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ABSTRACT Digital beamforming is the holy grail of antenna array technologies, however implementing
digital beamforming into practical antenna arrays has been slow due to hardware complexity and cost.
We propose a relatively inexpensive new approach to digital beamforming using software defined radios.
Using this system, we carried out experiments on adaptive interference cancellation. We present detailed
description of the beamformer system along with the developed control software and experimentally verify
the beamformer performance. Our results show that in high-interference and high-multipath environments,
where carrier frequency offsets cannot be measured, conventional interference cancellation algorithms fail.
We propose two new robust solutions to this problem and compare the results with multiple techniques,
including the minimum variance distortionless response beamformer, which outputs the highest possible
signal-to-interference-plus-noise-ratio (SINR). We experimentally demonstrate that both our approaches
work well in the face of these types of signal corruptions and are capable of interference cancellation without
degrading SINR or other system performance factors, and without the need for transmitter and receiver
synchronization.

INDEX TERMS Adaptive arrays, adaptive nulling, digital beamforming, interference cancellation, software-
defined radio.

I. INTRODUCTION
Our wireless infrastructure and the spread of the Internet
of Things (IoT) unleashed billions of radio-frequency (RF)
devices that fill the allotted spectrum with signals. Signal
interference, channel congestion, and noise in such environ-
ments challenge system designers [1], [2]. In order to survive
the crowded and sometimes hostile radio spectrum, wireless
communication and radar systems need to adapt and recon-
figure to the environment in which they operate. Adaptive
arrays dynamically weight and combine signals in a way
that enhances the desired signal while rejecting interfering
signals. Signal processing and optimization algorithms mod-
ify the element weights to enhance signal detection [3]–[6].
These arrays dramatically improve performance in hostile
radio environments, but their very high cost limits implemen-
tation on a wide scale, particularly for civilian applications.

Until recently, the high cost of digital beamformers lim-
ited the number of hardware systems with full digital
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beamforming (DBF) capability [7], [8]. Hybrid beamforming
approaches can help to reduce the cost of fully digital beam-
formers [9], with some limitations in performance. A single
radio frequency channel digital beamforming array antenna
based on compressed sensing was also proposed to reduce
the hardware costs [10].

A cost effective solution for full DBF uses a direct con-
version or zero intermediate frequency (IF) architecture. This
architecture is commonly adopted in software defined radios
(SDRs). SDRs provide a low-cost option for digital com-
munication and can be used to increase the feasibility of
DBF by placing an SDR at each element of an array. The
SDRs convert the RF signal into digital data at the ele-
ment level, enabling cost-effective DBF. Some beamforming
experiments using SDR arrays have recently been reported,
including direction finding (DF) and localization. SDR arrays
have been used for DF in anechoic chambers [11], [12], and
transmitter beam scanning [12], as well as source localization
and array shape estimation [13]. Initial work on interfer-
ence cancellation and adaptive nulling with SDRs have been
reported in [14]–[17].
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FIGURE 1. Simplified block diagrams of beamformer receivers. (a) Analog heterodyne. (b) Digital heterodyne. (c) Digital direct down-conversion.

On the other hand, practical implementation of DBF also
requires robust algorithms for nonideal scenarios, which are
commonly known as mismatched beamformers [4]. Robust
algorithms have primarily focused on mismatches from steer-
ing vector errors, or finite sample size of the spatial spec-
tral estimates [18]–[22]. A different category of beamformer
mismatch is when the transmitter and receiver are not syn-
chronized. Very limited work has been reported on robust
approaches that account for signal corruptions arising from
carrier frequency offsets [17], [23], [24]. However, in high-
interference and high-multipath environments, typically mea-
suring the carrier frequency offset is not feasible and robust
solutions are needed.

