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ABSTRACT In the design of conventional microwave devices, the parameters need to be continuously
optimized to meet the desired targets, and the whole process is time-consuming and laborious. As a surrogate
model, machine learning is an effective optimization method. However, in the modeling process, the high-
dimensional data processing and the complex nonlinear relationship between parameters is a problem to
be solved. This paper proposes a deep learning model for designing UWB antennas, which determines the
model structure of deep belief network (DBN) by particle swarm algorithm (PSO), and then combines DBN
and extreme learning machine (ELM). The proposed model can obtain higher feature learning capability
and nonlinear function approximation capability, and has been applied to the optimal design of the whole
structure of the fractal antenna and the notch structure of the MIMO antenna, and its S-parameters are well
fitted while meeting the requirements of the design targets. The DBN-ELMmethod obtains the good results
when comparedwith commonmodelingmethods using the same training samples (the rootmean square error
tested is 11.87% in the fractal antenna and 3.56% in the MIMO antenna). Overall, the proposed DBN-ELM
model has higher predictive and generalization capabilities, which can also be used to model more complex
antenna structures.

INDEX TERMS Deep belief network (DBN), extreme learningmachine (ELM), particle swarm optimization
(PSO), UWB antenna.

I. INTRODUCTION
At present, the design and analysis methods of traditional
antenna use Computer Aided Design (CAD), such as Com-
puter Simulation Technology (CST), High Frequency Struc-
ture Simulator (HFSS), etc. Once the antenna parameters
are changed, it needs to be simulated again, which leads
to the increase of design time and difficulty. The relation-
ship between the geometric and electrical parameters of
microwave devices is a combination of linear and nonlin-
ear, such as the relationship between dimensional parameters
and working frequency, return loss, radiation pattern and
other parameters [1]. Due to complex internal relationships,
when the design capabilities of microwave devices increase,
it makes the design process more complex and the com-
putational cost increases significantly. Building surrogate
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models is an efficient and feasible approach in microwave
device design [2], [3]. The EM-based surrogate models allow
the evaluation of the operating performance of microwave
devices. The surrogate model building process is usually
simple and reliable, avoiding repeated calls to EM simulation
software and reducing design time. Deep neural networks
turned out to be a promising method for slove complex com-
puting problems [4]–[6]. As the research progresses, deep
learning has good advantages in handling large amount of,
high-dimensional, nonlinear data and has effective applica-
tions in optimizing microwave device design [7]–[11]. In the
reference [10], a PSO-CNNmodel combining particle swarm
algorithm (PSO) and convolutional neural network (CNN)
was proposed to apply the PSO-CNN model to the optimal
design of fragmented antennas and obtained good optimiza-
tion results. In the reference [12], an improved multilayer
perceptron (M2LP) model, which is an equivalent convolu-
tional neural network (CNN) model of a standard multilayer
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perceptron (MLP), is proposed, and the model is applied to
the prediction of scattering parameters of capacitively fed
antennas, showing that the M2LP model can be used as
an efficient and reliable regression model for the optimal
design of antennas. This indicates that deep neural networks
have higher accuracy compared to traditional shallow neural
networks in microwave device modeling problems.

Deep Belief Network (DBN) have a strong feature learning
capability, which makes classification or prediction easier by
converting from low-level feature combinations to high-level
abstract representations [13]–[15]. DBNs have been devel-
oped and used in many fields, such as in acoustic model-
ing [14], medical classification [16] et al. In reference [8],
the Bayesian regularized deep belief network (R-DBN) was
first proposed and applied to the extraction of coupling
matrix, providing a new solution for inverse filter model-
ing. However, Bayesian optimization algorithms have a low
number of iterations in optimizing hyperparameters and can
easily fall into local optimization [17]. In reference [18],
a PSO-DBN-based model is proposed to improve the accu-
racy and analysis efficiency of the model by adaptively
adjusting the DBNmodel parameters through PSO. However,
it is easy to hide the number of layers too much, which causes
overfitting problem. In reference [19], researchers conducted
numerous experiments showing that multiple hidden layers
outperform a single hidden layer. Unfortunately, the number
of nodes in the DBN’s hidden layer is not easy to determine.
The algorithm has the advantages of easy implementation
and fast convergence, and can obtain the global optimal solu-
tion [20]. The PSO algorithm is widely used in in antenna
design [21]. In reference [22], the Ramped Convergence Par-
ticle SwarmOptimization (RCPSO) algorithm, using the Het-
erogeneous boundary conditions to search, achieve the design
requirements while reducing the overall antenna size. In refer-
ence [23], PSO is conceptually added to a bias of the antenna
design, and different methods are adopted to deal with con-
straint conflicts to optimize the rectangular ground, which
increases the working bandwidth of the antenna. Therefore,
PSO algorithm is used to optimize the model structure of
DBN and determine the optimal number of nodes in the
hidden layer [24].

