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ABSTRACT This paper proposes an adaptive fuzzy observer based fault tolerant controller for a pneumatic
active suspension system considering unknown parameters, actuator failures, and displacement constraints.
A pneumatic spring is used for a quarter car model to enhance the vibration attenuation performance. Since
the pneumatic system contains uncertain nonlinearities, fuzzy logic systems are utilized to approximate
unknown nonlinear functions of unmodeled dynamics and variousmasses of passengers. Besides, a nonlinear
disturbance observer is proposed to estimate the effects of the actuator failures, approximation errors,
and external disturbances. By utilizing the disturbance estimation and fuzzy approximation techniques,
an adaptive fault tolerant control (FTC) is designed to enhance the output performance of the vehicle
suspension. Meanwhile, the command filtered scheme is introduced to solve the explosion of complexity
problem in the traditional backstepping approach by avoiding virtual controller derivatives. In contrast to
previous results, the proposed control can handle the fault tolerant problem and ensure the tracking error of
vertical displacement converges into a small-predefined boundary by introducing the prescribed performance
function. Moreover, the stability of the closed-loop system is analyzed according to the Lyapunov theory.
Finally, comparative simulation examples and experimental studies are performed on the active pneumatic
suspension test bench to verify the feasibility of the proposed scheme.

INDEX TERMS Active suspension systems (ASSs), nonlinear disturbance observer (NDOB), prescribed
performance function (PPF), fuzzy logic systems (FLSs), command filtered control (CFC).

I. INTRODUCTION
With the development of the automotive industry, the sus-
pension system is the most important component of the
vehicle chassis, which can improve passenger comfort and
driving safety [1]. Therefore, the active suspension designs
have attracted significant attention during the past decades
by adopting a wide variety of actuators, involving electro-
magnetic [2] and hydraulic actuators [3]. To better vibration
isolation, pneumatic actuators are extensively considered and
applied both in automobile research andmanufacturing due to
high reliability and ease of installation features [4]. By regu-
lating the inlet and exhaust airflow between the air bellow and
the pressure source, the ride height and stiffness coefficient

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

of the suspension system can be controlled simultaneously
to enhance ride comfort [5]. However, the dynamic model
of air spring contains lumped parametric uncertainties due
to the thermodynamic characteristics while the pneumatic
stiffness depends on the bellow rubber’s behavior under
external force [6]. Besides, there are still several challenges
in designing the controller for pneumatic suspension as it
requires controlling the air spring and proportional pressure
valve simultaneously. In particular, it is very important to
ensure the chassis stability under the presence of unknown
masses of passengers and various road conditions.

To further enhance the suspension performance, many
advanced controllers have been investigated to handle vari-
ous problems, including adaptive control [7], optimal con-
trol [8], sliding mode control [9], [10], and backstepping
control [11]. Nazemian andMasih-Tehrani [12] developed an
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optimized controller to maximize the dynamic performance
and reduce the energy assumption of the pneumatic suspen-
sion. Some adaptive sliding mode controllers were proposed
to address the unknown dynamics of the pneumatic suspen-
sion [13], [14]. Rui [15] designed an adaptive sliding mode
control considering the nonlinear dynamical characteristic of
the pneumatic system. To improve the ride height motion for
pneumatic active suspension under the presence of paramet-
ric uncertainties and unmodeled dynamics, the backstepping
technique has been applied in [16], [17]. Besides, the problem
of hard constraints for ASSs was solved by the backstep-
ping control schemes in [18]. Zhang et al. [19] designed the
adaptive backstepping control to enhance the ride comfort by
regulating the chassis displacement. To guarantee the tracking
error and convergence rate of the system states under themax-
imum overshoot, a new control scheme combining PPF was
introduced to improve the output constraints [20], [21]. How-
ever, in most previous works, the suspension systems were
assumed that accurate mathematical models were established
even though parametric uncertainties or external disturbances
in physical systems always exist, which make adverse effects
on the control objectives.

Since the neural networks control and fuzzy logic sys-
tems technique have proved the ability to approximate
unknown functions [22], several intelligent controllers using
these approximation methods have been developed for
the ASSs [23], [24]. In particular, these intelligent con-
trol methods can be well combined with backstepping to
effectively improve the control performance of suspension
systems [25], [26]. Because the ASSs contain uncertain
parameters, neural networks are employed to estimate these
unknown functions [27]. Li et al. [28] proposed an adap-
tive event-triggered fuzzy controller which considered the
nonlinear uncertainties for the ASSs. To reject the distur-
bances caused by actuator saturation, a disturbance observer
based Takagi-Sugeno fuzzy control was designed for an
active seat suspension to guarantee passenger comfort by
Ning et al. [29]. Although these aforementioned approaches
can satisfy the requirement of suspension, the explosion of
complexity problem induced by repetitive virtual controller
derivatives can limit the scope of the traditional backstepping
application [30], [31]. Fortunately, dynamic surface control
can solve this limitation by introducing a first-order filter
to estimate these derivatives. However, the errors caused
by the filters are not considered in this technique, which
could reduce the control performance definitely [3]. As an
alternative, a command filtered control can solve this prob-
lem [32]. By adopting error compensation mechanisms, CFC
can diminish the errors of the command filters to improve
the control efficiency [33]. Nonetheless, only a few studies
applied CFC and FLS for the pneumatic ASSs.

On the other hand, most previous results assumed that the
suspension systems were in fault-free operating conditions
and that ideal actuator behavior was implemented for the
control designs [34], [35]. However, various unpredictable
actuator failures often occur in the control system, which

may degrade the output suspension performance and even
lead to controller instability [36], [37]. To enhance the control
efficiency and guarantee system reliability, the issue of fault
tolerant should be investigated for the suspension control
designs [38]. Hence, some researchers have proposed many
adaptive controllers to solve the problems of sensor and
actuator failures for many years [39]–[41]. A fault tolerant
scheme is an effective approach to solve the problem of
actuator failures and it can ensure the desired performance
by combing the proper controller with an approximation
technique [42], [43]. Jing and Yang [44] investigated an
adaptive fuzzy observer-based fault tolerant tracking con-
trol for uncertain nonlinear systems which considered the
unmatched external disturbances and actuator failure prob-
lems. Wang et al. [45] suggested the output feedback fault
tolerant control to improve the passenger comfort for the
ASSs. Nonetheless, these studies investigated adaptive fault
tolerant schemes based on traditional backstepping technol-
ogy, which cannot accommodate the explosion of complexity
problem [46], [47]. Furthermore, there are a few adaptive
fault tolerant controllers based on CFC technique for pneu-
matic ASSswith non-ideal actuator and parametric uncertain-
ties, which make the motivation for this research.

