Second, Algo-
rithm 2 is for regular nodes to detect Byzantine nodes in the
set of neighbors, which deviate from the prescribed rules of
Algorithm 1, and share the detection results. Third, regular
nodes update states using the average of the initial state values
received by nodes up to time instant k, converging to average
consensus asymptotically. The formal statement of resilient
distributed retrieval is defined as follows:
Definition 8 (Resilient Distributed Retrieval [31]) A net-

work of N nodes over graph G under Byzantine adversar-
ial attacks is said to achieve resilient distributed retrieval if
∀i ∈ R, i can retrieve the initial state values of all the other
regular nodes, i.e., xj [0], j ∈ R\{i}.

III. RESILIENT DISTRIBUTED RETRIEVAL
To reach the average value of the network, regular nodes need
to obtain the initial state values of the other nodes. In this
section, we first introduce a novel event-triggered distributed
algorithm for information retrieval in the network in the
presence of f-local adversarial nodes. With this algorithm,
regular nodes can securely identify and accept the true initial
state values of the other nodes and broadcast them through
the network. Then, we analyze the required constraints on
the network topology that guarantee that all regular nodes
in the network will achieve resilient distributed retrieval
using the proposed algorithm.

A. SYSTEM MODEL
Each node i holds a state value xi [k], a state vector 8i [k],
and a state matrix Xi [k] at time step k . xi [k] is the state of
node i, the elements of 8i [k] are the other nodes’ initial
states that node i accepted, and the elements of Xi [k] are
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the other nodes’ initial states that node i received from its
neighbors at time step k . Each regular node only has access
to its neighbors’ state vector information 8j [k], j ∈ Ni, and
does not know anything about the rest of the network except
the assumption mentioned below.
Assumption 1: Regular nodes know an upper bound m for

the number of nodes (including both regular and adversarial)
in the neighborhood and an upper bound n for the number of
nodes (including both regular and adversarial) in the network.

Note that these upper bounds m and n are defined for
preferred implementations where fixed-size static memory
vectors are used instead of variable-sized memories. That
means this assumption is not restricted, and the exact value
m or n is not needed for regular nodes to calculate functions
or update states.

State vector8j [k−1], which node i gets from its neighbor
node j at time step k , is expressed as

8j [k − 1] = [xj,1 [k − 1], xj,2 [k − 1], . . . , xj,l
× [k − 1], . . . , xj,n[k − 1]] (1)

where xj,l [k−1] is the initial state value of node l that node j
holds at time step k − 1, l ∈ {1, 2, . . . , n}, j ∈ Ni, k ≥ 1. The
state vector 8j [k − 1] will be stored in state matrix Xi [k],
which is represented as

Xi [k] =


8j1 [k − 1]
8j2 [k − 1]

. . .

8jm [k − 1]

 (2)

for j1, j2, . . . , jm ∈ Ni. Substituting 8j [k − 1] into this
expression, Xi [k] can be expressed as

Xi [k] =


xj1,1 [k − 1] xj1,2 [k − 1] . . . xj1,n [k − 1]
xj2,1 [k − 1] xj2,2 [k − 1] . . . xj2,n [k − 1]

. . . . . . . . . . . .

xjm,1 [k − 1] xjm,2 [k − 1] . . . xjm,n [k − 1]


(3)

Xi [k] contains all state information that node i received
from all neighbors at time step k . For an easy description of
the state value acceptance function2, the expression of Xi [k]
can be written in a column vector form as

Xi [k] = [91 [k], 92 [k], . . . , 9l [k], . . . , 9n [k]] (4)

where l ∈ {1, 2, . . . , n} and

9l [k] = [ xj1,l [k − 1] xj2,l [k − 1] . . . xjm,l [k − 1] ]T .

(5)

B. ALGORITHM DESIGN
We assume that there are no communication delays in the
network. At each time step k , each regular node i receives
the data packets 8j [k − 1] related to time instant k − 1
from neighbors and stores them in Xi [k]. The data packets
are marked with the identity of the nodes and the time steps.
In this paper, we do not consider the situation in which

adversarial nodes use a fake identity to send values, since this
can be solved by cryptographic techniques.

Adversarial nodes may send different false values to their
neighbors. To prevent this, strategies are considered and a
majority vote is employed. At time step k = 1, regular nodes
accept only the initial states of neighbors. At time step k > 1,
each regular node i accepts only the values that are sent by
at least f + 1 neighbors and saves these values with the
corresponding identity tag l in xi,l[k]. We use 2 to represent
the majority vote. As the algorithm is running, each regular
node i fills its state vector8i [k] with more initial state values
tagged with new identities. The state value accepting rule is
defined as

xi,l [k] = 2(9l [k]) (6)

where l ∈ {1, 2, . . . , n}. xi,l [k] is the initial state value
of node l that is accepted and stored in 8i [k] by node i.
We obtain

8i [k] = [2(91 [k]), 2(92 [k]), . . . ,

×2(9l[k]), . . . ,2(9n [k])] (7)