In order to improve the antenna design efficiency and
antenna design within feasible design parameters, accurate
and reliable models are needed for optimization. Applying
DBN to antenna design can solve the complex nonlinear prob-
lems with high-dimensional parameters and reduce the time
to optimize the design. In the training process of DBN, each
layer of restricted Boltzmann machine (RBM) is first trained
by unsupervised greedy training, and the trained RBMs are
combined to construct DBN, and then the whole network
is fine-tuned by traditional global optimization algorithm to
make the network optimal. However, The global optimization
algorithm based on gradient cannot train deep neural network
well because of the shortcoming that get into local optimality
and global fine-tuning need a long time. Adding the extreme
learning machine (ELM) to the training process of the DBN

can enhance the prediction accuracy of the model and the
model performance [25].

In the study, an improved deep belief network-extreme
learning machine (DBN-ELM) model based on PSO opti-
mization is proposed in order to realize a high-precision
and fast antenna model for optimal design, which has been
applied to the optimal design of UWB antennas. Test samples
are selected for prediction with the proposed model, and the
predicted S-parameters are compared with those of the simu-
lation software to demonstrate the feasibility of the method.
In Section 2, the proposed DBN-ELM model is introduced,
the number of hidden neurons in DBN is determined by
PSO algorithm, and then the feature output extracted by the
improved DBN is used as the input of ELM to increase effi-
ciency of the whole model. In Section 3, the proposed model
is used to optimize the design of the UWB antennas. To ver-
ify the correctness of the method, an experimental model
of a fractal antenna and a Multiple-input-multiple-output
(MIMO) antenna with notch characteristics is designed and
tested. Finally, it ends with the brief conclusion of Section 4.

II. IMPROVED DBN-ELM MODEL
This section describes the proposed improved DBN-ELM
model. It mainly includes two parts. The first part introduces
the improved DBN model, using PSO algorithm to optimize
the number of hidden layer nodes of DBN, so as to obtain the
best network structure. The second part introduces the model
structure and training method of DBN-ELM.

A. STRUCTURE OF THE PROPOSED DBN – ELM MODEL
The DBN is a generative model that consists of multiple
RBMs, in which the entire neural network generates training
data according to the maximum probability by training the
weights among its neurons. During the training process, each
restricted Boltzmann machine network is trained layer by
layer from top to bottom, and get the original data in the
process of unsupervised learning of low-dimensional. The
dimensionality of the data is reduced while preserving the key
features of the data.

In this paper, an n-layer DBN is adopted, including an input
layer and n− 1 hidden layers, and n− 1 RBMs are obtained
through greedy training. The output of the n − 1 RBMs is
taken as the input of ELM, DBN and ELM are combined into
the overall model. Its network structure is shown in Fig. 1.

Assuming that the nth hidden layer has N nodes and the
n − 1th hidden layer has m nodes, define yi as the output of
the entire model, expressed as,

yj =
N∑
i=1

βig(W iHn−i + bi), j = 1, · · ·,m (1)

where,Wi is the weight from the n− 1th hidden layer to the
nth hidden layer, bi is the bias from the n− 1th hidden layer
to the nth hidden layer, βi is the output weight from the nth
hidden layer to the output layer. Then {Wi, bi} is determined
by ELM [26]. g(X) is the activation function. Where, Hn is
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FIGURE 1. Network structure of DBN-ELM.

the output from the n − 1th layer to the nth layer of DBN,
expressed as,

Hn=
[
g(W1Hn−1,1 + b1) · · · g(WNHn−1,1 + bN )
g(W1Hn−1,m + b1) · · · g(WNHn−1,m + bN

]
(2)

g(X) =
1

1+ e−X
(3)

E is the root mean square error function of the network,
the error between the target output T and the model predicted
output Y is calculated, N is the number of training samples,
and the error should be minimized in the optimization pro-
cess, expressed as,

E =

√√√√ 1
N

N∑
i=1

(Ti − Yi)2 (4)

B. PARAMETER OPTIMIZATION BASED ON PSO
ALGORITHM
The flowchart of the PSO to optimize the DBN-ELM
model is shown in Fig. 2. The optimization steps are given
below.