Basing on the above discussions, we investigate an adap-
tive fault tolerant tracking control for the pneumatic ASSs
using the fuzzy nonlinear disturbance observer method in
this paper. Because the active suspension with the pneu-
matic actuator contains unknown parameters and nonlinear-
ities, it is not easy to establish an accurate system model.
Moreover, the suspension system is affected by external dis-
turbances due to various masses of passengers. Although
some advanced controllers have been applied to handle these
unknown parameters, the actuator failure problems of air
spring still need more attention to enhance the control per-
formance. Thus, the FLSs are applied to approximate these
unknown nonlinear functions and improve the requirement of
modeling precision. Then, a nonlinear disturbance observer is
introduced by constructing FLSs to better deal with the actua-
tor failures, approximation errors, and external disturbances.
Due to the limitations of the mechanical design, the control
objectives of ride comfort and suspension deflection for the
ASSs conflict with each other [48]. Besides, some studies
can guarantee the control objectives and keep the vertical dis-
placement does not violate the output constraint, but they did
not consider the actuator failures. Unlike some previous fault
tolerant controllers, the proposed control not only guarantees
the tracking performance by introducing the PPF constraint
but also eliminates the explosion of complexity problem with
the CFC technique. The tracking errors can be guaranteed
to converge a small neighborhood of the origin, and the
stability of the closed-loop system is proven according to the
Lyapunov theory. The main contributions of this paper are
summarized as follows

1. A quarter car model is designed with a pneumatic
spring to investigate the behavior of the actual suspension
system.
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2. An adaptive fuzzy observer-based fault tolerant control
is designed for the pneumatic suspension system which con-
siders unknown parameters and actuator failures.

3. CFC combined with PPF can solve the explosion of
complexity problem in the traditional backstepping technique
and guarantee the tracking error of sprung mass displacement
does not violate the constraint boundaries.

The rest of this article is arranged as follows. The problem
formulation and fault description are displayed in Section II.
The design of an adaptive fuzzy observer-based fault tolerant
scheme and system stability analysis are shown in Section III.
Furthermore, Section IV verifies the efficiency of the devel-
oped scheme by the simulation results while the experimental
studies are executed by Section V. Finally, some conclusions
were given in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PNEUMATIC QUARTER CAR SUSPENSION MODEL
The active suspension using a pneumatic spring is shown
in Fig. 1. The total weight of the passengers and chassis is
denoted by the sprung mass ms while the assembly of the
vehicle wheel is represented by the unsprung mass mus. The
sprung mass and unsprung mass positions are performed by
zs and zus, respectively. The external disturbance caused by
the road profile zr will generate continuous excitations to the
passengers. To get ride comfort, active suspension systems
are employed to disperse this vibration. Themechanical equa-
tions of the quarter car model can be obtained in the form

msz̈s+Fsp(zs, zus, t)+Fdp(żs, żus, t)−Fp = 0

musz̈us−Fsp(zs, zus, t)−Fdp(żs, żus, t)

+Fst (zus, zr , t)+Fdt (żus, żr , t)+Fp = 0 (1)

These forces are generated by the stiffness and damp-
ing of mechanical structure and pneumatic spring actuator,
which can be calculated by: Fsp(zs, zu, t) = (ks+kp)(zs−
zus),Fdp(żs, żus, t) = cd (żs−żus),Fst (zus, zr , t) = kst (zus−
zr ),Fdt (żus, żr , t) = cdt (żus−żr ), in which ks, cd denote
the stiffness and damping coefficient of active suspension;
kst , cdt are the stiffness and damping coefficient of the
tire, and kp represents the stiffness coefficient of pneumatic
spring.

To describe the road holding condition, the expression for
the tire force can be given by [49]

Ft =

{
Fst+Fdt if Fst+Fdt < (ms+mus) g
0 if Fst+Fdt ≥ (ms+mus) g

(2)

where g is the acceleration of gravity.
Determine the system state variables as: x1 = zs, x2 = żs,

x3 = zus, x4 = żus, we can obtain the state space form of the
active suspension system as follows

ẋ1 = x2

ẋ2 =
1
ms

[
−
(
ks+kp

)
(x1−x3)−cd (x2−x4)+Fp

]
ẋ3 = x4

FIGURE 1. Pneumatic active suspension model.

ẋ4 =
1
mus

[
−kst (x3−zr )−cdt (x4−żr )
+
(
ks+kp

)
(x1−x3)+cd (x2−x4)−Fp

]
(3)

Compared with the other suspension systems, a pneumatic
spring is used to achieve the suspension modulation and the
active force can be obtained by the following equation

Fp = AasPas (4)

wherePas denotes the internal pressure andAas is the working
area of the pneumatic spring.

To archive the suspension performance, the control design
is proposed to regulate the volume of airflow through the
pneumatic spring. Thus, the thermodynamic theory is applied
to describe the dynamic model of pneumatic spring [13]

Ṗas =
κRT
Vas

(
s0qas−

PasAas (x2−x4)
RT

)
(5)

where R denotes the perfect gas constant, κ is the poly-
tropic index, T represents the air temperature, qas is the area-
normalized mass flow rate, and s0 is the orifice open area of
the proportional pressure valve.

The working volume of air bellow Vas depends on the
relative position between the unsprung mass and sprung mass

Vas = Aas (zas0+x1−x3) (6)

where zas0 denotes the initial stroke of the pneumatic spring.
Assumption 1: The dynamic characteristic of the high

response proportional valve is assumed to be linear in this
study. Therefore, the spool position is proportional to the
applied signal, and the orifice open area s0 of the pneumatic
valve can be indicated by

s0 = πsvu (7)

where πsv is the coefficient factor and u is the control signal
of the supply voltage.

Substituting (6) and (7) into (5), the dynamic equation of
pneumatic spring can be illustrated as

Ṗas =
κRT

Aas (zas0+x1−x3)

(
πsvqasu−

PasAas (x2−x4)
RT

)
(8)
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Consider x5 = (Aas
/
ms)Pas, we can obtain (8) by

ẋ5 =
κRT

ms (zas0+x1−x3)
πsvqasu−

κ

(zas0+x1−x3)
x5 (x2−x4)

(9)

To enhance the tracking control, it is necessary to con-
sider the full dynamic behavior of the pneumatic system,
especially the nonlinear pneumatic stiffness kp of the air
bellow. Although some simulation methods can determine
this parameter based on the thermodynamic theory [50], its
application to the controller design is not easy because it
depends on various working conditions and external distur-
bances. Thus, this stiffness coefficient is considered as an
uncertain parameter in this study and we can specify the
unknown function from (3) as

d2 (t) =
1
ms

[
−kp(x1−x3)

]
(10)

On the other hand, the air pressure of pneumatic spring
is a high nonlinearity parameter which is affected by the
unmodeled dynamics and the behavior of the twisted cord
rubber material under the effect of external forces. Therefore,
the dynamic model (9) should consider the unmodeled term
of internal pressure when applying for the control design
process.
Control Objectives: The active suspension system is

designed to meet three objectives
1) Passenger comfort: The proposed control is applied to

stabilize chassis displacement, thereby enhancing the
comfort of the passenger.

