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ABSTRACT The explosive growth of Internet of things (IoT) devices has promoted the prosperity of
virtual reality applications, which can be realized by service offloading with the assistance of pervasive edge
computing (PEC) platforms. However, owing to the limited computational and communication resources of
PEC systems, it is necessary to design a novel resource management algorithm. In this study, we adopt
cooperative bargaining theory to design our PEC resource allocation scheme. According to the concept
of unification bargaining solution, different bargaining ideas are reciprocally combined to provide a fair-
efficient solution. By coordinating network agents, we can leverage mutual consensus and approximate a
well-balanced system performance among conflicting requirements. It is essential to explore the relevant
trade-off between efficiency and fairness. To effectively share the PEC resources, the main novelty of our
approach is its adaptability and flexibility to respond dynamic PEC system environments. Finally, extensive
simulations are carried out, and the numerical results demonstrate that our unified bargaining method can
obtain desirable features while maximizing the offloading service performance by comparing the existing
state-of-the-art PEC control protocols.

INDEX TERMS Pervasive edge computing, Internet of Things, unification bargaining solution, computation
offloading, cooperative game theory.

I. INTRODUCTION
With the rapid development of 5G network technology,
communication and computation have undergone significant
changes. Technologies such as the Internet of things (IoT),
cloud and edge computing, tactile Internet, terahertz, and
blockchain have brought new business models and mar-
kets. These technologies have several advantages in many
sectors and a series of new concepts have been proposed.
With these new concepts, IP-based networking devices have
become increasingly efficient and complex. Over the last
decade, mobile and IoT devices have become indispensable
parts of our daily activities. Alongside the IoT evolution,
the number of connected smart devices has skyrocketed,
and it is expected to experience a many-fold increase by
2025. Within this setting, heterogeneous devices have a wide
range of computational capabilities, and they are predicted
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to execute various applications with different constraints and
requirements [1], [2].

In IoT networks, computation-intensive and latency-
sensitive mobile applications, such as virtual reality (VR),
pose great challenges to resource-limited IoT devices.
Wireless VR is predicted to become a killer application in
5G and beyond, providing an immersive experience and rev-
olutionizing the way people communicate. Rendering is a key
performance bottleneck in wireless VR systems, particularly
in VR games. Typically, VR games involve various fore-
ground interactions and rich-detail background environment
rendering. Therefore, mobile IoT devices with consider-
able computational resources are required to provide high
quality-of-experience (QoE). However, despite recent hard-
ware advances in smart devices, they are not yet capable
of efficiently supporting computation-intensive VR appli-
cations, because their local computing power and energy
resources remain insufficient. Technically, this indicates that
local rendering on today’s mobile device hardware may not
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support untethered VR users’ QoE requirements, i.e., 14 ms
latency and 60 frames per second. Therefore, despite growing
market penetration, today’s high-end VR systems remain
tethered [6].

For future 5G and beyond networks, the delivery of
VR videos with a high QoE is one of the main chal-
lenges. To address the limitations of the current IoT devices,
pervasive edge computing (PEC) is a new paradigm in infor-
mation and communication technologies. In a timely manner,
it can provide the support required for processing urgent
and complex tasks. With PEC, a portion of rendering tasks
can be offloaded to computing-assisted edge servers, which
will support wireless VR. Unlike conventional edge com-
puting methods, the advantages of PEC can be summarized
as follows: i) no central authority is required to enable
feasible and diverse applications, ii) it is infrastructure-free
for deploying and maintaining the dedicated cloud backend,
iii) data can be processed near end-users to reduce the trans-
mission delay, and iv) privacy and security issues are well
addressed. Therefore, the PEC paradigm is more suitable for
future network scenarios and is responsible for decentralized
decision-making, information security, high accuracy, and
data transmission rates for resource-constrained IoT devices.
In recent years, the applications of PEC have spread widely
from entertainment to industry such as live games, multi-
angle video viewing, and cooperative driving [2]–[5].

As a pivotal technology, the PEC has attracted significant
attention in both academia and industry. However, although
the PEC paradigm can be assumed to be a possible solu-
tion with promising ideas, some challenges still need to be
addressed. First, under economic deployment constraints,
each individual edge server has limited computing capability.
Therefore, it is not appropriate for an edge server to deal
with all rendering tasks. With an effective computational
control strategy, the system efficiency should be improved.
Second, the scarcity of wireless bandwidth can be a bottle-
neck in wireless VR. In general, the data rate for carrying
an immersive VR video is typically over 25 Mbps. Under
time-varying network environments, this metric is difficult to
satisfy, especially in the face of data traffic congestion [6], [7].