Now, 8i [k] can be calculated from Xi [k]. (7) can be
written as

8i [k] = 2(Xi [k]) (8)

The values in state vector 8i [k] update only when new
state values have been accepted by node i according to the
accepting rule. Each regular node will act as a source node
and a transmitter. The information propagates in the network
somewhat similarly to a ‘‘flood’’. The nodes in the center of
the network will achieve resilient distributed retrieval earlier
than the edge nodes. The time steps for different nodes to
achieve resilient distributed retrieval are different. Therefore,
it is meaningless to make a broadcast if the values in 8i [k]
have not been updated, since there is nothing new to share
with neighbors. Event-triggered broadcasting is employed to
solve this problem. We define the trigger condition as

8i [k] 6= 8i [k − 1] (9)

where k > 1. At time step k , each node i compares the values
in 8i [k] and 8i [k − 1], then broadcasts 8i[k] to neighbors
only when condition (9) is satisfied. This checking process
relies on a global clock embedded in each node, and each
regular node checks only once at each time step k . Thus, Zeno
behavior is excluded.

Now, we will give a detailed description of E-SABA.
Inspired by SABA, E-SABA is designed as follows:

At time step k = 0, each node i has an initial state value
xi[0], a state vector 8i [0], and a state matrix Xi[0]. We set

8i [0] = [null, null, . . . , xi,i [0], . . . , null]1∗n (10)

where xi,i [0] = xi [0], xi,i [0] denotes the state value of node i
that node i holds at time step k = 0, and n is an upper bound
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for the number of nodes in the network. We set

Xi [0] =


null
null
. . .

null


m∗1

(11)

Then, each node i broadcasts 8i [0] to its neighbors.
At time step k = 1, each node i receives 8j [0] from its

neighbors, updates Xi [1], accepts xj,j [0] from 8j [0], and
updates the state value in 8i [1] with xi,j[1] = xj,j [0]. Then,
each node i broadcasts 8i [1] to its neighbors.
At time step k > 1, each node i does the following:
1) Copy: make a copy of 8i [k − 1] and Xi [k − 1], and

rename them as 8i [k] and Xi [k], respectively.
2) Receive: receive 8j [k − 1] from neighbors, j ∈ Ni, and

store them in Xi [k].
3) Accept: calculate 8i [k] = 2(Xi [k]), and store the new

accepted values in 8i [k].
4) Broadcast: broadcast 8i [k] to all neighbors if

8i[k] 6= 8i [k − 1].
Regular nodes never stop executing this algorithm until

a lower-bounded number of time steps denoted by Kmax is
reached. The calculation method of Kmax is given in the next
section.

With this algorithm, each regular node will act as a source
node and a transmitter. The information sets that are broad-
casted between nodes contain not only their initial state val-
ues but also the initial state values of the others that they
have accepted. The pseudocode of E-SABA can be seen in
Algorithm 1.
Remark 1: Unlike SABA, in E-SABA, first, the node

broadcasts its state vectors only at a certain time event when
the state vector is updated. At each time step k , each node
checks its state vector8i [k] to determine whether it has been
updated. The node broadcasts its state vector to its neighbors
if this condition is satisfied and otherwise does not. With the
help of this event-triggered update mechanism, we find that
there are fewer nodes that broadcast state vectors during the
information exchange period. Second, after receiving state
vectors from neighbors, the node stores them in the state
matrix Xi [k]. Before the state value accepting process, node i
checks the elements of the state vector 8i[k] to determine
whether they are null. If the element xi,j [k] is not null,
this means that the state value of node j has been accepted
by node i. If xi,j [k] is null, then the algorithm goes to the
state value acceptance process. This mechanism reduces the
expense of computation. Third, the state value acceptance
function 2 is also optimized. When dealing with a certain
state value received from neighbors, node i can accept an
identical value and end the loop once it has counted f + 1
copies from different neighbors, and it continues to deal with
the next state value from neighbors that it may accept. Since
there are many more than f + 1 neighbors of one node, this
mechanism also reduces the expense of computation.
Remark 2: The goal of E-SABA is for nodes to gather

enough initial values of other nodes and then calculate certain

functions that depend on these initial values. In E-SABA,
each regular node acts as a source node and a transmitter.
Consider a regular node s that holds the initial value xs [0]
at time step k = 0. According to the update rule of E-SABA,
it will take at most Kmax time steps for any regular node in the
network to accept xs [0]. For a single node s,Kmax denotes the
upper bound of time steps. However, while each node acts
as a source node, E-SABA needs to execute at least Kmax
time steps for each regular node in order to ensure that all
regular nodes have accepted the initial values of the others.
This shows that Kmax is a lower bound of the number of time
steps for E-SABA.