The primary goals of this research are to, (1) build a
low-cost platform for robust DBF using an array of SDRs,
and (2) experimentally study the interference cancellation
capability of the system in a realistic high-multipath environ-
ment. For experimental studies, we first used the developed
four-element SDR digital beamformer to compare interfer-
ence cancellation performance of conventional algorithms.
We then show that in the case where the transmitter and
receiver cannot be synchronized, these algorithms will fail.
To overcome the shortcomings of these existing algorithms,
we developed two new interference cancellation approaches.
The first uses the conventional algorithms, but ignores signal
phase, essentially performing an amplitude-only optimiza-
tion of the array weighting vector. The second approach is
based on a new interference cancellation error function and
uses genetic algorithm (GA) for the optimization problem.
Experimental results are presented, and we show that both
proposed techniques provide robustness to this type of sig-
nal corruption in unsynchronized systems without degrading
SINR or other system performance factors. In comparison
between the two proposed techniques, the GA approach pro-
vides a higher SINR. We note that the initial results of this
research were presented in [17]. In comparison, this extended
version includes a description of the beamformer system
architecture, a new direct calibration approach that outper-
forms the initial over-air technique, SINR studies along with
description of the measurement approach, comparison with

multiple beamforming algorithms, as well as experimental
studies for synchronized and un-synchronized beamforming.
In addition, multiple trials were conducted for each case study
to verify the effectiveness of the algorithms. In short, the
novelties and original contributions of this work are:

1. Experimental demonstration of a new cost-effective
DBF platform using an array of SDRs, along
with experimental studies on interference cancellation.

2. Development of two new interference cancella-
tion solutions for unsynchronized transmitter-receiver
communication systems along with experimental
verification.

This paper is organized as follows. We introduce back-
ground on digital beamformer hardware architectures and
adaptive nulling interference algorithms in section II.
Section III provides details on the development of the pro-
posed digital beamformer based on SDRs, discussing the
hardware setup, calibration, and control algorithms. Experi-
mental results on interference cancellation obtained using this
testbed is given in Section IV, where we also highlight some
shortcomings of the existing techniques. New interference
cancellation algorithms that can operate without the need
for synchronization are then given in Section V where we
demonstrate the robustness of these techniques in a realistic
high-multipath environment. This is followed by conclusions
in Section VI.

II. PRELIMINARIES
A. SYSTEM ARCHITECTURES FOR ADAPTIVE
BEAMFORMING
Fig. 1 (a) shows a diagram of an N-element active elec-
tronically scanning array (AESA) receiver. A reverse pro-
cess exists for transmit in which the computer sends bits
to a digital-to-analog converter (DAC) before modulating,
amplifying, filtering, and up converting the signal [25]–[27].
At the receiver, the RF signal at each element gets phase
shifted, then summed into one signal that is down converted.
The IF stage filters and amplifies the single IF signal before
demodulating it to a frequency that is compatible with the
analog-to-digital converter (ADC) [28]–[32]. The computer
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collects a reasonable amount of signal data. RF beamformers
can perform low-resolution direction finding and blind adap-
tive nulling [5], [33], [34]. This AESA architecture converts
all the RF data to a single digital output, so the signals at
the element level are unknown. A basic architecture for a
digital beamforming antenna array appears in Fig. 1 (b).
Here, the signal at each element in the array down converts
to an IF signal that passes to an ADC. For an N-element
array, the computer receives N times as much data as the RF
beamformer. The computer now has the ability to form the
signal covariance matrix for high resolution DF or adaptive
nulling [35]–[42].

This architecture is expensive, though. A cost effective
solution to full digital beamforming is based on direct conver-
sion or zero IF architectures. Direct down conversion (DDC)
passes the RF signal from an element through a bandpass
filter (BPF) and low-noise amplifier (LNA) before entering
the ADCwithout the need of an IF stage. A basic architecture
of a DDC receiver is given in Fig. 1 (c). Software defined
radios commonly adopt this architecture. An SDR controls
the transmit/receive waveform in software rather than hard-
ware. Common hardware tasks, such as baseband modulation
and coding, are performed in software as well [43]. SDR
technology enables a radio to communicate at a desired fre-
quency, bandwidth, modulation, and data rate through soft-
ware changes rather than hardware changes.