In a multi-device interactive environment, each individual
IoT device is an autonomous, distributed and intelligent net-
work agent, and intends to maximize its own payoff, which
is consistent with its preferences among different alternative
outcomes. In this situation, many researchers have focused
on ensuring the fairness of devices in a fully decentralized
environment while providing the requiredQoE. However, this
is a complex and difficult task in dynamic PEC environments.
Therefore, a new intelligent control paradigm with novel
solution concepts is required. Multiple IoT devices should
be guided to make rational and strategic decisions to reach
a fair-efficient consensus. In this scenario, cooperative game
theory deserves to be investigated to design novel PEC system
control algorithms [8].

A. TECHNICAL CONCEPTS
The game theory is a mathematical theory of interactive
decision situations with strategic settings. In one of these
situations, some players make decisions depending on the
outcome results, and each player has his/her own preferences
for the set of possible outcomes. From a non-cooperative
view, the strategic analysis of games is concerned. In this
case, players make decisions independently and are not
able to form binding commitments. Therefore, players look
for the best strategies considering that others will also
behave by searching for their best. In other cases, coop-
erative games focus on how players share the benefits of
their cooperation. This approach assumes that players have
a mechanism to enforce their coordination. Almost sev-
enty years ago, J. Nash studied cooperative game theory
and published his pioneered seminal paper on the static
axiomatic approach. Since then, several new bargaining solu-
tions have been introduced to supplement the original Nash
solution [8], [9].
Nash bargaining solution (NBS) is the first cooperative

game solution with axiomatic characterizations. It can pre-
dict the outcome of the bargaining process based only on
information regarding each player’s preferences. The NBS
is formulated by an expected utility function over the set of
feasible agreements and the outcome which would result in
disagreement. The egalitarian bargaining solution (EBS) and
utilitarian bargaining solution ( UBS) are alternative solu-
tions to bargaining problems. The main difference between
these three bargaining solutions is the viewpoint of how
to compromise between egalitarianism and utilitarianism.
To begin the search for appropriate solutions to multi-criteria
problems, NBS, EBS, and UBS negotiate with these two
opposing axiomatic principles. In NBS, if the bargaining
solution of the larger set is found in a smaller domain, the
solution is not affected by the domain size. However, the
EBS attempts to grant equal gains to all the players. In other
words, this is the point that maximizes the minimum payoff
among players. On the other hand, the UBS attempts to max-
imize the total sum of players’ payoffs, after having utility
functions [8], [10].

The unification bargaining solution (UniBS) was intro-
duced by C. Haakea and C. Qin to clarify what could
be a reasonable solution if cooperative game players have
different notions about the ideal solution. It is worth remark-
ing that UniBS includes NBS, EBS and UBS as special
cases under which a bargaining solution can be found
for the multi-criteria bargaining problem. The key unify-
ing axiom for UniBS specifies how the ratios of players’
payoff gains in the solutions of the transformed problems
via affine transformations respond to the ratios of players’
payoff scales resulting from the transformations. Therefore,
UniBS is characterized by a control parameter that mea-
sures the degree of balance between individual and collective
orientations [11].
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B. MAIN CONTRIBUTIONS
In this study, we exploit a PEC platform with computation
offloading technology. Based on heterogeneous IoT devices
and multi-edge server environments, each IoT device can
partially offload its computational workload to the corre-
sponding PEC server for remote execution. To design a
new computation offloading algorithm for the PEC infras-
tructure, our major objective is to effectively share limited
PEC resources under dynamically changing PEC environ-
ments. To satisfy this goal, multiple IoT devices and their
corresponding servers work together and act cooperatively to
enhance the conflicting performance criteria.

In the proposed algorithm, the limited computational and
communication resources of the PEC platform are adaptively
shared among individual IoT devices. To solve these resource
sharing problems, we adopt the idea of UniBS and imple-
ment our unified bargaining process, which is traced back
to a sequential negotiation between a device and edge pair.
Each individual device focuses on a strategy to maximize its
payoff, but the device-edge pair also shares a common goal
and makes a binding commitment based on the exchange of
current information. Therefore, the strategies of the devices
and edge are coupled. In our unifying bargaining gamemodel,
this feature can play a significant role in determining the
system performance. To the best of our knowledge, this is
the first study in which different bargaining concepts are
selectively applied to the design of PEC resource allocation
algorithm. The key contributions of this paper are summa-
rized as follows:
• We introduce a PEC platform to provide computation
offloading services. In widely different and diversified
system environments, individual IoT devices and edge
servers participate in a unified bargaining process to
provide a more fair-efficient control method.