Algorithm 1 : Event-Triggered Secure Acceptance and
Broadcasting Algorithm (E-SABA)
Initialization: Each regular node i holds an initial state
value xi [0], a state vector8i [0], and a state matrix Xi [0] at
time step k = 0, then broadcasts 8i [0] to all its neighbors.
If k = 1 then

C: make a copy of 8i [0] and Xi [0], and rename them
as 8i [1] and Xi [1], respectively.
R: receive 8j [0] from neighbors, store them in Xi [1].
A: accept xj,j [0] in 8j [0] and update 8i [1], where
xi,j [1] = xj,j [0], j ∈ Ni.
B: broadcast 8i [1] to all neighbors.
end if
If k > 1 then
C: make a copy of8i [k−1] and Xi [k−1], and rename
them as 8i [k] and Xi [k], respectively.
R: receive 8j [k − 1] from neighbors, store them in
Xi [k].
For xi,l [k − 1] is null in 8i [k − 1] do

If state value acceptance 2(9l [k]) 6= null then
A: accept the result value of 2(9l [k]) and save
it in memory 8i [k].

end if
end for
If 8i [k] 6= 8i [k − 1] then
B: broadcast 8i [k] to all neighbors.

end if
end if

Result: 8i [k] = [xi,1 [k], xi,2 [k], . . . , xi,n [k]]

C. NETWORK TOPOLOGY ANALYSIS FOR E-SABA
For SABA, the following result from [31] provides a suf-
ficient condition for each regular node in the network to
eventually accept the initial states of all the other regular
nodes.
Theorem 1 ([31]): Each node i ∈ R in the network G, by

executing SABA for K̄ ≥ N − 2 steps, will retrieve xl[0],
l ∈ R\{i}, under the f-local adversarial model if G is strongly
(2f + 1)-robust.

This is only a sufficient condition. We will now provide
a different sufficient condition and a necessary condition for
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SABA and E-SABA to succeed in terms of network topology.
We will first introduce a sufficient condition with the concept
of an f-propagation graph.
Theorem 2: Consider a time-invariant network modeled by

a graph G = (V, E), where each node updates information
by executing E-SABA with parameter f . Under the f-local
adversarial model, resilient distributed retrieval is achieved if
the network topology is an f-propagation graph.

Proof: Consider a partition S1, S2, F1, F2 of V such that
S1 and S2 are nonempty and composed of regular nodes and
the nodes in F1 and F2 behave as if they are adversarial. SL =
S1 ∪ F1, SR = S2 ∪ F2, F = F1 ∪ F2. Assume that some
node s ∈ S1 holds an initial state value xs [0]. According
to the rules in E-SABA, there are two ways for any regular
node i ∈ S2 to accept xs [0]. One is that node i receives the
identical value xs [0] from at least f + 1 distinct neighbors
and then accepts xs[0]. The other is that node i is a neighbor
of s and it accepts xs [0] at time step k = 1.
We use contradiction to prove that all other regular nodes

will receive and accept xs [0]. Suppose that E-SABA fails in
the given network so that some regular nodes fail to accept
xs [0]. Let S1 denote the regular nodes that accept xs [0], and
let S2 denote the regular nodes that fail to accept xs [0].
According to condition (i) of the f-propagation graph,

we know that some regular node i in SR must have at least
2f + 1 neighbors in SL . Under the f-local adversarial model,
at most f of these nodes that are in F2 can be adversarial.
Thus, all the other nodes are regular nodes in S1 that have
accepted xs[0] and rebroadcast it to node i; then, node i will
receive and accept xs [0]. Fig. 2(a) illustrates the sets used in
this proof.

If condition (i) of the f-propagation graph is not satis-
fied, according to condition (ii) of the f-propagation graph,
we know that any regular node s must have at least f + 1
neighbors in SR. Under the f-local adversarial model, at most
f of these nodes that are in F2 can be adversarial. Node smust
have a regular neighbor node i in S2; then, regular node i will
receive and accept xs [0]. Fig. 2(b) illustrates the sets used in
this proof.

In either case, this contradicts the assumption that regular
nodes in S2 fail to receive and accept xs [0]. �

Note that if the condition of either Theorem 1 or The-
orem 2 is satisfied, E-SABA and SABA will also succeed
under the f-local adversarial model. Finally, the proposi-
tion below shows that E-SABA and SABA succeed in cer-
tain networks that do not satisfy the condition proposed in
Theorem 1.
Proposition 1: For some f , there exist graphs that are not

strongly (2f + 1)-robust but are f-propagation graphs.
Proof: For f = 1, construct an undirected graph G as

follows: Start with a complete graph of four nodes, denoted
as 2, 3, 4, 5. Add node 1 connected to 2, 3, 4. Add node 6 con-
nected to 3, 4, 5. Add node 7 connected to 4, 5, 6. Add node 8
connected to 5, 6, 7. This example can be seen in Fig. 1. Take
nodes 1, 8 as subset S1, and take the other nodes as subset S2.
Assuming that the nodes in S1 and S2 are all regular, it is easy

to check that the initial state of the nodes in S1 can be accepted
by the nodes in S2. S2 does not satisfy the conditions of
strongly (2f+1)-robust graph, but graphG is an f-propagation
graph. �

FIGURE 2. Illustration for the proof of theorem 2.