2) Driving safety: This objective guarantees that the tires
are always in contact with the road surface. To satisfy
this condition, the relative tire fore (RTF) must be
maintained to be less than 1.

RTF =
Ft

[ms+mus] g
(11)

1) Handling stability: The suspension space must be
smaller than the limitations of the mechanical architec-
ture. For this purpose, the relative suspension deflec-
tion (RSD) is defined by

RSD =
zs−zus
zR

(12)

where zR is the maximum value of the suspension
displacement.
Remark 1: Some controllers are designed to satisfy the

three above requirements, but these objectives conflict with
each other because increasing the passenger comfort will
require a larger oscillation. Thus, the proposed control in
this study not only solves this problem by providing the
PPF constraint but also considers the actuator failures of the
pneumatic system.

B. FAULT PROBLEM MODEL AND PRELIMINARIES
It is well-known that actuator faults could limit the system
performance of the pneumatic active suspension. To deal
with this problem, the actuator failures are considered in this
article, which can be modeled as [51]. Two types of lock-
in-place and loss of effectiveness model are examined in the
controller.

1) Lock-in-place model: This case shows the fact that the
actuator gets stuck at a time t and it can be described
by

ui = } (13)

where } is a constant denotes the float fault of the
actuator.

2) Loss of effectiveness model:

ui =—λuf (14)

where uf represents the actual input signal and
—λ ∈ (0, 1] denotes the ratio of the actuator that remains
effective after losing some effectiveness. For example,
—λ = 0.6 means that the actual coefficient actuator
is 60% and the actuator losses 40%. When —λ = 1,
the actuator operates with the normal condition (no
faults occur).

Basing on two cases of actuator failures, we can describe
the general form of fault as follows

u =—λuf+} (15)

Remark 2:Note with the lock-in-place model, it means that
—λ = 0 and } 6= 0 while the loss of effectiveness model is
represented by —λ ∈ (0, 1].

Generally, considering the dynamic model of pneumatic
spring (9) with unmodeled parameters, external disturbance,
unknown function (10), and actuator fault (15), we can
write the full state space form of the pneumatic suspension
model as

ẋ1 = x2

ẋ2 = x5+
1
ms

[−ks(x1−x3)−cd (x2−x4)]+d2 (t)

ẋ3 = x4

ẋ4 =
1
mus

−kst (x3−zr )−cdt (x4−żr )
+ks(x1−x3)+cd (x2−x4)−msx5

− ms
mus

d2 (t)

ẋ5 =
κRT

ms (zas0+x1−x3)
πsvqas

(
—λuf+}

)
−

κ

(zas0+x1−x3)
x5 (x2−x4)+p (t) (16)

where p (t) is the time-varying modeling error of air bellow
pressure.

To guarantee comfort for the passenger, the controller will
be designed to dissipate the external excitation into the chas-
sis. For this purpose, we focus on the dynamic equations of
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the sprung mass as follows

ẋ1 = x2
ẋ2 = f2+g2x5+d2 (t)

ẋ5 = f3+g3uf+D3 (t) (17)

where f2 = 1
/
ms[−ks(x1−x3)−cd (x2−x4)], g2 = 1, f3 =

[−κ
/
(zas0+x1−x3)](x2−x4)x5,D3(t) = p(t)+g3}/—λ, g3 =

{κRT
/
[ms(zas0+x1−x3)]}πsvqas—λ.

Based on the dynamic equation (17), we can see that f2
and f3 are unknown smooth functions because x3, x4 are
not considered in the control design. Besides, the damping
characteristic of the pneumatic spring cannot be accurately
simulated, and it is usually neglected in the suspension mod-
els. These problemswill be solved by the control design based
on the following preliminaries.
Assumption 2:Under the limitation ofmechanical structure

and physical performance, the sprung mass is assumed to be
bounded by msmin < ms < msmax, where msmax and msmin
denote the upper and lower bound, respectively.
Remark 3: The sprung mass ms is an unknown vari-

able depending on the various masses of passengers. Thus,
the unknown function g3 contains the parametric uncertain-
ties and it can be considered as time-varying control gains.

FLSs have been shown to be a good approximation tech-
nique for the unknown continuous functions. The FLSs are
composed of a fuzzy rule base, a fuzzifier, a fuzzy inference
engine, and a defuzzifier. The knowledge base constitutes a
series of fuzzy If-Then rules as follows

Rl : If x1 is H l
1 and x2 is H

l
2 and . . . xn is H

l
n, then

y is T l, l = 1, . . . ,N (18)

where X = [x1, x2, . . . , xn]T and y are the FLSs input and
output; H l

i and T
l are fuzzy sets associated with fuzzy mem-

bership functions θH l
i
(xi) and θT l (y); and N is the number of

fuzzy rules [52].
Through singleton fuzzifier, center average defuzzifica-

tion, and product inference, the FLSs can be expressed as

y (X) =

∑N
l=1 ȳl

∏n
i=1 θH l

i
(Xi)∑N

l=1

(∏n
i=1 θH l

i
(Xi)

) (19)

where ȳl = max
y∈R

{
θT l (y)

}
.

Then, the fuzzy basic function can be designed by

sl =

∏n
i=1 θH l

i
(Xi)∑N

l=1

(∏n
i=1 θH l

i
(Xi)

) (20)

Determine S(X ) = [s1(X ), s2(X ), . . . , sN (X )]T and W T
=

[ȳ1, ȳ2, . . . , ȳN ] = [w1,w2, . . . ,wN ], one can obtain the
fuzzy logic (19) as follows

y (X) = W T S (X) (21)

Lemma 1 [53]: Define a continuous vector function f (X)
on a compact set �, for any given positive constant η > 0,

there exist fuzzy logic systems W T S(X ) that satisfy

sup
X∈�

∣∣∣f (X)−W T S (X)
∣∣∣ ≤ η (22)

where η > 0 is an error value of the fuzzy system approxi-
mation to an unknown function, W is the ideal FLSs weight
matrix, and S (X) is bounded by ‖S (X)‖ ≤ ι.
In the following, the FLSs are used to approximate the

unknown functions f (X) with X ∈ �

fi (X) = W T
i Si (Xi)+ηi (23)