Step 1: Sample data preparation. The extracted data is
divided into 80% training set and 20% test set.

Step 2: PSO algorithm optimization DBN. Randomly
initialize the parameters of the RBMs to establish the
RBMs. In the training process, particle optimization is car-
ried out through PSO, and the optimal particle position
corresponding to the final number of DBN hidden layers
{N ,m} is output, and then the optimized DBN model is
obtained [27]. In the optimization process, the average accu-
racy of cross-validation of test samples was selected as the
fitness function.

Step 3: The features of the pre-trained DBN outputs are
trained by using ELM, and the parameters of the model are
fine-tuned to improve the model performance by calculating
the output error of the training samples.

Step 4: Output prediction data and test error.

III. CASES STUDY
With the rapid development of wireless communication sys-
tem, the base station equipment tends to be more and more
miniaturized, which means the size of antenna should be
smaller and smaller, and the UWB antenna is mostly used
in small base stations, and its size should be reduced.
As the working performance of UWB antenna is improved,
the design process is required to be more intelligent and effi-
cient. The deep learning algorithm also becomes an effective
method to optimize the design of antenna structure. In this
paper, an improved DBN-ELM model is proposed which
can be used for fast, accurate and high performance antenna
modeling. In this section, firstly, the design parameters of the
optimized antenna are introduced. Then the design parame-
ters of the proposed model and the simulation results of the
optimized antenna are presented. Based on this, the perfor-
mance comparison of the improved DBN-ELM model with
the conventional algorithm is also given to demonstrate the
proposed modeling method and experimental results.

HFSS-MATLAB-Api [28] is a library function in
MATLAB software, which can be used to generate scripts
and control the HFSS software through the script interface
to generate 3D models and analyze and solve them, and
finally output simulation results. The optimization design of
microwave devices can be done independently in MATLAB,
and the solution and simulation process is also done automat-
ically by MATLAB calling HFSS. In our proposed modeling
method, the data exchange between MATLAB software and
HFSS software is implemented in VB Script language to
obtain the training samples more efficiently and automat-
ically. Firstly, the antenna size parameters are changed in
MATLAB, and then the script of HFSS is called to simulate
in the electromagnetic simulation software HFSS to get the
training samples. finally, the trained DBN-ELM model can
be used for the optimization design of the antenna.

A. OPTIMIZED DESIGN OF FRACTAL ANTENNA
Fractal antenna is a kind of small multi-band antenna, which
can make the antenna resonate in multiple frequency bands
due to its self-similarity property. The overall structure
size and scale factor determine the multiple frequencies at
which the fractal antenna works. In some fractal structures,
the multi-band of the fractal antenna is controlled by prop-
erly adjusting the scale factor [29], [30]. The optimized
first UWB antenna is a fractal antenna, the overall size is
28.15mm × 28.4mm × 1.6mm. The radiation patch of the
antenna adopts the 4th order fractal structure and excises
the local upper triangle of the octagonal snowflake struc-
ture, which can further reduce the antenna size, while the
50 microstrip line is used for feed. In addition, the back of
the antenna has a rectangular slot in the middle and upper
part of the ground plate, and the left and right corners of the
ground plate are cut off to improve the impedance matching
characteristics of the improved snowflake fractal antenna,
which can extend the antenna bandwidth and further improve
the antenna performance. The overall schematic diagram of
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FIGURE 2. Flowchart of DBN-ELM model optimized by PSO algorithm.

FIGURE 3. Schematic diagram of the fractal antenna.

TABLE 1. Optimal dimension parameters of fractal antenna.

the fractal antenna is shown in Fig. 3, the left side is the top
layer and the right side is the bottom layer. The design index
of the antenna is to cover the operating band of 3.3-12GHz,
and S11 is less than −10dB. In antenna design, S11 is the
key parameter that impacts the radiation characteristics of
the antenna. If a good radiation characteristic is achieved,
the antenna will also get a high gain.

Ten dimensional parameters of this antenna are used
as optimization variables and randomly combined as input
data for the improved DBN-ELM model with the specific

parameters shown in Table 1. Randomly combined into
200 groups of different antenna parameters as training inputs,
with 10 parameters in each group. The simulation is invoked
by HFSS through a VB Script, and each set of antenna
size parameters input has the corresponding S-parameters
as output samples. Through the experiment, the HFSS sim-
ulation results in the time of 88.17 seconds for one set of
samples.