Although the condition in Theorem 2 is sufficient, it is
not necessary since the f-local adversarial model gives only
an upper bound f for adversaries in each regular node’s
neighborhood. Next, we give a necessary condition.
Theorem 3: Consider a time-invariant network modeled

by a graph G = (V, E) in which each node updates infor-
mation by executing E-SABA with parameter f . Under the
f-local adversarial model, the network topology is a reg-
ular f-propagation graph if resilient distributed retrieval is
achieved.

Proof: Consider SL and SR, which are disjoint subsets of
V such that SL and SR are nonempty and composed of both
regular and adversary nodes. Assume that regular node s ∈ SL
holds the initial value xs [0].
By assumption, E-SABA is correct in a given network

under the f-local adversarial model. Thus, all the regular
nodes will accept xs [0] eventually. Let r(r > 0) be the
earliest time step at which at least one of the regular nodes
in SR accepts xs [0]. Let node i be one of the regular nodes in
SR that accepts xs [0] at time step r . Such a regular node imust
exist since SR is nonempty and composed of both regular and
adversary nodes. For regular node i to accept xs [0], according
to the update rule of E-SABA, either node i must be the
neighbor of s that directly accepts xs [0] at time step k = 1 or
node i must have f + 1 distinct neighbors that have already
accepted xs [0]. For the former situation, node s must have a
neighbor in SR; this corresponds to condition (ii) of a regular
f-propagation graph. For the latter situation, these f +1 nodes
that have already accepted xs [0] before node imust be outside
SR by time step r ; this corresponds to condition (i) of a regular
f-propagation graph. �
Remark 3: From Theorem 2 and Theorem 3, we know

that E-SABA is correct in a given network if the network
topology satisfies certain conditions. The sufficient condition
and the necessary condition are not the same since the f-local
adversarial model gives only an upper bound f for adversaries
in each regular node’s neighborhood. These conditions are
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closely related to the actual number of adversaries in each
regular node’s neighborhood. In some special cases, the suf-
ficient and necessary conditions may coincide. For example,
the conditions for the network topology in Theorem 2 are
sufficient and necessary for E-SABA to succeed when each
regular node has f adversarial nodes in its neighborhood. The
case is similar for Theorem 3 when each regular node has no
adversarial nodes in its neighborhood.
Remark 4: Since we do not know which nodes in the

network may be adversarial, the concept of the f-propagation
graph describes what the network topology of all nodes
should be for E-SABA to succeed. These conditions are con-
ducive to actual implementation, such as building the network
topology by adding new nodes to a known f-propagation
graph.

Next, we investigate the time step Kmax for regular nodes
to stop executing the algorithm in E-SABA when the regular
nodes are programmed to run the algorithm for a lower-
bounded number of steps denoted by Kmax.

D. CALCULATING Kmax

First, we investigate some properties of the nodes and their
neighbors in the f-propagation graph under the f-local adver-
sarial model.
Theorem 4: In a given network G of N nodes, N > 2f + 1,

N ∈ Z+. Under the f-local adversarial model, each node
(including both regular and adversarial nodes) has at least
2f + 1 neighbors (including both regular and adversarial) if
G is an f-propagation graph.

Proof: Consider any node s ∈ V; we obtain a subset
S1 = {s} such that S1 ⊆ V . Since G is an f-propagation
graph, subset S1 must satisfy at least one of the two condi-
tions of the f-propagation graph. For condition (i), the only
node s in S1 must have at least 2f + 1 neighbors outside.
For condition (ii), any nodes outside S1 must have neighbors
in S1; since N > 2f + 1, N ∈ Z+, this means node s has
(N − 1) ≥ 2f + 1 neighbors. In either case, node smust have
at least 2f + 1 neighbors. �
Proposition 2: In a given network G of N nodes,

N > 2f + 1, N ∈ Z+. Under the f-local adversarial model,
each regular node has at least f +1 regular nodes as neighbors
if G is an f-propagation graph.

Proof: From Theorem 4, we know that any node has at
least 2f + 1 neighbors; this also means that any regular node
has 2f + 1 neighbors. Under the f-local adversarial model,
we know that each regular node has at most f adversarial
nodes among its neighbors. So, each regular node has at least
f + 1 regular nodes as neighbors if G is an f-propagation
graph. �
Proposition 3: In a given network G of N nodes, N >

2f + 1, N ∈ Z+. Under the f-local adversarial model, each
adversarial node has at least f + 1 regular nodes as neighbors
if G is an f-propagation graph.

Proof: Consider S1 and S2, which are disjoint subsets
of V such that S1 and S2 are nonempty, S1 is composed
of regular nodes and S2 is composed of adversarial nodes.