Lemma 2 [32]: The command filter is employed to elim-
inate the derivative of the virtual control of traditional back-
stepping as follows

θ̇i1 = ρmθi2

θ̇i2 = −2τmρmθi2−ρm (θi1−αi−1) (24)

where ρm and τm are the control parameters and αi−1 are the
virtual control signals. The output of each filter is chosen
by xci = θi1 and ẋci = θ̇i1. Let the input signal αi−1 and
their derivatives are bounded and satisfied |α̇i−1| ≤ `1 and
|α̈i−1| ≤ `2 in a finite time, there exist τm ∈ (0, 1] and ρm > 0
so that the following inequality holds∣∣xci−αi−1∣∣ ≤ `3 (25)

where `i > 0, i = 1, 2, 3 are the positive constants.
Remark 4: The command filter control (24) is designed to

compute the intermediate control signal xic and ẋic without a
differentiator. Hence, the explosion of complexity problem in
the basic backstepping technique is solved.
Lemma 3 [32]: To decline the effect of the command

filter errors (θi1−αi−1), the compensation mechanisms ϕi are
employed at each step of the control design process.

ϕ̇1 = −k1ϕ1+g1ϕ2+g1
(
xc2−α1

)
ϕ̇i = −kiϕi−gi−1ϕi−1+giϕi+1+gi

(
xci+1−αi

)
ϕ̇n = −knϕn−gn−1ϕn−1 (26)

where the initial condition is selected ϕi(0) = 0 for
t ∈ [0,T1], and ki are design parameters.
The compensation mechanisms are bounded by

invoking [54]

‖ϕi (t)‖ ≤
`3Ḡ31

2k0

(
1−e−2k0(t−T1)

)
(27)

where k0 =
(
1
/
2
)
min (ki)

III. ADAPTIVE FUZZY OBSERVER-BASED FAULT
TOLERANT CONTROLLER
A. ADAPTIVE FUZZY OBSERVER COMMAND FILTERED
CONTROL WITH PRESCRIBED PERFORMANCE
This section proposes an adaptive fuzzy observer fault toler-
ant control scheme based on the command filtered backstep-
ping technique. The FLSs are employed to approximate the
unknown functions while the nonlinear disturbance observer
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is used to handle the effects of the actuator failures, approxi-
mation errors, and external disturbances. The PPF constraint
is used to ensure the tracking error of vertical displacement
does not violate the boundary. Finally, the Lyapunov theorem
is applied to analyze the stability of the proposed control
scheme.
Step 1: In this step, the tracking error constraint of vertical

displacement is guaranteed by the PPF. First, we define the
tracking error of sprung mass displacement by

e1 = x1−xd (28)

where xd is the reference trajectory.
Definition 2 [20]: The prescribed performance is defined

by a positive smooth function δ (t)

δ (t) = (δ0−δ∞) e−φt+δ∞ (29)

where δ0 indicates the initial value, δ∞ denotes the ultimate
error, and φ > 0 is the convergence rate. The initial condi-
tions are chosen to satisfy lim

t→0
δ (t) = δ0 > 0, lim

t→∞
δ (t) =

δ∞ > 0, and ρ0 > ρ∞.
The PPF (29) is used to establish the predefined boundaries

which retain the tracking error e1 by the following inequality

−ϑδ (t) < e1 < ϑ̄δ (t) (30)

where ϑ, ϑ̄ > 0 are the positive design parameters.
Remark 5: It can be seen from (29) and (30), the lower

bound of tracking error is determined by−ϑδ(0) while ϑ̄δ(0)
stands for the upper bound. Thus, the steady-state perfor-
mance of tracking error can be satisfied by choosing the
appropriate control parameters δ0, δ∞, φ, ϑ, ϑ̄ .
To combine the PPF into the proposed control, the con-

strained transformation technique is applied to convert the
prescribed performance boundary into an equality form.
Hence, one can use a smooth and strictly increasing function
G(z1) which is given by [20].

G (z1) =
ϑ̄ez1−ϑe−z1

ez1+e−z1
(31)

Furthermore, the function G(z1) satisfies: −ϑ < G(z1) <
ϑ̄ and lim

z1→∞
G(z1) = ϑ̄, lim

z1→−∞
G(z1) = −ϑ . Then,

the inequality condition (30) can be converted by the follow-
ing form

e1 = δ (t)G (z1) (32)

Then, one can obtain the inverse transfer function z1 as
follows

z1 = G−1
(

e1
δ (t)

)
(33)

Set χ = e1
/
δ (t), the transform function z1 can be written

by

z1 =
1
2
ln
(
χ+ϑ

ϑ̄−χ

)
(34)

Lemma 4 [55]:According to the above analysis, the trans-
form function z1 of the system state is transferred by the

smooth function G (z1) and the stability of the tracking error
e1 can be ensured within the predefined boundaries (30).
Remark 6: The control parameters ϑ, ϑ̄, δ0, δ∞, φ are cho-

sen for the PPF constraint (29) and error transform G(z1)
when we design the controller. As the parameters ϑ, ϑ̄, δ0 are
selected to satisfy the initial condition −ϑδ(0) < x1(0) <
ϑ̄δ(0), the transfer function z1 can be restrained within the
boundaries. Hence, the condition −ϑ < G(z1) < ϑ̄ is held
and the tracking error −ϑδ(t) < e1 < ϑ̄δ(t) is guaranteed.
Step 2: Choose the virtual control α1
We obtain the time derivative of z1 from (34) as follows

ż1 =
1
2

(
1

χ+ϑ
−

1

χ−ϑ̄

)(
ẋ1
δ
−
x1δ̇
δ2

)
= ζ

(
x2−

x1δ̇
δ

)
(35)

where ζ = 1
2δ

(
1

χ+ϑ
−

1
χ−ϑ̄

)
Choose a candidate Lyapunov function V1 =

(
1
/
2
)
z21.