• We study the fundamental idea of NBS, EBS and UBS
and develop our bargaining game model based on the
idea of UniBS. According to the current system condi-
tions, different bargaining solutions can be selectively
applied to the PEC resource allocation problem.

• To handle the computation offloading problem, com-
munication and computation resources in the PEC
system are effectively shared in a coordinated man-
ner. Therefore, control decisions are coupled to get a
desirable solution while ensuring the relevant trade-off
between egalitarianism and utilitarianism.

• We demonstrate the superiority of our proposed algo-
rithm from an experimental perspective. The perfor-
mance results provide useful guidance to confirm
the effectiveness of our proposed unified bargaining
approach by comparing it with existing state-of-the-art
protocols.

II. RELATED WORK
In this section, we first present a brief introduction to
state-of-the-art resource control protocols on PEC platforms.
Subsequently, the distinction between the existing work and

our proposed method is specified. In [15], a new blockchain
system is adapted to address the limitations of edge devices.
It can fairly and efficiently allocate storage resources on edge
devices, and reaches consensus with low energy consumption
in edge devices with a new proof-of-stake mechanism [15].
The paper [16] has proposed a fair and data producer profit
protecting data trading mechanism in pervasive edge comput-
ing environments. It is a smart-contract based protocol that
ensures the profit of the producer for reselling. Based on the
two-stage dynamic Stackelberg game, this study can find a
fair revenue sharing ratio between the data producer and the
resellers, and has proved the approximation ratio between the
rounded result and the optimal integer result [16].

Y. Huang et al. study the unique problem of caching fair-
ness in edge computing environments [17]. They propose
fairness metrics to characterize this issue and formulate the
caching fairness problem as an integer linear programming
problem. Their approach can achieve comparable or even
lower latency while greatly improving fairness, and thus,
data access robustness and performance [17]. In [18], a new
quality-of-experience (QoE)model is proposed for evaluating
the quality of services in a pervasive edge computing envi-
ronment. To realize the high accuracy of high-dimensional
big data and the transmission of accurate data through-
out the pervasive edge computing environment, this paper
focuses on two aspects: i) the issue as a high-dimensional
big data management problem, and ii) testing different
transmission rates to acquire the best QoE. It is suitable
for high-dimensional big data analysis in a pervasive edge
computing environment [18].

Security breaches may cause potentially harmful prob-
lems in PEC systems. Therefore, it is important to imple-
ment appropriate securitymechanisms and safeguard the PEC
resources from intrusion. In recent years, attacks targeting
PEC infrastructure have drastically increased, and ensuring
the privacy of sensitive PEC data is far more difficult than
ever before. In particular, Sybil, denial-of-service (DoS),
man-in-the-middle attacks are the most notable attacks.
Papers [19]–[21] conduct a comprehensive survey on the
security aspects of the PEC paradigm, identifying their
threat models, such as information security, cyber security,
forensic security, and network security. These survey papers
have presented a thorough study on the recent research
and technological development in the area of PEC security
and its application domains, research challenges, and open
issues [19]–[21].

Lin et al. propose the Pervasive Edge Computing Resource
Management (PECRM) scheme for a VR-supported indus-
trial IoT platform [7]. They formulate the service task
offloading and resource allocation process as an optimiza-
tion problem. Then, this optimization problem is transformed
into a sequential decision making problem under time-
varying channel conditions. By considering the VR QoE,
the decision making problem is modeled as a Markov deci-
sion process (MDP) to maximize the long-term system
reward. To tackle this MDP efficiently, a quantum-inspired
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reinforcement learning algorithm is designed to find the opti-
mal policy in an online fashion while improving the learning
efficiency. In the simulations, they evaluate the performance
to show that the PECRM scheme achieves better performance
than other baseline schemes [7].

In [5], the Decentralized Multi Agent Computation
Offloading (DMACO) scheme allows IoT devices to make
decisions on the network edge without centralized manage-
ment. From the viewpoint of each individual device, it is chal-
lenging to select an appropriate edge server to offload tasks.
In a multi-device environment, each device aims to maxi-
mize its own utility. By considering the communication and
computation abilities of edge devices, the DMACO scheme
formulates the task scheduling process in a PEC environment
as an optimization problem. Usually, guaranteeing the task
completion time is difficult without reasonable task alloca-
tion strategies. To address this issue, the DMACO scheme
develops a decentralized computation offloading algorithm
to minimize the average task completion time in the PEC
platform. This approach is a prior attempt to leverage the
generalized adversarial imitation learning in a multi-agent
PEC environment. Finally, the performance results demon-
strate the effectiveness of the DMACO scheme in terms of
average task completion time, convergence time and offload-
ing ratios [5].