Now, consider that the nodes in S1 and S2 must satisfy at
least one of the two conditions in the f-propagation graph.
However, under the f-local adversarial model, any regular
node s ∈ S1 has no more than f neighbors in S2 since S2 is
composed of adversarial nodes; this means S1 cannot satisfy
condition (i). Any node outside S1 must have at least f + 1
neighbors in S1 when condition (ii) is satisfied. We conclude
that any adversarial nodes in S2 must have at least f + 1
neighbors in S1. �
These theorems and propositions concern the adjacency

relationship among nodes of different natures (regular or
adversary nodes) in the f-propagation graph under the f-local
adversarial model. Theorem 4 is used in calculating Kmax.
Proposition 2 and Proposition 3 are used in adversary detec-
tion and explain why adversary nodes can be detected and
broadcasted through the network. Based on these properties,
Kmax is given as follows:
Theorem 5: In a network of N nodes that is an

f-propagation graph, N > 2f + 1, N ∈ Z+. Under the f-local
adversarial model, each regular node will accept the initial
states of the other regular nodes if E-SABA is executed for
Kmax ≥ (N − 2f − 1) time steps.

Proof: Consider a regular node s that holds the initial
value xs [0] at time step k = 0. According to the update rule
of E-SABA, regular node j will receive and accept xs [0] at
k = 1, where j ∈ Ns. Now, consider a regular node i ∈ Nj,
where j ∈ Ns; i.e., i is a neighbor of a neighbor of node s
or a so-called 2-hop neighbor of node s. At time step k = 2,
node i receives xs [0] from node j for the first time. However,
node i cannot decide whether to accept xs [0] sent by node j
until it receives xs [0] from at least f other nodes. In the worst
case, xs [0] has to be passed through all the other nodes that
have not accepted xs [0] at time step k = 1, which are all the
nodes in V\{s,Ns}. From Theorem 4, we know that |Ns| ≥

2f + 1, so it will take N − (2f + 1) steps at most for node i
to accept xs [0]. Note that each node i does not know exactly
when to stop executing E-SABA, and thus keeps executing it
until Kmax to ensure that each regular node has accepted the
initial states of the other regular nodes. �

IV. ADVERSARY DETECTION
The value x̄ to be calculated in resilient average consensus is
only the average of the initial state values of regular nodes,
which is despite the engagement of adversarial nodes in
the process. To reach a resilient average consensus for the
network, each regular node not only needs to obtain the initial
state values of the other nodes but also needs to know the
adversarial node set. Thus, regular nodes remove the initial
state values of adversarial nodes in the function calculation.
In E-SABA, the adversarial nodes are assumed to broadcast
their initial state values to neighbors at time step k = 0,
and these initial values will broadcast through the network
and be accepted by regular nodes. However, the initial values
of the adversarial nodes are also suspicious or not reliable,
as the adversarial nodes behave abnormally in the network.
Now, we provide a method to detect the adversarial nodes
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according to their behavior and broadcast the adversarial node
set through the network.

Note that through the procedure described in E-SABA,
each node i receives state information 8j [k − 1] from its
neighbors and stores them in Xi [k] at time step k . All nodes
are programmed to calculate the state set 8i [k] that they will
accept from Xi[k]. Consider the following scenarios:
Detection (1): An adversarial node smay broadcast a false

constant state value xs,l [k] = a, l ∈ {1, 2, . . . , n}, to node i
at time step t = k > 0, and the value xs,l [k] will be stored
in Xi[k + 1] by node i. In E-SABA, all regular nodes are pro-
grammed to send the accepted constant value to neighbors,
and xs,l [k] is the initial state value of node l that node s holds
at time step k . From Theorem 2 and Theorem 5, we know
that all regular nodes can retrieve the initial state value of
regular node l earlier than or at Kmax. From Proposition 2,
we also know that each regular node has at least f +1 regular
nodes as neighbors. Therefore, regular node i will accept the
correct value xl [0] 6= a from neighbor l at time step t = 1 or
xj,l [k] 6= a, j ∈ Ni, from at least f + 1 regular neighbors at
some time step 1 < t ≤ Kmax. Then, it checks the state value
in Xi[k + 1] and detects node s as an adversarial node.
Detection (2): An adversarial node smay broadcast a value

xs,l[k] = a, l ∈ {1, 2, . . . , n}, to node i at time step t1 = k and
change it at some time step t2 > k . According to E-SABA, all
regular nodes are programmed to send the accepted constant
values to neighbors until time step Kmax. Thus, node i will
detect node s as an adversarial node when checking the state
values in Xi [t2] and Xi [t2 − 1] at time step t2.
Note that regular node i will be able to detect adversarial

nodes among neighbors and mark them as adversarial nodes
in E-SABA, with extra memory buffers Xi [k] and Xi [k − 1]
to track the adversarial behaviors. Now we propose an ADA,
and the pseudocode of the ADA can be seen in Algorithm 2.
Theorem 6: Each regular node i ∈ R in the network G,

by executing the ADA for 2∗Kmax time steps, will detect any
adversarial node s in the E-SABA process, s ∈ A, under the
f-local adversarial model if G is an f-propagation graph.

Proof: From Theorem 2 and Theorem 4, we can easily
obtain that the initial state value xs [0] of node s will be
retrieved by all the other nodes at time step Kmax if at least
f + 1 neighbors of node s accept xs [0] and broadcast in the
E-SABA process. The information broadcasting and accept-
ing rules in the ADA are the same as in E-SABA.