Thus, the time derivative of V1 is calculated

V̇1 = z1ż1 (36)

Based on the traditional backstepping technique in this
step, we obtain V̇1 as follows

V̇1 = ζ z1

(
z2+α1−

x1δ̇
δ

)
(37)

Select the virtual control α1 by

α1 = −ζ
−1k1z1+

x1δ̇

δ̇
(38)

Using (38), we can write (37) as follows

V̇1 = −k1z21+ζ z1z2 (39)

Step 3: Choose the virtual control α2
In this step, the command filtered backstepping algorithm

is employed to design the control scheme, and the tracking
error of x2 is defined by

e2 = x2−xc2 (40)

where xc2 denotes the output signal of the command filter
through the virtual controller α1.
We can define the compensated tracking error

z2 = e2−ϕ2 (41)

The error compensation is designed by (26)

ϕ̇2 = −k2ϕ2+g2ϕ3+g2
(
xc3−α2

)
(42)

where xc3 is the output signal of the command filter through
the virtual controller α2, which is determined later.
Therefore, we can express the time derivative of z2 by

using (17)

ż2 = f2+g2x5+d2 (t)−ẋc2−ϕ̇2 (43)

Based on Lemma 1, the unknown function f2 is approx-
imated by FLSs, we have: f2 = W T

2 S2(X2)+η2(X2), where
X2 = [x1, x2]T . Then, we can write (43) as follows

ż2 = W T
2 S2 (X2)+η2 (X2)+g2x5+d2 (t)−ẋ

c
2−ϕ̇2 (44)
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Define the approximate error η2(X2) and uncertain param-
eter d2 (t) by using the unknown function D2(t) = η2(X2)+
d2(t), we can arrange (44) again

ż2 = W T
2 S2 (X2)+g2x5+D2 (t)−ẋc2−ϕ̇2 (45)

Substituting (42) into (45), we can obtain

ż2 = W T
2 S2 (X2)+g2x5+D2 (t)−ẋc2+k2ϕ2−g2ϕ3

−g2
(
xc3−α2

)
(46)

Choose the virtual control α2

α2 =
1
g2

(
−ζ z1−Ŵ T

2 S2 (X2)−D̂2+ẋc2−k2e2
)

(47)

where D̂2 is the estimation of the disturbance D2(t) and Ŵ2
is the estimation of the ideal weight vector W2.
Besides, the adaptive law is proposed as

˙̂W2 = β2

(
z2S2 (X2)−ς2Ŵ2

)
(48)

where β2 > 0 and ς2 > 0 are the design parameters.
Substitute (47) into (46), we have

ż2 = −ζ z1+W̃ T
2 S2 (X2)+D̃2−k2z2+g2z3 (49)

where D̃2 = D2−D̂2 is the error of disturbance observer and
W̃2 = W2−Ŵ2 is the error of weight estimation.

From (49), we obtain

z2 (ζ z1+ż2) = z2
(
W̃ T

2 S2 (X2)+D̃2−k2z2+g2z3
)

(50)

To estimate the disturbance D2 (t), the fuzzy nonlinear
disturbance observer is designed by

D̂2 = z2−λ2
λ̇2 = g2x5+Ŵ T

2 S2(X2)+D̂2−ẋc2−ϕ̇2 (51)

Using (45) and (51), we obtain

˙̂D2 = W̃ T
2 S2 (X2)+D̃2 (52)

Then, the time derivate of disturbance error can be derived
as follows

˙̃D2 = Ḋ2−
˙̂D2 = Ḋ2−D̃2−W̃ T

2 S2 (X2) (53)

The candidate Lyapunov function V2 is selected by

V2 = V1+
1
2
z22+

1
2
β−12 W̃ T

2 W̃2+
1
2
D̃2
2 (54)

Taking the time derivative of V2 using (39), we have

V̇2 = −k1z21+z2 (ζ z1+ż2)+β
−1
2 W̃ T

2
˙̃W2+D2

˙̃D2 (55)

Using (50) and (53), we can write (55) as

V̇2 = −k1z21−k2z
2
2+z2W̃

T
2 S2 (X2)+z2D̃2+g2z2z3

−β−12 W̃ T
2
˙̂W2+D̃2

(
Ḋ2−D̃2−W̃ T

2 S2 (X2)
)

(56)

Substituting (48) into (56), we have

V̇2 = −k1z21−k2z
2
2+z2D̃2+g2z2z3+ς2W̃ T

2 Ŵ2

+D̃2Ḋ2−D̃2
2−D̃2W̃ T

2 S2 (X2) (57)

Step 4: Design the fault tolerant control signal uf
Similar to step 3, the tracking error of x5 can be defined by

e3 = x5−xc3 (58)

Then we can calculate the compensated tracking error

z3 = e3−ϕ3 (59)

From (26), the compensating signals is used

ϕ̇3 = −k3ϕ3−g2ϕ2 (60)

Using (17) and (58), we can obtain the time derivative of
z3 as follows

ż3 = f3+g3uf+D3 (t)−ẋc3−ϕ̇3 (61)

Therefore, we can choose the desired control udf

udf = −k3z3−D3 (t)−z2−
1
g3

(
f3−ẋc3−ϕ̇3

)
(62)

Approximate the unknown function (f3−ẋc3−ϕ̇3)
/
g3 by

FLSs, we have: (f3−ẋc3−ϕ̇3)
/
g3 = W T

3 S3(X3)+η3(X3), where
X2 = [x1, x2, x5]T . Hence, we can write (62) as follows

udf = −k3z3−D3 (t)−z2−W T
3 S3 (X3)−η3 (X3) (63)

Then, the adaptive fault tolerant control with disturbance
observer is proposed by

uf = −k3z3−D̂3−z2−Ŵ T
3 S3 (X3) (64)

where D̂3 the estimation of the disturbance D3(t).
The adaptive law is designed as

˙̂W3 = β3

(
z3S3 (X3)−ς3Ŵ3

)
(65)

where β3 > 0 and ς3 > 0 are the design parameters.
Substituting (64) into (61), we obtain

ż3 = g3
(
−k3z3+W̃ T

3 S3 (X3)−D̂3−z2+η3 (X3)
)
+D3 (t)

(66)

In this step, the fuzzy nonlinear disturbance observer is
designed for FTC as follows

D̂3 = υ3 (µ3−$3) (67)

where υ3 is control parameter, µ3 and $3 are the auxiliary
variable and the intermedial variable, which are defined by

µ3 = z3−λ3 (68)

$̇3 = D̂3−b3µ3 (69)

where b3 > 0 is the design parameter.
The intermedial variable λ3 is proposed by

λ̇3 = b3µ3+υ
−1
3 Ŵ T

F SF (XF )−ẋ
c
3−ϕ̇3 (70)

And define the adaptive law ŴF

˙̂WF = βF

(
υ−13 µ3SF (XF )−ςFŴF

)
(71)

where βF > 0 and ςF > 0 are control parameters.
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To design the disturbance observer for FTC, we set
FF (XF ) = υ3(f3+g3uf ) from the equation (61), where XF =
[x1, x2, x5, uf ]T

ż3 = υ
−1
3 FF (XF )+D3 (t)−ẋc3−ϕ̇3 (72)

where υ3 > 0 is the design parameter.
By employing FLSs for FF (XF ) = W T

F SF (XF )+εF (XF ),
we obtain

ż3 = υ
−1
3 W T

F SF (XF )+υ
−1
3 εF (XF )+D3 (t)−ẋc3−ϕ̇3 (73)