B. ADAPTIVE NULLING ALGORITHMS
Array processing enhances the reception (or detection) of a
desired signal in an environment containing numerous inter-
ference signals. Adaptive nulling algorithms place nulls in the
directions of interference sources in order to maximize the
system SINR. Consider the N -element linear array depicted
in Fig. 2. The output signal, y(t), is given by

y(t) = wT x(t), where x(t) = s(t)+ n(t). (1)

Here x(t) = [x1(t), x2(t), . . . , xN (t)] is the input signal vector
measured by the array, which has a signal, s, and a noise, n,
component, w = [w1, w2, . . . ,wN ] is the array weighting
vector, and the superscript T denotes transpose. The noise is
assumed to be stationary and ergodic. Most adaptive nulling
algorithms require a reference signal used for synchroniza-
tion. The reference signal is denoted by d . The input signal
vector, x(t), may be corrupted due to interference or other
factors. The difference between these two signals defines the
error vector:

ε(t) = d(t)− wT x(t). (2)

The expected value of the squared error in (2) is given by

E
{
ε2(t)

}
= d2(t)− 2wT rxd + wTRxxw, (3)

where rxd is the signal covariance vector of the received and
reference signals and Rxx is the covariance matrix of the
received signals. Equation (3) defines the mean square error
performance criterion and is a quadratic function of w whose
extremum is a minimum.

Adaptive beamforming algorithms find a weighting vector
to minimize (3). The most popular adaptive array beamform-
ers is the minimum variance distortionless response (MVDR)
beamformer which provides noise resilience while nulling
interferers. The MVDR beamformer output has the highest
possible SINR. When the covariance matrix of interference
and noise is replaced by the sample matrix obtained the refer-
ence signal, the adaptive version of theMVDR beamformer is
referred to as the sample matrix inversion (SMI) beamformer
[44], [45]. As such, SMI serves as a benchmark reference
for comparison with other beamforming algorithms and is
adopted in our work. Other than SMI, the other best known
algorithms include least mean square (LMS) and recursive
least square (RLS) [4]–[6]. The LMS algorithm uses a gra-
dient descent optimization. It loops over time samples and,
for each time sample, it estimates a gradient vector based
on that time sample and performs one step of a gradient
descent optimization using the estimated gradient. Iterative
numerical matrix inversion approaches help circumventmany
computational problems. The RLS algorithm is a nonstation-
ary iterative approach that weights recent time samples higher
when computing an updated weighting vector. At iteration K ,
RLS attempts to minimize a weighted norm given by

‖ε‖2α =

K∑
k=−∞

εkα
k , (4)

for some 0 < α < 1. RLS accounts for the past few samples
in its computation of the array weighting vector.

FIGURE 2. An adaptive array showing the setup of reference and error
signals.

III. A SOFTWARE DEFINED RADIO DIGITAL
BEAMFORMER
A basic block diagram of the beamformer with an SDR at
each element is shown in Fig. 3. The computer controls beam-
forming using an interference cancellation algorithm, while
the synchronization trigger and RF reference synchronize and
calibrate the SDR array.

A. HARDWARE IMPLEMENTATION
Our experimental beamforming testbed has four National
Instruments (NI) USRP 2922s which are programmable radio
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transceivers [46]. The USRP (Universal Software Radio
Peripheral) devices interface to the computer via an Ethernet
switch. Each USRP provides an independent transmit and
receive channel capable of full duplex operation, which acts
as one array channel when the antenna is connected to the
duplex transmit and receive port of the USRP. The SDR has a
tunable center frequency from 400MHz to 4.4 GHz and up to
a 20 MHz instantaneous bandwidth with 16-bit sample width
I/Q streaming at 25 MS/s for host-based processing with
NI LabVIEW [47]. While these SDRs provide flexibility for
frequency reconfiguration, our experimental setup functions
at 2.45 GHz.

Our beamformer uses four monopole antenna elements,
each connected to one USRP. The monopole antennas are
placed 61 mm (λ/2 at 2.45 GHz) apart, on a custom-built
3D printed high-impact polystyrene mount. A photo of the
monopole array is given in Fig. 4 (a). An OctoClock-G
CDA-2990 clock distribution accessory synchronizes the
SDRs for coherent beamforming [48]. This device has
a 10 MHz and a 1 PPS timing source that synchronize the
local oscillator (LO) frequencies and sample clocks at each
SDR. An image of the four USRPs and synchronization
clock is given in Fig. 4 (b). A computer running LabVIEW
controls the beamformer. Fig. 4 (c) is a photo of the complete
beamformer including the computer, SDRs, synchronization
clock, and the antenna array.