Consider an adversarial node s that broadcasts false state
values to neighbors. From Proposition 3, we know that each
adversarial node has at least f + 1 regular node neighbors.
If at least f + 1 regular neighbors of node s detect it as an
adversary and broadcast according to the rules, all regular
nodes in the network will accept node s as an adversary by
executing the ADA. If at most f regular neighbors of node s
detect it as an adversary and broadcast according to the rules,
the other regular nodes in the network will not accept node s
as an adversary according to the rule in the ADA. In this case,
the neighbors of node s will be corrected by removing the
adversary mark of node s at time step k = 2 ∗ Kmax. Thus,

all regular nodes in the network are consistent in accepting
node s as an adversary or not an adversary in the ADA.

Algorithm 2 : Adversary Detection Algorithm (ADA)
Initialization: Each regular node i has an adversary node
set �i [0] = [null]1∗n
If 1 < k < 2 ∗ Kmax then
R: receive �j [k − 1] from neighbors, j ∈ Ni.
If receive adversary marks of node l in �j [k − 1] from
f + 1 neighbors, then

A: accept node l as an adversary in �i [k].
end if
If 1 < k ≤ Kmax then

IfDetection (1) is true orDetection (2) is true then
D: mark node s as an adversary in �i [k].

end if
end if
If �i [k] is updated then

B: broadcast �i [k] to all neighbors.
end if
end if
If k = 2 ∗ Kmax then
If not receive marks of node s as an adversary from
f + 1 neighbors in �j [k − 1], then

Unmark node s as an adversary in �i [k].
end if
Result: �i [k]

In the ADA, we only consider detecting the adversary
nodes during the E-SABA execution time, which is 1 < k ≤
Kmax. However, it will take another Kmax time steps at most
for all regular nodes to accept the result. Thus, it will take
2 ∗Kmax time steps at most for all regular nodes to detect any
adversarial node s in the network. �
Remark 5:Wedescribe the sets8i [k] and�i [k] separately

for ease of understanding in this paper. In fact, the sets 8i[k]
and �i [k] can be merged during implementation by using a
strategy such as the following:

xi,l [k] =


null, initial
value, acceptedvalue
FF, adversary

(12)

where FF is a specified value or flag for marking the node as
adversarial in the set. Thus, the memory expense is reduced.
We can observe that node i uses only sets from neighbors and
calculates according to the detection rules while executing the
ADA. The computational complexity is clearly O(n) for each
node i. However, the algorithm needs to be executed for more
time steps (at most Kmax); thus, the result can be broadcasted
and accepted by regular nodes in the network.

V. RESILIENT AVERAGE CONSENSUS
In this subsection, we suppose that the nodes in the network
update their states synchronously. Note that the resilient dis-
tributed retrieval process does not involve the node dynamics
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or global graph knowledge. We propose a state update func-
tion for regular nodes using the accepted initial state values
at each time step, and eventually, all regular nodes converge
to a consensus asymptotically. We consider two scenarios.

One is that all regular nodes are equipped with E-SABA
and achieve average consensus. At each time step k , regular
node i, by running E-SABA, receives 8j [k − 1] from its
neighbors and then updates 8i [k] when new values are
accepted. Node i updates its state at each time step k using
the average of the initial state values xi,l [k] in 8i [k], which
are accepted by node i up to time step k . The state update
function is defined as

xi [k] =

∑
xi,l [k]
|Fi [k]|

, l ∈ Fi [k] (13)

whereFi [k] is the set of indices of the elements in 8i[k] that
are nonempty and its cardinality is given by |Fi[k]|.
The other scenario is that all regular nodes are equipped

with E-SABA and the ADA and achieve resilient average
consensus. At every time step k, regular node i, by running
E-SABA and the ADA, receives 8j [k − 1] and �j [k − 1]
from its neighbors and then updates 8i [k] and �i [k] when
new values are accepted. Node i updates its state at each time
step k using the average of the initial state values in 8i [k]
(excluding the initial state values of nodes that are marked in
�i [k]) that are accepted by node i up to time step k . The state
update function is defined as

xi [k] =

∑
xi,l [k]

|Fi [k]| − |Wi [k]|
, l ∈ Fi [k]&l /∈Wi [k] (14)

whereFi [k] is the set of indices of the elements in 8i[k] that
are nonempty and its cardinality is given by |Fi[k]|;Wi [k] is
the set of indices of the elements in �i [k] that are nonempty,
and its cardinality is given by |Wi [k]|.
Remark 6: Note that the resilient distributed retrieval pro-

cess does not involve the node dynamics or global graph
knowledge. The information shared between nodes while the
algorithms are executing is the state value vector 8i [k] and
adversary node set �i [k]. Each regular node updates the
state values xi [k] according to (14) but does not share the
updated state values xi [k] with neighbors. The state update
function (14) can also be expressed in another format as
a controlled system. However, both formats have the same
meaning while solving the average consensus problem in this
paper.
Remark 7: The solution for the resilient average consensus

problem is described in three parts: the resilient distributed
retrieval of the initial state values, the adversary detection pro-
cess, and the state update rule each node has to execute. First,
E-SABA is for initial state information diffusion between
nodes, which is described as resilient distributed retrieval.
Second, the ADA is for regular nodes to detect Byzantine
nodes in the set of neighbors, which deviate from the pre-
scribed rules of E-SABA, and share the detection results.
Third, regular nodes update their states according to (14)
using the average of the initial state values accepted by nodes