Differentiating (68) using (70) and (73), we have

µ̇3 = υ
−1
3 W̃ T

F SF (XF )+υ
−1
3 ηF (XF )+D3 (t)−b3µ3 (74)

where W̃F = ŴF−WF . Then, we obtain

µ3µ̇3 = µ3υ
−1
3 W̃ T

F SF (XF )+µ3υ
−1
3 ηF (XF )

+µ3D3 (t)−b3µ2
3 (75)

Basing on Young’s inequality theorem for nonnegative real
numbers a and b, we have ab ≤ a2

/
(2ρ)+(b2ρ)

/
2, where

ρ > 0 is the adjustable parameter. Hence, we can obtain

µ3µ̇3 ≤ µ3υ
−1
3 W̃ T

F SF (XF )+
1
2
υ−23 η2F (XF )

+
1
2
D2
3−(b3−1) µ

2
3 (76)

Similarity, we can obtain the time derivative of D̂3 from
(67), (69), and (74) as follows

˙̂D3 = W̃ T
F SF (XF )+ηF (XF )+υ3D̃3 (77)

Therefore, we can obtain the disturbance error

˙̃D3 = Ḋ3−
˙̂D3 = Ḋ3−W̃ T

F SF (XF )−ηF (XF )−υ3D̃3 (78)

And

D̃3
˙̃D3 = D̃3Ḋ3−D̃3W̃ T

F SF (XF )−D̃3ηF (XF )−υ3D̃2
3 (79)

Theorem: The virtual controllers (38), (47), fuzzy dis-
turbance observers (51), (67), adaptive fault tolerant con-
trol (64), and adaptation laws (48), (65), and (71) are designed
for the system (17) under Assumptions 1, 2. The devel-
oped fault tolerant control scheme can ensure that all state
variables of the active suspension are semi-global uniformly
ultimately bounded and the tracking errors converge to a suf-
ficiently small neighborhood of the origin.Moreover, the goal
of actuator failures is achieved while the transient perfor-
mance of vertical displacement can be constrained within the
specified PPF.

Proof: Choose the candidate Lyapunov function V3
and V

V3 = V2+
1
2
z23+

1
2
β−13 W̃ T

3 W̃3+
1
2
D̃2
3 (80)

V = V3+
1
2
β−1F W̃ T

F W̃F+
1
2
µ2
3 (81)

We can derive the time derivative of V from (81) as follows

V̇ = V̇2+z3ż3−β
−1
3 W̃ T

3
˙̂W3−β

−1
F W̃ T

F
˙̂WF+D̃3

˙̃D3+µ3µ̇3 (82)

Applying (57), (66), (76), and (79) into (82), one obtains
the derivative of V as follows

V̇
≤ −k1z21−k2z

2
2+z2D̃2+g2z2z3+ς2W̃ T

2 Ŵ2

+D̃2Ḋ2−D̃2
2−D̃2W̃ T

2 S2 (X2)−β
−1
3 W̃ T

3
˙̂W3

+z3
(
−k3z3+W̃ T

3 S3 (X3)−D̂3−z2+η3 (X3)+D3

)
+

(
D̃3Ḋ3−D̃3W̃ T

F SF (XF )−D̃3ηF (XF )−υ3D̃2
3

)
−β−1F W̃ T

F
˙̂WF

+

(
µ3υ

−1
3 W̃ T

F SF (XF)+
1
2
υ−23 η2F (XF )+

1
2
D2
3−(b3−1) µ

2
3

)
(83)

Applying Young’s inequality and (65), (71), we have

z2D̃2 ≤
1
2
z22+

1
2
D̃2
2; ς2W̃

T
2 Ŵ2 ≤

ς2

2
‖W2‖

2
−
ς2

2

∥∥∥W̃2

∥∥∥2
D̃2Ḋ2 ≤

1
2
D̃2
2+

1
2
Ḋ2
2; D̃2W̃ T

2 S2 (X2) ≤ ρ2D̃
2
2ι
2
2+

1
ρ2

∥∥∥W̃2

∥∥∥2
z3D̂3 = z3D3−z3D̃3;

z3η3 (X3) ≤
1
2
z23+

1
2
η23 (X3) ;

D̃3ηF (XF) ≤
1
2
D̃2
3+

1
2
η2F (XF ) ;

D̃3Ḋ3 ≤
1
2
D̃2
3+

1
2
Ḋ2
3;

D̃3W̃ T
F SF (XF ) ≤ ρF D̃

2
3ι
2
F+

1
ρF

∥∥∥W̃F

∥∥∥2
Using (65) and (71), we receive

β−13 W̃ T
3
˙̂W3 = z3W̃ T

3 S3 (X3)−ς3W̃
T
3 Ŵ3

β−1F W̃ T
F
˙̂WF = υ

−1
3 µ3W̃ T

F SF (XF )−ς3W̃
T
F ŴF

So, we can write (83) as follows

V̇

= −k1z21−k2z
2
2−k3z

2
3+

1
2
z22+

1
2
D̃2
2+
ς2

2
‖W2‖

2
−
ς2

2

∥∥∥W̃2

∥∥∥2
+
1
2
D̃2
2+

1
2
Ḋ2
2−D̃

2
2−ρ2D̃

2
2ι
2
2−

1
ρ2

∥∥∥W̃2

∥∥∥2+z3W̃ T
3 S3 (X3)

−z3D3+z3D̃3+
1
2
z23+

1
2
η23 (X3)+z3D3−(b3−1) µ2

3

−z3W̃ T
3 S3 (X3)+ς3W̃

T
3 Ŵ3−υ

−1
3 µ3W̃ T

F SF (XF)+ς3W̃
T
F ŴF

+
1
2
D̃2
3+

1
2
Ḋ2
3−ρF D̃

2
3ι
2
F−

1
ρF

∥∥∥W̃F

∥∥∥2−1
2
D̃2
3−

1
2
η2F (XF )

−υ3D̃2
3+υ

−1
3 W̃ T

F SF (XF )+
1
2
υ−23 η2F (XF )+

1
2
D2
3

We also apply Young’s inequality to prove the following
inequalities

ς3W̃ T
3 Ŵ3 ≤

ς3

2
‖W3‖

2
−
ς3

2

∥∥∥W̃3

∥∥∥2
β−1F W̃ T

F
˙̂WF = υ

−1
3 µ3W̃ T

F SF (XF )−ς3W̃
T
F ŴF (84)
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Thus, we can arrange (84) as follows

