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ABSTRACT In the real world, a large number of multivariate time series data are generated by Internet
of Things systems, which are composed of many connected sensing devices. Therefore, it is impractical to
consider only a single univariate time series for decision-making. High-dimensional time series decrease
the performance of traditional anomaly detection methods. Moreover, many previously developed methods
capture temporal correlations instead of spatial correlations. Therefore, it is necessary to learn the temporal
and spatial correlations between different time series and timestamps. In this paper, to achieve improved
anomaly detection performance for multivariate time series, we propose a novel architecture based on a
graph attention network (GAT) with multihead dynamic attention (MDA). This framework simultaneously
learns the dependencies between sensors in both the temporal and spatial dimensions. To tackle the overfitting
problem in autoencoder (AE)-basedmethods, we propose a hybrid approach that combines a novel generative
adversarial network (GAN) architecture as a reconstruction model with a multilayer perceptron (MLP) as
a prediction-based model to detect anomalies together. The detection framework proposed in this paper is
called the HAD-multihead dynamic GAT (MDGAT). Extensive experiments on different public benchmarks
demonstrate the superior performance of HAD-MDGAT over state-of-the-art methods.

INDEX TERMS Multivariate time series, graph attention network, anomaly detection, deep generative
model, gated recurrent unit.

I. INTRODUCTION
With the rapid development of information technology, the
scales of all kinds of data continue to expand. Time series
anomaly detection has become a field of interest for many
researchers and practitioners [1]. Anomaly detection has been
applied in various domains, such as intrusion detection in
cybersecurity, medical detection, economic analysis and fault
diagnosis in industry [2].

Time series can be divided into univariate time series and
multivariate time series. Because a univariate time series has
one dimension of data, some anomaly detection algorithms
can locate anomalies regarding one feature. However, in real-
world scenarios, many sensors are interconnected to run and
generate numerous time series data, such as in cyber-physical
systems (CPSs) [3]. Data from different sensors can be related
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in complex, nonlinear ways (for example, pressure changes
affect flow rates and water levels). Similar to these CPS
data, multivariate time series data have many interconnected
correlations. If a single feature (such as a univariate time
series) is used to detect anomalies, it may be difficult to deter-
minewhether the system of interest runs normally. Anomalies
in multivariate time series tend to be determined by multi-
ple spatial features, and the analysis of a single feature is
insufficient for correctly detecting anomalies. Therefore, it is
necessary to take the correlations of multiple spatial features
into consideration when addressing multiple time series.

Time series also often lack labeled samples [4]. Anomaly
labeling requires high expert costs and does not guarantee
coverage for all anomaly types. Thus, unsupervised deep
learning methods are typically used to accomplish the task
of anomaly detection. In recent years, many unsupervised
anomaly detection approaches, including prediction-based
methods and reconstruction-based methods, have been
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proposed. Prediction-based methods use recurrent neural net-
works (RNNs), such as the deep malicious insider threat
detector (DeepMIT) (Sun et al. [5]) and long short-term
memory (LSTM) network (Hundman et al. [6]). DeepMIT
models user behaviors as sequences and predicts the proba-
bilities of anomalies. These approaches utilize the differences
between predicted and real samples to detect anomalies.
However, with the increasing dimensionality and scales of
time series, it is becoming more challenging for these con-
ventional prediction-based methods to effectively capture
the temporal correlations in high-dimensional multivariate
time series [7]. Reconstruction-based methods, such as the
autoencoder (AE) proposed by Aggarwal [8] and the gen-
erative adversarial network for multivariate anomaly detec-
tion (MAD-GAN) proposed by Li et al. [9], can reconstruct
samples. The reconstruction error can be obtained by the
difference between the original and reconstructed samples.
These methods do not simultaneously consider the temporal
and spatial dimensions between sensors. Therefore, these
methods do not have high accuracy when used withmultivari-
ate time series that contain many potential interrelationships.
Moreover, these methods can effectively fit data according
to the obtained reconstruction errors for anomaly detection.
If the data include anomalies, these methods (such as AE
variants) also fit anomalies well, leading to reduced anomaly
detection performance. When anomalous data are very close
to normal data, they are often undetectable.

However, many methods (such as the above models) do
not take spatial correlations, which are important for anomaly
detection, into account. In the real world, most data are
generated from non-Euclidean spaces. Many deep learn-
ing methods have poor performance in terms of handling
these data. In recent years, graph neural networks (GNNs)
have seen increasing popularity. They can effectively model
graph-structured data [10], such as molecules, and they have
made great progress in terms of capturing spatial correlations.
Three main types of GNNs are available, including graph
convolution networks (GCNs [11]), graph attention networks
(GATs [12]), and graph AEs (GAEs). GCNs can be further
classified as spectral or spatial methods. A spectral GCN
method uses a spectral decomposition approach, such as
Laplace matrix decomposition for a graph, to aggregate node
information. When the given graph is large, the whole graph
must be used, resulting in decreased performance. A spatial
GCN method uses the topology of the input graph to directly
aggregate its neighbor node information at each layer of the
GCN. Thus, this approach has greater potential to deal with
large graphs than spectral GCN methods. Attention mecha-
nisms are widely used in different domains, such as computer
vision and natural language processing. Some methods must
also observe time series data to mine their useful information.
GNNs are no exceptions. A GAT applies an attention mecha-
nism to assign different weights for different neighbor nodes.
However, the implementations of GATs are only static: for
any query, the neighbor scores are monotonic according to
the per-node scores. As a result, a GAT cannot express even

simple alignment problems and capture much information
between different observations.