FIGURE 3. Simplified block diagram of the proposed SDR beamformer.

B. BEAMFORMER CALIBRATION
The commercial clock distribution accessory synchronizes
the sample clocks and aligns the LO frequency but does not
align the LO phase of each SDR device. As a result, phase
ambiguities in the LOs prevent coherent beamforming. Cali-
brating the relative phases of the LOs and relative amplitudes
of the SDRs can be done using a plane wave from an external
transmitter as a reference signal inside an anechoic cham-
ber [13]. However, this approach shows poor performance
in realistic high-multipath environments [17]. An alternative
approach sends a reference signal to each SDR over a cable
connected to the SDR receive port through an RF switch
or through a second receive port on the SDRs [11], [12].
The latter approach requires enough leakage between the two
receive ports such that the reference signal at the second

receive port is measured by the receive port connected to
the array element. In our beamformer, each USRP has a
duplex port (RX1/TX1) and a receive-only port (RX2). The
duplex ports connect to the array elements and the receive-
only ports connect to an RF reference signal from a Signal
Hound VSG25A signal generator [49] through a custom four-
way power divider shown in Fig. 5. The power divider uses
threemicrostrip T-junctions, which does not isolate the output
ports, so it relies on the SDRs’ isolation between the RX2 port
and RX1/TX1 port to prevent array signals from reaching the
power divider outputs.

FIGURE 4. Hardware setup of the digital beamformer: (a) close-up of the
four element monopole array on a custom 3D printed antenna mount,
(b) close-up of the four SDRs (top and bottom shelves) and the
synchronization clock (center shelf) on a rackmount, (c) the complete
system including the computer.

FIGURE 5. Four-way power divider used for phase synchronization of the
SDR Array.

For brevity, we only summarize our receive calibration
process. Each device measures the reference signal phase and
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amplitude from the power divider then makes corrections in
software. We use correction factors calculated by recording
N samples of the reference signal at each SDR over 100 ms.
The array output forms a complex sample matrix x with
elements xij, where j corresponds to the array element and
i corresponds to the sample number. The resulting correction
factors are

ci =
1
N

N−1∑
i=0

xi0
xij
, (5)

where ci is the complex correction factor for the jth element.
We experimentally verified the calibration processes by

measuring the phase and amplitude received by each SDR
from a fifth NI USRP-2922 that transmitted a calibration
signal. The transmitting USRP was connected to the Octo-
clock, so its LO frequency and sample times were matched to
those of the array SDRs. To ensure that the receiver measures
the transmitted signal, the transmitted signal frequency was
increased by 1 kHz. This frequency offset was removed from
the received signals in software [50].

The transmitting SDR delivered a continuous wave signal
with a predictable amplitude and phase to each SDR in the
array. The amplitudes and phases of the beamformer SDRs
before and after calibration are shown in a polar plot in
Fig. 6. The amplitude scales and phases of these graphs are
normalized so the first array element has a unit amplitude
and zero phase. We note that the amplitudes are nearly equal
before calibration, but the phases are not. Consequently, only
phase calibration is critical for coherent beamforming. Sim-
ilar results were observed when calibrating the beamformer
for transmission.

FIGURE 6. Time-dependent amplitude and phase data received by the
SDR array, (a) before calibration, (b) after calibration.

C. DATA ACQUISITION SOFTWARE
A LabVIEW virtual instrument (VI) calibrates the array
before measuring the SINR. The VI then loops over test
conditions, which include a list of interferer power settings.
During each test case, the interference cancellation algorithm
calculates the array weights once then the VI measures the
SINR. To provide a visual representation of the impact of
interference on a digital transmission, a separate pair of

transmit/receive programs measure constellation patterns and
receive image data. The transmitter program sends a digital
signal with a specified modulation scheme, carrier frequency,
and symbol rate. This transmitter sends a 10 KiB pseudoran-
dom digital noise signal or an image file as an uncompressed
bitmap. The SDR array applies the array weights from inter-
ference cancellation algorithms in each measurement. After
measuring a signal, the receiver generates constellation plots
for the signal or exports the data to a file, including exporting
a received uncompressed bitmap image transmission as a
JPEG file. A screenshot of the receiver interface appears
in Fig. 7.