V̇ = −k1z21−
(
k2−

1
2

)
z22−

(
k3−

3
2

)
z23+

ςF

2
‖WF‖

2

− (b3−1) µ2
3−

(
1
ρ2
+
ς2

2

)∥∥∥W̃2

∥∥∥2−ς3
2

∥∥∥W̃3

∥∥∥2
−

(
1
ρF
+
ςF

2

)∥∥∥W̃F

∥∥∥2−ρ2ι22D̃2
2−

(
ρF ι

2
F+υ3−

1
2

)
D̃2
3

+
ς2

2
‖W2‖

2
+
ς3

2
‖W3‖

2
+
1
2
Ḋ2
2+

1
2
D2
3

+
1
2
Ḋ2
3+

1
2
η23 (X3)−

(
1
2
−
1
2
υ−23

)
η2F (XF ) (85)

By choosing the corresponding control parameters to sat-
isfy the system conditions, we can determine the following
elements as follows

5 = min



2k1, 2
(
k2−

3
2

)
, 2
(
k3−

3
2

)
, 2 (b3−1) , ς3

2
(

1
ρ2
+
ς2

2

)
, 2
(

1
ρF
+
ςF

2

)
, ρ2ι

2
2,(

ρF ι
2
F+υ3−

1
2

)


(86)

9 =
ς2

2
‖W2‖

2
+
ς3

2
‖W3‖

2
+
ςF

2
‖WF‖

2
+
1
2
Ḋ2
2+

1
2
Ḋ2
3

+
1
2
D2
3+

1
2
η23 (X3)−

(
1
2
−
1
2
υ−23

)
η2F (XF ) (87)

And we can simplify (85) as follows

V̇ ≤ −5V+9 (88)

Multiplying (88) by e5t on both sides and then integrating,
we receive

e5t V̇+5e5tV ≤ e5t9∫ t

0

(
e5tV

),
dt ≤ 9

∫ t

0
e5tdt (89)

V (t) ≤
(
V (0)−

9

5

)
e−5t+

9

5
≤ V (0) e−5t+

9

5

(90)

Therefore, we can conclude the following conditions
according to (81),

|zi| ≤

√
2
(
V (0) e−5t+

9

5

)
, i = 1, 2, 3 (91)

It can be seen that transformation errors zi, i = 1, 2, 3
and compensate signals ϕi, i = 1, 2, 3 are bounded, hereby
the tracking errors e1, e2, e3 are also bounded. Therefore,
by selecting the control parameters and PPF constraints,
the stability of the closed-loop system is guaranteed.
Remark 7: The external disturbances, unmodeled dynam-

ics, and unknown coefficient of actuator failures are com-
pensated by fuzzy logic systems and nonlinear disturbance
observers. Here, the propped control is designed by the
combination of the command filter technique and prescribed

performance constraint theory. It not only reduces the compu-
tational complexity but also enhances the suspension perfor-
mance in the presence of unknown parameters and actuator
fault.

B. HANDLING STABILITY AND DRIVING SAFETY ANALYSIS
Based on the above results, the first objective of passenger
comfort has been satisfied by the proposed control. Besides,
two objectives of handling stability and driving safety can be
ensured by choosing suitable design parameters that will be
analyzed in this section. For these purposes, we concentrate
on analyzing the dynamic equations of unsprung mass (16).
Besides, the tracking errors ei, i = 1, 2, 3 are assumed to
be bounded according to (91). Applying the FLSs for f2 =
W T

2 S2 (X2)+η2 (X2), we obtain (16) as follows

Ẋ = CX+DY+Y0 (92)

where

X =
[
x3
x4

]
; C =

[
0 1

−
kst
mus

−
cdt
mus

]
;

D =

[
0 0
kst
mus

cdt
mus

]
; Y =

[
zr
żr

]
; Y0 =

[
0
M

]
;

M =
ms
mus

(
W T

2 S2 (X2)+η2 (X2)
)
+

1
mus

(−msx5−msd2 (t))

According to (91), we can see that M is bounded because
the tracking errors z1, z2, and z3 are bounded. There exists a
constant M̄ so that ‖M‖ ≤ M̄ is hold.

The candidate Lyapunov function is chosen by

VD = XTPX (93)

where P is a positive definite symmetric matrix.
Thus, we can obtain the time derivative of VD

V̇D = ẊTPX+XTPẊ (94)

Rewrite (94) using (92), we have

V̇D = XT
(
CTP+PC

)
X+2XTPDY+2XTPY0 (95)

There exists a positive definite symmetric matrix Q > 0
that satisfies the equation CTP+PC = −Q. Besides, we can
write the form of 2XTPDY and 2XTPY0 according toYoung’s
inequality theorem as follows

2XTPDY ≤
1
ρ1
XTPDDTPX+ρ1Y TY

2XTPY0 ≤
1
ρ2
XTPPX+ρ2Y T0 Y.0 (96)

where ρi > 0, i = 1, 2 are adjustable parameters.
Substituting (96) into (95), we have

V̇D

≤ −

λmin

(
P
−1/2QP

−1/2
)
−

1
ρ1
λmax

(
P
1/2DDTP

1/2
)

−
1
ρ2
λmax (P)

VD
+ρ1Y TY+ρ2Y T0 Y0 (97)
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where λmax and λmin are the maximal and minimal eigenval-
ues of the matrix.

We can select the appropriate matrix P,Q to meet the
following inequalities

ρ1 > 2
λmax

(
P
1/2DDTP

1/2
)

λmin

(
P
−1/2QP

−1/2
) ; ρ2>2

λmax (P)

λmin

(
P
−1/2QP

−1/2
)

(98)

Based on (98), we can determine two parameters ϒ and1
such that

2 ≥ λmin

(
P
−1/2QP

−1/2
)
−

1
ρ1
λmax

(
P
1/2DDTP

1/2
)

−
1
ρ2
λmax (P) (99)

8 ≥ ρ1Y TY+ρ2Y T0 Y0 (100)

Hence, we can rewrite the inequality (97) as follows

V̇D ≤ −2VD+8 (101)

Multiplying (101) by e2t on both sides and integrating,
we can write

VD ≤
(
VD (0)−

8

2

)
e−2t+

8

2
≤ VD (0) e−2t+

8

2
(102)

According to (93), the system states (16) are bounded by

|xi (t)| ≤

√(
VD (0) e−2t+

8

2

)
/λmin (P), i = 3, 4 (103)

Substituting (103) into the handing stability (12), we can
get

|zs−zus| ≤ |x1|+|x3| ≤ ϑ̄δ (0)

+

√(
VD (0) e−2t+

8

2

)
/λmin (P) (104)

From (104), the handling stability condition can be guar-
anteed by choosing control parameters ρ1, ρ2,P, and the
approximate PPF constraint ϑ̄, ϑ, δ0 so that |zs−zus| ≤ zR.