The Pervasive Edge Computing Service Placement
(PECSP) scheme is a dynamic service placement framework
for efficient offloading services on a PEC platform [12].
To enable dynamic service placement, the Lyapunov
optimization method is used to decompose the long-term
optimization problem into a series of online Lyapunov drift-
plus-penalty minimization problems. Then, a sample average
approximation-based stochastic algorithm is proposed to
approximate the future expected system utility. Without prior
knowledge of future movement trajectories of IoT devices,
the future system utility is approximated by Monte-Carlo
based stochastic sampling. In addition, the PECSP scheme
provides the service placement probability distribution and
convex log-sum-exp function to transform the system utility
maximization problem into a Markov approximation opti-
mization problem. Therefore, the storage capability of PEC
servers can be fully utilized. Finally, performance evaluations
demonstrate the effectiveness and efficiency of the PECSP
scheme in terms of system utility, service fraction and con-
vergence time [12].

To date, some resource allocation schemes have been pro-
posed using new ideas. Referring to the advantages of existing
work, we construct a novel unified bargaining method for the
PEC resource allocation problem. For the PEC platform, the
main contribution of our scheme is the reciprocal combina-
tion of different bargaining ideas to provide a fair-efficient
solution. Owing to the desirable features of cooperative game
theory, our approach based on UniBS can achieve globally
desirable PEC system performance while dynamically adapt-
ing to the IoT network environment.

III. THE PROPOSED PEC RESOURCE
ALLOCATION ALGORITHM
In this section, PEC system infrastructure and operational
scenarios are introduced. Then, the proposed bargaining
game is formulated based on UniBS to share PEC resources.
Finally, we describe themain steps of our proposed algorithm.

A. IoT-BASED PEC PLATFORM AND UNIFIED
BARGAINING GAME
In this study, we assume a PEC system platform consisting
of multiple PEC servers, E = {ε1, . . . , εn}, which pro-
vide computational services for a set of IoT devices, D =
{D1, . . . ,Dm}. Individual PEC servers are connected via high
speed fiber communications, and are endowed with edge
computing capabilities. Each device can offload its compu-
tational tasks to the corresponding PEC server via wireless
communications. The computing capability of ε1≤i≤n is char-
acterized by its computation service rate, that is the CPU
frequency. Each εi serves a dedicated set of IoT devices in
its serving area, denoted by Dεi ⊆ D. IoT devices are autho-
rized to access the communication and computing services of
the deployed PEC server. The totally generated computation
workload for the D1≤j≤m is ϒDj where ϒDj = ϒ

εi
Dj
+ ϒL

Dj

where ϒεiDj
and ϒL

Dj
are theDj’s offloading and local compu-

tation amounts, respectively. In our bargaining game model,
the ε − D association is a game entity that negotiates with
each other in a cooperative manner.

The operational timeline is discretized into time slots to
make offloading decisions, which is the same time scale
as the task arrivals. In each time slot, computation tasks
originating from each IoT device are generated according
to a Poisson process, which is a common assumption for
computation task arrival in the PEC system. IoT devices may
request different types of tasks that vary in input data size
and required CPU cycles. Because task workload arrivals
are often uneven among IoT devices, tasks can be partially
offloaded for processing. For computation offloading ser-
vices, data transmissions occur in the wireless link between
the device and its corresponding edge server. However, the
computing power and wireless bandwidth of PEC servers
are limited. Therefore, offloading strategies should con-
sider the current system situation to improve the resource
efficiency [13].

To address the PEC resource sharing problem, we formu-
late three bargaining games. At a time period, each individual
D1≤j≤m and ε1≤i≤n processes their bargaining games. In the
Dj, the ϒDj is partially offloaded to increase the Dj’s profit,

and the bargaining game
(
GεiDj

)
is designed to divide theϒDj .