FIGURE 3. A 1-propagation graph with 11 nodes. Nodes 3 and 10 are
adversarial nodes. If we remove the edge between 2 and 4, the network
fails to reach average consensus since it is no longer an f-propagation
graph.

up to time instant k , converging to an average consensus
asymptotically.

Here, we connect our results together to show how our
proposed strategy leads a network with specific topology
constraints to resilient average consensus.
Proposition 4: Each regular node i ∈ R achieves resilient

average consensus by executing E-SABA for Kmax ≥ (N −
2f − 1) time steps and the ADA for 2Kmax ≥ 2(N − 2f −
1) time steps, performing update rule (14) under the f-local
adversarial model if the network topology is an f-propagation
graph.

Proof:Nodes are considered to work in an f-propagation
graph under the f-local adversarial model. Each regular node
updates its state value xi [k] at each time step k according
to update rule (14) using the information accepted in 8i [k]
and �i [k] up to time step k. According to update rule (14),
xi [k] is a linear combination of the accepted initial values
xi,l [k] in 8i[k], excluding the values of nodes in �i [k].
As E-SABA (or the ADA) is executing, more values may be
accepted in8i [k] (or�i [k]). All regular nodes will converge
to x̄ asymptotically if all regular nodes ultimately have the
same values in 8i [k] and �i [k]. Referring to Theorem 2 and
Theorem 5, each regular node will securely retrieve the initial
state values of the others (stored in 8i [k]) if it executes
E-SABA forKmax steps. Referring to Theorem 6, each regular
node will detect or retrieve any adversarial nodes (stored in
�i [k]) if it executes the ADA for 2Kmax steps. Thus, resilient
average consensus is achieved. �

VI. EXAMPLE
In this section, we present a simulation example to illus-
trate the effectiveness of our proposed algorithm in the pres-
ence of adversarial Byzantine attacks. The LCP and W-MSR
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FIGURE 4. The LCP algorithm fails to achieve consensus because of adversarial attacks. Average consensus is not achieved using our proposed
algorithm in a network that does not satisfy the f-propagation graph requirements.

algorithm are considered in the comparison of our proposed
algorithms.

Consider the network shown in Fig. 3, which is an
f-propagation graph with f = 1. We assign the initial values
of the nodes as xi [0] = i, i ∈ {1, 2, . . . 11}, which yields
the average value x̄ = 6. Nodes 3 and 10 are chosen as the
adversarial nodes, and the others are regular nodes. Node 3
begins and continues broadcasting the false information set

83 [k] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

to neighbors, and it updates its state following

x3 [k] = sin(
k
2
)+ 3

when k ≥ 2. Node 10 begins and continues broadcasting the
false information set

810 [k] = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

to neighbors, and it updates its state to a random value
between 9 and 11 when k ≥ 2. The other regular nodes
are assumed to broadcast information sets and update states
following the predefined algorithm.

Without any security strategy, the LCP algorithm is very
vulnerable to adversarial attacks. This can be seen in Fig 4(a),
where the regular nodes update their states with a standard
LCP. We can see from the figure that the regular nodes
constantly oscillate and cannot reach agreement because of
the influence of adversarial nodes 3 and 10.

The network in Fig. 3 is not an f-propagation graph if we
remove the edge between nodes 2 and 4. Nodes 1 and 2
cannot accept the state values of regular nodes other than
nodes 4 and 5 in E-SABA. This leads to the failure of average
consensus even though the regular nodes are equipped with
E-SABA and the regular nodes update their states according
to function (13) at every time step. The simulated state trajec-
tories are plotted in Fig. 4(b).

Next, we connect nodes 2 and 4. Thus, the network of
Fig. 3 is an f-propagation graph. According to Theorem 2,
it will achieve resilient distributed retrieval with E-SABA.
While regular nodes update their states according to func-
tion (13) at every time step, average consensus is achieved.
The simulated state trajectories are illustrated in Fig. 5(a),
where the regular nodes achieve a consensus of x̄i [Kmax] = x̄,
i ∈ {1, 2, 4, 5, 6, 7, 8, 9, 11}. Furthermore, the time steps
at which a node broadcasts during E-SABA execution are
shown by colored markers • in Fig. 5(b). It is notable that
some nodes stop broadcasting much earlier than time step
Kmax = 8. Since some nodes have accepted all the initial
states of other regular nodes before Kmax, 8i [k] will not
update anymore; thus, broadcasting stops. Nodes 3 and 10 are
assumed to broadcast at every time step since their goal is
to make more nodes accept their false values and affect the
system.