FIGURE 7. Screenshot of the digital receiver program in NI LabVIEW.

IV. EXPERIMENTAL STUDIES ON ADAPTIVE NULLING
USING CONVENTIONAL ALGORITHMS
Array processing enhances the reception (or detection) of a
desired signal in an environment containing numerous inter-
ference signals. Adaptive nulling algorithms place nulls in
the directions of interference sources in order to maximize
the system SINR. In this section we study the performance
of conventional adaptive nulling algorithms using our exper-
imental testbed.

A. EXPERIMENTAL SETUP AND MEASUREMENTS
Our experiments use one USRP to transmit 4-QAM digital
data to the four-element beamformer described in Section II.
The transmitter is placed broadside of the array at a distance
of approximately 4 meters. A Signal Hound VSG25A vector
signal generator placed approximately at a 45◦ angle from
broadside and at a distance of 2meters generates interference.
The experiments take place on lab benches (Fig. 4), not an
anechoic chamber, and we note that multiple large reflecting
objects such as file cabinets, desks, etc. in close vicinity of
the setup create a realistic environment for indoor wireless
communications.
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We averaged the SINRs over 16 independent trials. The
measurements started with a calculation of the array weight-
ing vector for each interference cancellation algorithm using
a 2.45 GHz continuous-wave (CW) signal from the trans-
mitting SDR and 1 KHz square wave from the interference
generator. The SDR array recorded the received signal, then
each interference cancellation algorithm separately calcu-
lated array weights using the same recorded signal in order to
have a fair comparison. SINRs are computed using separate
measurements of background noise and CW signals from
the transmitter and interferer to approximate the ratio of
the measured transmitter power to the sum of interference
and noise power. Each power level is calculated by applying
an interference cancellation weighting vector to the relevant
recorded signal and calculating the squared mean amplitude
of the resulting weighted signal.

B. ADAPTIVE NULLING EXPERIMENTS WITH
SYNCHRONIZED BEAMFORMERS
The experiments reported in this section have the transmitter
interfacing to the array Octoclock in order to synchronize the
transmit and receive LO frequencies and remove any carrier
frequency offset between the two devices. These experiments
serve as a basis for comparing the interference cancellation
algorithms in an ideal situation.

FIGURE 8. Measured SINR as a function of interference power for SMI,
RLS, and LMS algorithms.

Fig. 8 displays plots of average SINR over 16 trials. SMI
and LMS maintain SINRs above 30 dB for all interferer
power levels. RLS underperforms LMS and SMI despite
an expectation that it would show similar performance to
SMI. This is likely related to the square wave interference
used in interference cancellation weight calculations. RLS
is a nonstationary algorithm that loops over all recorded
time samples and, in each iteration, considers both current
and previous time samples in estimating the array weighting
vector. This may reduce its ability to adapt to sudden changes
in the interfering signal such as those seen with square wave
interference. Increasing the time constant α in RLS such
that multiple cycles of the interfering signal are considered
may improve this performance. Despite some issues with
the RLS algorithm, all three beamforming algorithms were
able to effectively cancel the interference and dramatically

improve the SINR. The received constellation graphs for a
single trial appear in Fig. 9. Note that the received signal
for the uniform array is completely corrupted, but the DBF
algorithms successfully cancel the interference and receive
the 4-QAM signal.

FIGURE 9. Constellation plots for the received 4-QAM with: (a) uniform
weights, (b) LMS weights, (c) SMI weights, and (d) RLS weights.

FIGURE 10. Measured conversion graphs for the beamformer element
weights using the LMS algorithm: (a) amplitude, (b) phase.

Finally, in this section we provide graphs showing the
convergence of the weights from the iterative algorithms.
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Measured conversion graphs for the LMS algorithm are given
in Fig. 10. Similar results were observed for the RLS algo-
rithm. In the experiments conducted, these algorithms typi-
cally converged with less than 100 iterations.