In the εi, two bargaining games, i.e.,G0Ei andG
2
εi
, are formu-

lated to share the εi’s computation
(
0εi
)
and communication(

2εi
)
resources, respectively. Based on the concept ofUniBS,

the GεiDj
, G0εi and G2εi are operated in a cooperative manner,

and are repeated in a step-by-step interactive fashion at each
time period. Formally, we define the GεiDj

, G0εi and G2εi game
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entities, i.e.,

G =
{
GεiD1≤j≤m

,G0ε1≤i≤n ,G
2
ε1≤i≤n

}
=

{
E,D,

{
GεiDj
|MDj ,

(
ϒ
εi
Dj
, ϒL

Dj

)
,UO

Dj
(·) ,UL

Dj
(·)
}
,

×

{
G0εi |0εi ,Dεi , 0

Dj∈Dεi
εi ,UDj (·)

}
,

×

{
G2εi |2εi ,Dεi ,2

Dj∈Dεi
εi ,UDj (·)

}
,T
}

of gameplay.
• The GεiDj

, G0εi and G2εi are mutually and reciprocally
interdependent in an interactive manner, and work
together to share PEC resources.

• E is the set of edge servers, andD is the set of IoT devices
in the PEC system platform.

• In the GεiDj
, MDj is the total computing capacity of Dj,

and offloading and local computing services are game
players. ϒεiDj

and ϒL
Dj

are their strategies, and UO
Dj
(·)

and UL
Dj
(·) are their utility functions.

• In theG0εi , 0εi is the εi’s total computation capacity, and

IoT devices in the Dεi are game players. 0
Dj∈Dεi
εi is the

Dj’s strategy and UDj (·) is its utility function.
• In the G2εi , 2εi is the εi’s total communication capacity,

and IoT devices in the Dεi are game players. 2
Dj∈Dεi
εi is

the Dj’s strategy and UDj (·) is its utility function.
• The discrete time model T ∈ {t1, . . . , tc, tc+1, . . .} is
represented by a sequence of time steps. The length of
tc matches the event time-scale of GεiDj

, G0εi and G
2
εi
.

B. THE FUNDAMENTAL IDEA OF THE UniBS
To characterize the basic concepts of bargaining solutions,
we assume an n-player bargaining problem. Let N =

{1 . . . i . . . n} be the set of players and let Rn denote the
n-dimensional Euclidean space. Given vectors x, y ∈ Rn,
x ≥ y and x � y if xi ≥ yi and xi > yi for all i, respectively.
Set Rn

+ = {x ∈ Rn
| x ≥ 0} and let S and d be the set of fea-

sible outcomes and disagreement point, respectively, where
S ⊂ Rn and d ∈ S. Let

∑
be the set of all subsets of Rn

+,
and elements in

∑
are interpreted as bargaining problems.

Mathematically, the NBS can be defined as follows [11]:

NBS (S)= max
i∈N ,S∈6

{
ui ∈ S |

(u1 − d1)× . . .×
(ui − di)× . . .× (un − dn)

}
(1)

The EBS can be computed via the following maximization
problem [11]:

EBS (S)=max
i∈N

{
ui ∈ S|min

S∈6

(
(u1−d1) , . . . ,
(ui−di) , . . . , (un − dn)

)}
(2)

The UBS can be defined as follows [11]:

UBS (S)= max
i∈N ,S∈6

{
ui ∈ S|

(
(u1−d1)+ . . .+
(ui−di)+ . . .+ (un − dn)

)}
(3)

To unify the different bargaining solutions, unification
function (UF) can be defined with a control parameter ε
where ε ∈ (0, 1)∪ (1,∞). A new bargaining solution, called
UniBS, is obtained by maximizing the UF, which includes
NBS, EBS and UBS as special cases [11].

UF (ui ∈ S | ε)=
[
(u1−d1)

ε−1
ε + . . .+ (ui−di)

ε−1
ε

+ . . .+ (un − dn)
ε−1
ε

] ε
ε−1

s.t., lim
ε→ε̄

UF (ui ∈ S | ε) =


EBS, if ε̄ = 0
NBS, if ε̄ = 1
UBS, if ε̄ = ∞

(4)

C. THE UNIFIED BARGAINING GAME
IN THE PEC PLATFORM
To develop new unified bargaining game models, we con-
struct the GεiDi

, G0εi and G2εi games. They interact with each
other during a sequence of time steps. At each time period,
the GεiDj

is designed for the εi − Dj pair; the Dj partially
offloads its computation task to the εi. This game decides
the computation offloading size, that is ϒεiDj

, to maximize the
Dj’s payoff. As game players, offloading and local computing
services select their strategies, i.e., ϒεiDj

and ϒL
Dj
, by con-

sidering the currently available Dj’s computing power and
the εi’s offloading cost. At time tc, the utility functions of
offloading computing service

(
UO
Dj
(·)
)
and local computing

service
(
UL
Dj
(·)
)
are defined as follows:



UO
Dj

(
ϒDj , ϒ

εi
Dj
, cεitc

)
=

exp

−min
(
ϒDj , ϒ

εi
Dj

)
ϒDj

× cεitc

× ϒεiDj

UL
Dj

(
ϒDj , ϒ

L
Dj
, ρ

Dj
tc

)
=η − log

min
(
ϒDj , ϒ

L
Dj

)
ϒDj

+ ρ
Dj
tc

×ϒL
Dj

s.t., ϒDj = ϒ
εi
Dj
+ ϒL

Dj
,

cεitc =
Mtc

εi

0εi
and ρ

Dj
tc = exp

(
ϒDj

MDj

)
(5)

where cεitc is the εi’s offloading computational cost, ρ
Dj
tc is the

Dj’s working-load status, and Mtc
εi is the using computing

power of εi, at time tc. Therefore, c
εi
tc and ρ

Dj
tc may increase

in direct proportion to the current computational overhead,
and η is a control parameter for UL

Dj
(·). Because all game

players in theGεiDi
are components ofDi, the solution concept

of GεiDi
should be strongly concerned with egalitarianism for

game players. In this case, the EBS is preferred for the Di.
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It is given by:

lim
ε→0

UF
(
UO
Dj
(·) ,UL

Dj
(·) , ϒDj ,

(
dODj

, dLDj

)
| ε
)

=

[(
UO
Dj
(·)− dODj

) ε−1
ε
+

(
UL
Dj
(·)− dLDj

) ε−1
ε

] ε
ε−1

∼= max
[
min

{(
UO
Dj
(·)− dODj

)
,
(
UL
Dj
(·)− dLDj

)}]
(6)

where dODj
and dLDj

are disagreement points for the offloading
and local computing services, respectively. According to (6),
the solution of GεiDi

is obtained. In contrast to the GεiDi
, the

G0εi and G2εi games are operated in the εi. Through these two
games, the εi distributes its0εi and2εi for theDj ∈ Dεi . First,
the G0εi game determines the 0

Dj
εi value by considering each

individual device’s condition. As a game player, the utility
function of Dj

(
UDj (·)

)
is defined as follows:

UDj

(
0εi ,Dεi , ϒ

εi
Dj
, 0

Dj
εi

)

=


exp

min
(
ϒ
εi
Dj
,0

Dj
εi

)
ϒ
εi
Dj

− exp
−min

(
ϒ
εi
Dj
,0

Dj
εi

)
ϒ
εi
Dj


exp

min
(
ϒ
εi
Dj
,0

Dj
εi

)
ϒ
εi
Dj

+ exp
−min

(
ϒ
εi
Dj
,0

Dj
εi

)
ϒ
εi
Dj




×0

Dj
εi

s.t., Dj ∈ Dεi and 0εi ≥
∑

Dj∈Dεi

0
Dj
εi (7)

where 0
Dj
εi is the allocated computational power for the Dj.

In the G0εi , all game players are devices in Dεi , and they
share the limited 0εi resource. From the viewpoint of game
players, decreasing the difference in players’ requirements
for the 0εi needs the independence of alternatives other than
the disagreement point. It states that the solution of a bar-
gaining problem does not change as the set of feasible out-
comes is reduced, so long as the disagreement point remains
unchanged, and the solution originally selected remains fea-
sible. This condition states that the selection of a feasible
solution in an outcome set does not depend on any point
except possibly the disagreement point [14]. In this case,NBS
is preferred. Otherwise,UBS is suitable. As a decision control
parameter, the ε value is dynamically adjusted based on the
current difference ratio of ϒεiDj∈Dεi

and the solution of G0εi is
given by:

UF
(
Dεi ,UDj (·) , d

0
Dj
| ε
)
=

 ∑
Dj∈Dεi

(
UDj (·)−d

0
Dj

) ε−1
ε

 ε
ε−1

s.t., ε =

min
Dk ,Dh∈Dεi

(∣∣∣ϒεiDk
− ϒ

εi
Dh

∣∣∣)
max

Dk ,Dh∈Dεi

(∣∣∣ϒεiDk
− ϒ

εi
Dh

∣∣∣) (8)

where d0Dj
is the disagreement point ofDj in theG0εi . Accord-

ing to (8), the solution of G0εi is given. Second, the G2εi
game determines the 2

Dj
εi value to distribute the limited 2εi

resource. Such as the G0εi , the Dj ∈ Dεi is a game player, and

its utility function
(
UDj (·)

)
is defined as follows:

UDj

(
Dεi ,2εi ,2

Dj
εi ,2

Dj
M

)
=

log

ψ + min
(
2

Dj
εi ,2

Dj
M

)
2

Dj
M


log

(
ψ + 1

2
Dj
M

)
×2

Dj
εi

s.t., Dj ∈ Dεi and 2εi ≥
∑

Dj∈Dεi

2
Dj
εi (9)

where ψ and 1 are adjustment factors for UDj (·), and 2
Dj
M

is the Dj’s maximum requirement for the 2εi . In the G2εi , all
game players are devices in Dεi , and they share the limited
2εi resource for wireless communications. The solution of

G2εi is obtained using the same concept as the solution ofG0εi .
Therefore, it is given by:

UF
(
Dεi ,UDj (·) , d

2
Dj
| ε
)
=

 ∑
Dj∈Dεi

(
UDj (·)−d

2
Dj

) ε−1
ε

 ε
ε−1

s.t., ε =

min
Dk ,Dh∈Dεi

(∣∣∣2Dk
M −2

Dh
M

∣∣∣)
max

Dk ,Dh∈Dεi

(∣∣∣2Dk
M −2

Dh
M

∣∣∣)
(10)

where d2Dj
is the disagreement point of Dj in the G0εi . Using

Eq. (10), the solution for G2εi is determined.

D. MAIN STEPS OF OUR PEC RESOURCE
ALLOCATION ALGORITHM
In this article, we propose a novel resource allocation algo-
rithm to characterize the PEC platform while ensuring dif-
ferent VR applications. There are two types of resources of
interest in this article: i) computing power and ii) wireless
bandwidth. Because edge servers and devices are aware of
their available resources, they are capable of discovering the
best solution to balance the system performance. According
to the idea of UniBS, we propose three different bargaining
games, i.e.,GεiDj

,G0εi andG
2
εi
, to address the resource sharing

problems in a PEC infrastructure. Based on the fundamental
concepts of NBS, EBS and UBS, a fair-efficient solution is
dynamically selected to adapt to the current PEC system
conditions. During discrete time periods, the GεiDj

, G0εi and
G2εi games are operated repeatedly in a step-by-step inter-
active online manner. Owing to the desirable characteristics
of UniBS, we can maximize the PEC system throughput,
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TABLE 1. System parameters used in the simulation experiments.

FIGURE 1. The PEC system throughput.

normalized device payoff and fairness while effectively sat-
isfying contradictory requirements.

In this study, we do not focus on trying to get an optimal
solution based on the traditional optimal approach. Instead,
the decisionmechanism in our interactive bargainingmodel is
implemented with a polynomial complexity. From the view-
point of practicality, this is a suitable approach for real- world
system operations. The main steps of our proposed algorithm
are as follows:

Step 1: To implement task offloading services in a PEC
infrastructure, the values of the adjustment parame-
ters and control factors are listed in Table 1, and the
simulation testbed is presented in Section IV.

Step 2: At each time epoch, multiple devices generate their
VR computing tasks in the IoT paradigm.

Step 3: From each individual D1≤j≤m, the GεiDj
game is

operated in a dispersive manner while contacting
its corresponding εi. According to (5), the utility
functions, i.e., UO

Dj
(·) and UL

Dj
(·), are defined.

Step 4: Based on the concept of UniBS, the solution ofGεiDj
game is determined using (6).

Step 5: For each individual εi, the G0εi and G2εi games are
operated in a decentralized and parallel manner.
In the G0εi game, the Dj’s utility function, that is,
UDj (·), is defined according to (7).

Step 6: Using (8), the solution ofG0εi game is obtainedwhile
dynamically adjusting the ε value.

Step 7: In the G2εi game, the Dj’s utility function, i.e.,
UDj (·), is defined according to (9). Based on

Eq.(10), the solution of 2
Dj
εi game is obtained.

Step 8: During discrete time periods, the sequential inter-
actions of GεiDj

, G0εi and G2εi games are explored to
achieve mutual advantages. They work together to
achieve an optimal PEC performance in a coordi-
nated manner.

Step 9: Individual game entities constantly self-monitor the
current system environments, and proceed to Step 2
for the next game process.

FIGURE 2. Normalized IoT device payoff.

IV. PERFORMANCE EVALUATION
In this section, we describe the simulation experiments
conducted and analyze the performance of the proposed algo-
rithm. The proposed algorithm is compared with other exist-
ing methods such as PECRM, DMACO and PECSP protocols
in [5], [7], [12]. For performance comparison, we introduce
the simulation scenario and specific experimental testbed as
follows:
• The simulated PEC platform consists of ten edge
servers, and 100 IoT devices where |E| = 10 and |D| =
100. The devices are located in the area neighboring of
their corresponding servers.