The model parameters are very critical to the experimen-
tal results, as studies have shown that the model structure,
number of iterations, learning rate, and number of input sam-
ples have a significant impact on the performance. Through
experiments, the number of hidden layer nodes optimized
by PSO algorithm is 40 and 32, respectively, and the par-
ticle dimension is 2, and the number of hidden layers is 2.
Fig. 4 shows the RMSE of the PSO algorithm with different
number of iterations. It can be seen that the test error of the
model reaches 1e-05 at 53 iterations, and the training error
of the model reaches 1e-05 at 66 iterations, satisfying the
termination condition.
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FIGURE 4. Flowchart of DBN-ELM model optimized by PSO algorithm.

FIGURE 5. S11 simulation results of the optimized fractal antenna.

The optimal parameters of the model are set as follows:
110-40-32-10, with a learning rate of 0.001 and the number
of iterations of 200 until the results converge. The completed
antenna size parameters in this paper are shown in Table 2,
and Fig. 5 compares S11 and HFSS simulation results pre-
dicted by the method proposed in this paper. As can be seen
from Fig. 5, the antenna is designed to operate in a frequency
range of 3.2 to 12GHz, and the actual simulation results show
that the frequency response in the range of 3.3 to 12.1 GHz
is less than −10 dB. With the increase of the fractal order,
the minimum operating frequency decreases gradually. When
the order reaches 4, the antenna has two resonant frequency
point, and the values S11 are all below−20dB. Because of the
good resonance characteristics, the bandwidth of the antenna
can be broadened, and the absolute bandwidth can basically
cover the working band range of UWB communication sys-
tem. Due to the basically fitting curve of HFSS simulation
results and the curve of prediction results of the proposed
method in Fig. 5, it shows that the proposed model has high
accuracy and can replace the HFSS simulation.

For the discrete frequency points of 3.4GHz, 6.85GHz
and 8.8GHz, respectively, view the radiation pattern of the
antenna, as shown in Fig. 6. It can be seen that the radiation
pattern of the antenna’s E-plane is bidirectional, and a ’8’
shape with good radiation front and rear flaps appears. The
radiation pattern of the H-plane is omnidirectional, indicating
that the antenna has good radiation characteristics. However,

FIGURE 6. Radiation patterns of the fractal antenna at discrete
frequencies of (a) 3.3 GHz, (b) 6.85 GHz and (c) 8.8 GHz.

at the higher 8.8GHz, more electromagnetic waves will be
radiated due to the finite rectangular ground contact, which
makes the radiation flap slightly distorted, resulting in the
antenna radiation omnidirectional characteristic is not as
good as the low frequency band effect.
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FIGURE 7. RMSE of the fractal antenna.

The performance comparisons of ANN, MLP, DBN and
PSO optimized DBN-ELM for fractal antennas are shown
in Table 3 and Fig.7. It can be seen from Fig. 7 that the
RMSE of DBN-ELM is the smallest among the four methods,
which is 11.87%. After calculation, the prediction accuracy
of DBN-ELM is 68.13% better than the ANN, 68.88% better
than the MLP, and 58.60% better than the DBN, 53.10%
better than the PSO-DBN and 41.47% better than the R-DBN.
It can be seen that the DBN-ELM model optimized by PSO
has high prediction accuracy. In this experiment, the total
computation time for 200 sets of samples is 17,634 seconds,
which is less than 5 hours. Compared with the conventional
HFSS design process, the method in this paper is more simple
and fast. In addition, compared with the results in the M2LP
model [12], the proposed method can process more training
data after fewer unsupervised learning iterations.

TABLE 2. Optimal dimension parameters of fractal antenna.

TABLE 3. Comparison of results of different methods for the fractal
antenna.

B. OPTIMAL DESIGN OF NOTCH MIMO ANTENNA
MIMO antennas are simple and compact, good port isolation
and other good performance indicators. MIMO technol-
ogy is widely used in multi-standard mobile/wireless sys-
tems [31]. The optimized second antenna structure is the
MIMO antenna, the schematic diagram is shown in Fig. 8,
the top layer is shown on the left and the bottom layer is

FIGURE 8. Schematic diagram of the MIMO antenna.
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TABLE 4. Optimal dimensional parameters of the MIMO antenna.

TABLE 5. Structural parameters of the optimized MIMO antenna.