Besides, the tire forces Fst and Fdt can be expressed by

Fst (zus, zr , t) = kst (x3−zr )

≤ kst

√(
VD (0) e−2t+

8

2

)
/λmin (P)

+kst ‖zr‖∞
Fdt (zus, zr , t) = cdt (x4−żr )

≤ cdt

√(
VD (0) e−2t+

8

2

)
/λmin (P)

+cdt ‖żr‖∞ (105)

TABLE 1. Active suspension system parameters.

Substituting (105) into (2), we can obtain relative tire force
by

|Fst+Fdt | ≤ |Fst |+|Fdt |

≤ (kst+cdt)

√(
VD (0) e−2t+

8

2

)
/λmin (P)

+kst ‖zr‖∞+cdt ‖żr‖∞ (106)

According to (106), the relative tire force condition (11)
can be ensured by selecting the design parameters ρ1, ρ2,P
which satisfy the inequality |Fst+Fdt | ≤ (ms+mus) g.
Remark 8: From the above analysis, the suspension objec-

tives of handling stability and driving safety are guaranteed by
setting initial conditions and approximate design parameters.
Therefore, the driving condition of the pneumatic suspension
system is ensured by the mechanical structure.

IV. SIMULATION RESULTS
A. SIMULATION DEFINITION
To verify the effectiveness of the developed method, the com-
parative simulations are executed in comparison with passive
suspension and traditional backstepping. The results of RSD
and RTF parameters are compared to analyze the handling
stability and driving safety of active suspension. The main
parameters of pneumatic suspension are chosen as in Table 1.

To simulate the excitation of road disturbance, the sin
road profile is used for the simulation studies with amplitude
0.01 m and frequency 0.5 Hz as zr = 0.01 sin (π t). The sys-
tem is defined by these initial conditions with x1 (0) = 0.02,
x2 (0) = x3 (0) = x4 (0) = 0, x5 (0) = 1.0×105 (Pa). The
PPF boundary is selected by δ0 = 0.03, δ∞ = 0.005, φ = 2
and the control parameters are given in Table 2.

B. SIMULATION RESULTS
The simulation results of sprung mass displacement and
acceleration, relative suspension deflection, relative tire
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TABLE 2. Control parameters.

force, and control signals of passive, traditional backstep-
ping, and proposed control are shown in Fig. 3 - 6. The
proposed scheme can improve passenger comfort by reducing
the sprung mass displacement and acceleration as shown
in Fig. 2 – 3. With the PPF constraint, the tracking error of
vertical displacement is kept inside the predefined boundary.
Although traditional backstepping can reduce the amplitude
of sprung mass displacement, the output performance cannot
satisfy the requirement of output constraint. Furthermore,
the objectives of analyzing the handling stability and driving
safety are enhanced by the proposed control because the RSD
and RTF parameters are guaranteed in Fig. 4 – 5. The control
signal of the proposed scheme with the CFC technique is
shown in Fig. 6. Although the proposed method requires a
large control signal at the beginning to guarantee the speed
convergence of tracking error, its required signal will be
smaller as soon as the constraint boundary is satisfied.

FIGURE 2. Simulation result of sprung mass displacement.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL PLATFORM
The quarter car test bench for active suspension with a pneu-
matic spring is designed to verify the effectiveness of the
proposed controller, which is displayed in Fig. 7. Due to the
limitation of mechanical structure, the main parameters are
chosen in accordance with the platform design. There are
three separate plates that are used to represent the chassis,
tire, and road profile, and they are connected by mechanical
and pneumatic springs. The chassis is denoted by the top plate
and it is supported by a pneumatic spring and two mechanical

FIGURE 3. Vertical acceleration responses of sprung mass.

FIGURE 4. Simulation result of relative suspension deflection.

FIGURE 5. Simulation result of relative tire force.

FIGURE 6. Simulation result of control signal (V).

springs. Themiddle plate is used to simulate themotion of tire
and structure assembly. The road profile is simulated by the
motion of the bottom plate, which is driven by the servomotor
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FIGURE 7. Platform of pneumatic active suspension.

FIGURE 8. Experimental result of sprung mass displacement.

FIGURE 9. Experimental result of sprung mass acceleration.

to create various road conditions. The stiffness coefficient
of a tire is represented by two mechanical springs. Besides,
three cable sensors are used to measure the position of the
three plates. A piezoelectric accelerometer is employed to
determine the acceleration of the chassis. A PCI card is used
to record and send the control signal between the computer
and the proportional pneumatic valve.

B. EXPERIMENTAL RESULTS
The experiment results of the pneumatic active suspension
carried on the test bench are displayed in Fig. 8 – 12. We can

FIGURE 10. Experimental result of relative suspension deflection.

FIGURE 11. Experimental result of relative tire force.

FIGURE 12. Experimental result of control signal.

see that the experimental results also demonstrate the effec-
tiveness of the proposed control in comparison with the back-
stepping approach. From Fig. 8, the vertical displacement of
sprung mass can be restrained within the PPF constraint of
the proposed scheme. Since the active suspension enhances
the ride comfort resulting in a larger suspension stroke, the
RSD value of the proposed control is greater than the passive
suspension and traditional backstepping. Besides, the RSD
and RTF parameters are also maintained to be less than 1 to
achieve the goals of handling stability and driving safety of
the pneumatic active suspension. Although there are different
values between the simulation and experimental results, both
are able to demonstrate the efficiency of the proposed con-
troller. Similar to the simulation results, the control signal of
the proposed controller is smaller than that of the traditional
backstepping technique.
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VI. CONCLUSION
This article investigates an adaptive fuzzy observer fault
tolerant scheme for the active suspension which considers
the uncertain parameters and the failure problem of pneu-
matic spring. The adaptive fuzzy observer based command
filtered is designed to solve the problem of actuator failures
where both of loss of effectiveness model and lock-in-place
model are considered. The PPF constraint is employed to
restrain the sprung mass movement to get the passenger
comfort while the CFC technique is proposed to avoid the
explosion of complexity problem of the traditional backstep-
ping approach. By using the fuzzy logic systems method to
estimate unknown nonlinear functions and then incorporate
them into the nonlinear disturbance observer, the external
disturbances and unknown actuator failure coefficients are
estimated. Moreover, the effectiveness of the designed con-
troller has been verified by both simulation and experiment,
which considers control objectives of the passenger comfort,
driving safety, and handling stability for the active suspension
system.

Further research includes the implementation of the pro-
posed fault tolerant control design to stabilize the full-car
pneumatic active suspension.
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