• The total communication capacity (2ε) of each ε

is 2 Tbps, and the total computational power (0ε)
is 20 GHz.
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FIGURE 3. Access fairness of among IoT devices.

• The total computing capacity of Dj

(
MDj

)
is 1.5 GHz.

• The disagreement point (dD) of each bargaining game
is assumed to be zero.

• To reduce computational complexity, the amount of
computation offloading process is specified in terms
of basic offloading units (BOUs), where one BOU is
the minimum amount (e.g., 20 kHz in our system) of
computing offloading service. The amount of bandwidth
allocation is also specified in terms of basic bandwidth
units (BBUs), where one BBU is the minimum amount
of bandwidth allocation (e.g., 4 Mbps in our system).

• VR computation tasks are generated for each individual
IoT device. At each time epoch, the generation process
for task services is Poisson with rate 3 (services/t), and
the range of offered workload was varied from 0 to 3.0.

• Six different VR task services are assumed based on
their communication and computation requirements,
and service duration times.

• The system performance measures obtained basis on
100 simulation runs are plotted as a function of the task
request workload.

Fig. 1 depicts the average system throughput as a function of
the increasing workload rate, for different PEC task offload-
ing protocols. In our simulation model, system throughput
is defined as the ratio of successfully serviced tasks to all
generated tasks. From the simulation results, we observe that
as the workload rate increases, the system throughput also
increases. In particular, it can be seen that the throughput
of our proposed scheme is higher than that of the other
existing schemes from low to heavy workload intensities.
This outcome confirms that our bargaining game approach
can make control decisions adaptively under the dynamics
of PEC platform environments, leading to optimized system
performance.

Fig. 2 shows the normalized payoff received by the devices
of all protocols. As shown in Fig. 1, the proposed scheme
maintains higher payoff outcomes for different task workload
situations. When the workload load increases, it becomes

more certain. This is because of the pure benefits stem-
ming from the optimization of the partial offloading process.
In the proposed scheme, individual IoT devices can handle
all their computation tasks by taking advantage of UniBS for
offloading services. The simulation results clearly indicate
that efficient properties can be guaranteed in the resource
allocation problem of the PEC platform.

The fairness comparisons among the devices on the PEC
platform are plotted in Fig. 3. We can see from the figure
that our proposed scheme can achieve the best fairness com-
pared with the PECRM, DMACO and PECSP protocols for
the range of offered workload rates. Traditionally, coopera-
tive games and bargaining solutions have been paradigmatic
for certain fairness considerations. The major characteristic
of UniBS is that it provides a fair-efficient solution while
ensuring the tradeoff between NBS, EBS and UBS. This
leads to a preferable outcome in the fairness comparison.
The simulation results shown in Figs. 1-3 demonstrate that
the proposed scheme can strike an appropriate performance
balance under widely diversified task workload intensities in
the PEC infrastructure.

V. SUMMARY AND CONCLUSION
In this study, we investigate the computation and commu-
nication resource allocation problems of the PEC platform.
To address these problems efficiently, we study a suitable
unification solution concept by considering different bar-
gaining ideas while adapting to dynamically changing PEC
system conditions. Based on UniBS, the GεD, G0ε and G2ε
games are formulated to achieve the goal of maximizing
the system performance. Then, these games work together
interactively in a step-by-step cooperative manner to select
their optimal strategies in an online fashion. Finally, extensive
experimental simulations are performed to prove the effec-
tiveness of our proposed approach. The numerical results
show that the proposed bargaining approach outperforms the
existing PECRM, DMACO and PECSP protocols in terms of
system throughput, device payoff and fairness. So, in sum,
it is worth noting that the UniBS based GεD, G0ε and G2ε
games can efficiently utilize the limited computational and
communication resources in the PEC system platform.

Our future work will involve conducting experiments to
test the validity and performance of our proposed method on
a real PEC platform. Furthermore, as there are still potentials
in each decision making part of our coexisting bargaining
games, we aim to integrate security, AI, and edge computing
to enhance the performance of IoT-enabled PEC. In addi-
tion, to protect low-powered IoT devices from Sybil attacks,
we propose a lightweight Sybil attack-detection protocol.
In the direction of this approach, we will devote attention to
security problems, including man-in-the-middle attacks, DoS
attacks, and DDoS attacks that threaten the IoT infrastructure.
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