When the regular nodes in the network of Fig. 3 are
equipped with both E-SABA and the ADA, they can not only
accept the values of regular nodes 8j [k] but also detect the
adversarial nodes and broadcast the results �i [k] through
the network. Regular nodes update their states according to
function (14) at every time step. The simulation results are
presented in Fig. 6(a) and Fig. 6(b). While the time step
k ≤ 2, the situation in Fig. 6 is similar to that in Fig. 5, where
the regular nodes behave according to E-SABA and no nodes
have been detected as an adversary.When the time step k = 2,
adversarial nodes 3 and 10 broadcast false information sets to
their neighbors. The neighbors of nodes 3 and 10 will detect
nodes 3 and 10 as adversarial at time step k = 3 and broadcast
this result �i [k] to their neighbors according to the ADA.
When the regular nodes accept node 3or 10 as adversarial,
the state value of node 3 or 10 is removed from the calculation
of state updates. This explains the fluctuation in Fig. 6(a) and
the extra broadcast times in Fig. 6(b) compared with those
in Fig. 5. Since the state values of adversarial nodes 3 and 10
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FIGURE 5. Average consensus is achieved using E-SABA in the presence of adversarial nodes 3 and 10 since the network is an f-propagation graph.
The time steps for broadcasting are reduced, which is a benefit of the event-triggered mechanism.

FIGURE 6. Resilient average consensus is achieved using E-SABA and the ADA in the presence of adversarial nodes 3 and 10 since the network is
an f-propagation graph. Extra time steps are needed for adversary detection and information broadcasting.

are removed by the regular nodes, the regular nodes finally
achieve resilient average consensus.

The performance of the W-MSR algorithm in the network
of Fig. 3 can be seen in Fig. 7(a). The W-MSR algorithm
achieves an asymptotic consensus despite the adversarial
behavior of nodes 3 and 10. In contrast to our proposed
algorithm, whose results are shown in Fig. 5(a) and Fig. 6(a),
the asymptotic consensus of the W-MSR algorithm is dif-
ferent from the average consensus or resilient average con-
sensus; the influence of the adversarial state value cannot be
completely eliminated once it appears, and it finally achieves
a consensus of approximately 5.58. Furthermore, the number
of time steps that the W-MSR algorithm needs for reaching
consensus is much larger than that of our proposed algorithm.
The comparison is shown in Fig. 7(b), where nodes 3 and 10

operate as regular nodes in the network. Fig. 6(a) and Fig. 7(a)
provide a comparison of our proposed algorithm andW-MSR
when nodes 3 and 10 operate as adversarial nodes in the
network. In both cases, our proposed algorithms converge to
consensus faster with many fewer broadcast times. Compar-
ing Fig. 7(a) and Fig. 7(b), we can see that many more time
steps are needed for the W-MSR algorithm, especially when
adversarial nodes occur.

More time steps for consensus means more calculation
and greater communication expenses since the regular nodes
in the W-MSR algorithm broadcast at every time step. Our
proposed algorithm only updates states and broadcasts at
special time events, as illustrated in Fig. 5(b) and Fig. 6(b).
The calculation and communication expenses are thereby
reduced.
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FIGURE 7. Compared with the W-MSR algorithm, our proposed algorithm achieves an exact consensus with fewer time steps, either with or without
the presence of adversarial nodes, when the network topology is an f-propagation graph.

VII. CONCLUSION
In this paper, an event-triggered secure acceptance and broad-
casting algorithm and an adversary detection algorithm are
developed for the resilient average consensus problem in the
presence of Byzantine agents. Global knowledge of network
topology and high computational capabilities of each regular
node are not required in the proposed scheme. Furthermore,
computational expense and broadcasting times are reduced,
benefitting from the event-triggered mechanism. The suffi-
cient and necessary conditions are provided for the algorithm
to succeed under the f-local adversarial model. It is shown
that f-propagation graphs are more accurate than r-robust
graphs in describing the required topological properties for
the algorithms to succeed. Simulation results are provided to
verify the effectiveness of the proposed algorithms, and com-
parisons are made with the LCP and the W-MSR algorithm.

In the future, we will extend the research on the network
topology property called the f-propagation graph. Currently,
we do not have a computational method to check whether this
property holds in arbitrary graphs. We find that the preferen-
tial attachmentmodel for complex networksmay be helpful in
constructing an f-propagation graph. Furthermore, although
the objective of this paper is resilient average consensus,
the method proposed in this paper can be utilized for more
general functional calculation problems without modifica-
tion, allowing any node to calculate any arbitrary function of
the node values in a finite number of time steps. Utilizing the
proposed protocols in formation control of unmanned aerial
vehicles, distributed filtering, and wireless sensor networks is
a topic for future work. There may be delays in communica-
tions over the network and nodesmay update asynchronously.
Additional constraints may be considered when extending the
results to fit real applications.
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