FIGURE 9. Simulation results of S-parameters of optimized MOMI
antenna.

shown on the right. The size of the antenna is 41mm ×
25mm× 1.6mm, and the bandwidth of the antenna is widened
by a wrench-shaped microstrip feed line, and a rectangular
structure is introduced in the ground plane of the antenna
to obtain a good port isolation. The design objectives of
the antenna are: the operating frequency is 3.1-12.0 GHz,
and S11 is less than −10dB, and S21 is more than −15 dB
in the whole operating frequency. In order to suppress the
interference in the downlink band of X-band (7.25-7.75GHz)
and realize the notch characteristics of the MIMO antenna,
C-shaped branches are introduced on the antenna radiator,
and by adjusting the size of the notch structure and its
position are used to determine the frequency range to be
suppressed. The proposed DBN-ELM model can accurately
predict the size of the C-shaped dendrites (for L7, W8 and d

FIGURE 10. Radiation patterns of MIMO antenna at discrete frequencies
of (a) 4.2GHz, (b) 6.2GHz and (c) 8.2GHz.

in Fig. 8). Similarly, 500 sets of data in Table 4 are prepared as
training input samples, and the corresponding S-parameters
are calculated by HFSS simulation software simulation as
training output samples. The sample acquisition process took
25,620 seconds. The 500 sets of training data are substituted
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TABLE 6. Comparison of results of different methods for the MIMO
antenna.

FIGURE 11. RMSE of the MIMO antenna.

into the DBN-ELMmodel for training to find the antenna size
that best meets the design requirements.

The DBN-ELMmodel structure is defined as 120-28-26-3.
The dimensional parameters of the optimizedMIMO antenna
are shown in Table 5, and the comparison of the predicted
S-parameters of the DBN-ELM model and the HFSS sim-
ulation results are shown in Fig. 9. It can be seen from the
figure that the antenna produces a notch band from 6.9 to
7.9 GHz after adding the predicted notch structure, which
effectively suppresses the interference in the downlink band
of satellite X-band from 7.25 to 7.75 GHz. In addition, S21
is higher than −15 dB from 2.8 to 13 GHz. Because the
prediction of DBN-ELM model is basically consistent with
the simulation results of HFSS, so the proposed method can
replace HFSS in antenna design. Fig. 10 shows the radiation
pattern of the MIMO antenna measured on the E-plane and
H-plane at different frequencies of 4.2 GHz, 6.2 GHz and
8.2 GHz. The above results show that the optimized MIMO
antenna is simple, compact, and has good port isolation per-
formance. The antenna structure designed in this paper is
more complex compared to the literature [32], which indi-
cates that this method can be applied to more complex model
structures.

A comparison of the different model optimization results
for the MIMO antenna is shown in Table 6 and Fig. 11.
According to Fig. 11, the RMSE of DBN-ELM is 3.56%. Its
prediction accuracy is 14.2% better than the ANN, 81.00%
better than the MLP, and 76.84% better than the DBN,
67.67% better than the POS-DBN and 19.46% better than
the R-DBN. It can be concluded that DBN-ELM has better
prediction capability.

IV. CONCLUSION
To address the time-consuming and laborious issue of design-
ingmicrowave devices by traditional electromagnetic simula-
tion software, this paper proposes a DBN-ELM model based
on PSO optimization. Themodel can quickly extract samples,
reduce the complexity and computational cost caused by
repeated simulations in the design process of antennas, and
greatly improve the efficiency of antenna design. In the exper-
iment, two UWB antenna structures are optimized through
this model: (1) The working frequency band of the fractal
antenna is 3.3-12.1GHz, and S11 is less than −10dB; (2) The
working frequency band of the MIMO antenna with notch
characteristics is 3.1-12.0 GHz, and S11 is less than −10dB,
and the isolation degree is more than 15 dB. Using the model
to optimize the C-shaped stubs introduced on the radiation
patch to suppress the interference of the X satellite downlink
communication frequency band (7.25-7.75GHz). The experi-
mental results show that the proposed model has good fitting
accuracy for the S-parameters of the above antenna compared
with the traditional simulation software HFSS, which proves
the feasibility of the method. In terms of model performance,
the prediction accuracy of the proposed DBN-ELM is higher
than that of other surrogate models, with stronger reliability
and better prediction capability.

In the experiment, the model considers only a two-layer
structure, and in the case of satisfying a certain accuracy,
can quickly achieve a good optimization results. However,
in order to design an antenna with better working perfor-
mance, further research is needed to improve the applicability
of the method. In summary, the proposed DBN-ELM model
can effectively replace the conventional electromagnetic sim-
ulation software, providing a new solution for designing
antennas.
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