V. ROBUST ADAPTIVE NULLING WITH NOVEL
ALGORITHMS
In Section IV the transmitter and receiver were synchronized.
In a realistic scenario, however, there is a carrier frequency
offset between the transmitter and receiver. This carrier offset
shifts the frequency of the signal output from the digital
beamformer and prevents it from matching the expected
signal in the interference cancellation algorithms. Here we
present two new adaptive nulling approaches that are robust
to carrier frequency offset, i.e., they operate without the need
to synchronize the transmitter and receiver.

FIGURE 11. Measured carrier frequency offset of the transmitter versus
time.

The measured carrier frequency offset of the transmitter
over a period of five minutes is shown in Fig. 11.We note that
a control loop ensures that the carrier frequency offset varia-
tion remains within a desired range for the transmitter. This
frequency offset appears as a progressive increase or decrease
in the complex phase of the signal, which can be expressed
by Xnm → Xnmej1ωn for a carrier frequency offset of 1ω.
In turn, the signal vector is replaced by sn → snej1ωn. The
frequency offset reduces the correlation between the received
signal from the target device with the expected reference
signal, meaning non-robust interference cancellation algo-
rithms typically try to null the intended transmitter in order
to minimize the mean square error cost function in (3). The
resulting SINRs are shown in Fig. 12. Disconnecting the SDR
transmitter from the array Octoclock offsets the transmitter
carrier frequency from the receiver carrier frequency by a few
kilohertz.

The carrier frequency offset significantly reduces the per-
formance of the SMI, RLS, and LMS algorithms. The SMI
algorithm proves to be the most sensitive, because SMI
requires a high correlation between the entire received and
expected reference signals, as opposed to measuring correla-
tion over a narrower time period such as in LMS and RLS
algorithms. The LMS algorithm, on the other hand, shows a
much better robustness to carrier offsets, since it uses only

one time sample at each iteration, so the received signal
phase change is small. While the trend is similar in RLS, due
to its nonstationary iterative approach, it is more sensitive
to these offsets in comparison with LMS. Nonetheless, the
performance of all three algorithms significantly degrades
when carrier frequency offsets are not accounted for, and
none of the algorithms converge.

FIGURE 12. Measured SINR as a function of interference power for SMI,
RLS, and LMS algorithms without transmitter synchronization.

One potential solution measures and corrects for this off-
set before performing interference cancellation. However,
high-interference and high-multipath environments typically
preclude measuring the intended signal so, determining the
carrier frequency offset may not be feasible. Robust inter-
ference cancellation thus requires algorithms that remove
corruptions, such as carrier frequency offsets, in the signal.
The most widely adopted solution to beamformer mismatch
problems is diagonal loading and equivalent approaches
[18]–[22]. These techniques provide robustness by effectively
designing for a higher white noise level than is actually
present. To mitigate some of these issues, variable loading
has more recently been introduced; it improves robustness
to steering vector errors while maintaining a desired SINR.
While these techniques can provide robustness to certain
mismatch issues, and usually at the expense of a higher
noise, to the best of our knowledge, very limited work has
been reported on robust approaches that account for sig-
nal corruptions arising from carrier frequency offsets [17],
[23], [24]. Our studies in this section investigates new tech-
niques that provide robustness without adding noise to the
system, i.e., beamforming with maximum SINR.

A. AMPLITUDE-ONLY ALGORITHMS
Since carrier frequency offsets appear as progressive phase
shifts in the signal, the robust algorithms proposed here
ignore signal phase and perform amplitude-only optimization
of the array weighting vector. In this case, the elements
in the received signal and the expected reference signal
have amplitudes but no phases. Fig. 13 shows the SINR
performance of amplitude-only SMI (AOSMI), amplitude-
only LMS (AOLMS), and amplitude-only RLS (AORLS) vs.
interference power. Amplitude-only algorithms outperform
conventional algorithms when a carrier frequency offset is
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present. This can be seen by comparing the SINR graphs in
Figs. 12 and 13, where amplitude-only approaches achieve
an SINR above 20 dB at the lower interference power levels.
It is also important to note that amplitude-only approaches
have nearly identical performance with or without synchro-
nization. However, these approaches produce real-valued
array weighting vectors. In order to cancel interference, the
amplitudes of the interfering and received signals must vary
between the array elements. In a high multipath environment,
such as the lab used for our measurements, multipath effects
provide the spatial diversity needed for amplitude-only opti-
mization. It is also important to note that, a real-valued array
weighting vector cannot steer the array’s main beam, so a
separate phase shift must be applied in order to scan the beam.

FIGURE 13. Measured SINR as a function of interference power for the
new amplitude-only algorithms without transmitter synchronization.

B. EVOLUTIONARY ALGORITHMS
A better approach to interference cancellation in the presence
of carrier frequency offsets can be implemented by designing
an interference cancellation cost function that is more robust
to these offsets. The new fitness function proposed in this
work is

cost = ‖|d(t)| − |w x(t)|‖∞ . (6)

Here |.| denotes an element-wise modulus and the l∞ norm
returns the modulus of the largest input vector element. The
l∞ norm improves performance when interference occurs in
short bursts. The element-wise moduli in (6) removes phase
data from the signals. An important difference between (6)
and (2), i.e., the error vector in conventional techniques,
is that the element-wise modulus of the received signal occurs
after summing all of the element signals. This new interfer-
ence cancellation cost function requires the reference signal
to have a different amplitude profile than the interference,
which is the case in a high multipath environment. This new
cost function also presents a more challenging optimization
problem and requires a nonconvex search algorithm. Here,
we implement a genetic algorithm (GA) to minimize this cost
function, although other evolutionary algorithms work well
for this purpose too.

The GA algorithm outperforms all other algorithms,
including the new amplitude-only methods, when the

FIGURE 14. Measured SINR as a function of interference power for the
seven algorithms: conventional approaches, new amplitude-only
approaches, and new GA approach without transmitter synchronization.

transmitter and received are not synchronized and a carrier
frequency offset exists as shown in Fig. 14. A qualitative com-
parison using image data is also performed. Fig. 15 compares
the performance of the GA algorithm and AOSMI, when
the transmitter sent uncompressed image data to the receiver
array while the interferer sent an interfering CW signal at
−6 dBm. We note that in this experiment, the conventional
SMI algorithm fails to recover the image. The AOSMI how-
ever reproduces an image with some distortion, while the GA
algorithm reproduces the image with little error.

FIGURE 15. Received images in the presence of interference using
interference cancellation weight from: (a) AOSMI and (b) GA. The
transmitter was not synchronized to the receiver in either case.

Carrier frequency offset negatively impacts the perfor-
mance of wireless communication systems. The studies con-
ducted here show that if these offsets cannot be measured
a priori, then algorithms need to be robust to the resulting
signal corruption.We show that conventional adaptive nulling
algorithms such as LMS, SMI, and RLS do not converge
and fail to cancel interference sources when frequency off-
sets are not accounted for. Here we propose two solutions
to this problem. The first approach uses the conventional
algorithms, but ignores signal phase, essentially performing
an amplitude-only optimization of the array weighting vector.
The experimental results show that this approach provides
a much higher SINR than conventional algorithms and is
capable of interference cancelation in the presence of carrier
frequency offsets (see Fig. 14). We also present a second
approach that is based on a new interference cancellation
error function and uses an evolutionary search algorithm (GA
in our studies) for the problem. We show that this approach
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is also capable of interference cancellation in the presence of
carrier frequency offsets. Our experimental studies showed
that in comparison between the two proposed algorithms, the
GA approach provides a higher SINR and is more effective
for adaptive interference cancelation in high-multipath and
high-interference environments.

VI. CONCLUSION
We experimentally demonstrate a low-cost platform for DBF
using an array of software defined radios. We describe the
hardware architecture of the in-house developed beamformer
along with experimental results on adaptive interference can-
cellation. Furthermore, we highlight some limitations of con-
ventional beamforming algorithms and experimentally show
that when carrier frequency offsets cannot be measured and
corrected, these algorithms will fail. We then propose two
solutions to this problem and experimentally demonstrate
the robustness of our approaches. The experimental results
presented show our proposed techniques provides robustness
to this type of signal corruption without degrading SINR or
other system performance factors.
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