Taking the above problems into consideration, we pro-
pose a novel architecture, a HAD-multihead dynamic DAT
(MDGAT), based on a GAT. The main four contributions of
this paper are as follows.

• We propose a HAD-MDGAT based on a GAT. It simul-
taneously learns the dependencies between sensors in
both the temporal and spatial dimensions. It has more
robustness.

• We introduce a multihead dynamic attention (MDA)
mechanism in our architecture to capture the interre-
lationships between different sensors. This mechanism
can deal with alignment problems and model the dif-
ferent correlations between different keys and different
queries.

• Prediction-based and reconstruction-based methods are
integrated into our model. The prediction-based model
can predict the next value by utilizing spatial and tem-
poral correlations. To solve the overfitting problem,
we propose re-encoding a GAN to reconstruct data. This
technique uses two generators as encoders to compute
differences as parts of the reconstruction errors, improv-
ing the accuracy of anomaly detection.

• Experimental results obtained on public datasets show
that the HAD-MDGAT achieves the best performance
in comparison with state-of-the-art baselines.

The rest of the paper is organized as follows. Section II
describes the related work, and Section III presents the details
of our proposed HAD-MDGAT model and how to use it
for anomaly detection. In Section IV, the HAD-MDGAT is
evaluated on multiple datasets, where it achieves better per-
formance than state-of-the-art methods. Section V concludes
the paper and proposes possible future work ideas.

II. RELATED WORK
As mentioned in the introduction, time series data are applied
in various domains. To date, many anomaly detection meth-
ods have been proposed for industrial applications [13]–[15].
Time series can be divided into univariate and multivariate
time series. Univariate time series have one dimension. Mul-
tivariate time series have many dimensions. However, many
anomaly detection methods take temporal correlations into
consideration while ignoring the spatial dimension. Some
unsupervised anomaly detection methods have made great
progress. Even though few GNN-based methods are used for
time series anomaly detection, they have recently attracted
increased attention.

A. TIME SERIES ANOMALY DETECTION
Univariate time series anomaly detection methods only take
the dependencies of the current timestamp and the previ-
ous timestamps, such as temporal correlations, into con-
sideration. However, methods for multivariate time series
also consider the correlations between different observations.
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Some methods deal with both kinds of time series anomaly
detection. Among these methods, deep learning approaches
have attracted the most attention from researchers. One cat-
egory, unsupervised learning methods, does not need labeled
samples. Classic anomaly detection methods can be divided
into proximity-based methods, prediction-based methods and
reconstruction-based methods [16].

Proximity-based methods, such as K-nearest neighbors
(KNN) [17] and the local outlier factor [18], measure the
degrees to which values deviate from anomaly objections.
These methods ignore the temporal correlations between
observations and need prior knowledge, such as the number
of anomalies that are present.

Prediction-based methods are commonly used. Their main
idea is that anomalies are identified according to the dif-
ferences between the predicted values and the real values;
such approaches include the autoregressive integrated mov-
ing average (ARIMA) [19], gradient boosting regression tree
(GBRT) [20], and LSTM [21] methods. The ARIMA has
a certain lag and is sensitive to anomalies; at the same
time, much smoothness testing and parameter estimation are
required. The GBRT approach is applied to detect anomalies
for data with stable patterns and periodic characteristics. Due
to the uncertainty of single regression tree generation, the dif-
ferences among the results are large. The ARIMA and GBRT
techniques do not consider temporal correlations. However,
deep learning methods can tackle these problems. RNNs [22]
can detect anomalies by predicting time series data. They
capture the temporal correlations between different observa-
tions. However, RNNs have lower performance, while the
input time series are becoming longer. This means that RNNs
cannot capture long-term series [23].

To date, reconstruction-based methods, such as AEs [24],
variational AEs (VAEs) [25], the LSTM-VAE [26], unsuper-
vised anomaly detection (USAD) [27], OmniAnomaly [28],
the MAD-GAN [12], and a GAN with an attention network
and bidirectional LSTM (AMBi-GAN) [29], have also been
widely investigated. Such an approach learns a model to
reconstruct data that are as similar as possible to the original
data. Anomalies are identified by their high anomaly scores.
An AE is a basic model. To improve the performance of
the original AE, Chen et al. proposed a VAE. A VAE addi-
tionally considers Kullback-Leibler divergence to measure
the difference between the estimated and prior distributions.
It combines reconstruction error and distribution error to
detect anomalies, but it ignores the temporal correlations in
the data. The LSTM-VAE was proposed to capture temporal
correlations. USAD is an unsupervised method based on
reconstruction and consists of three parts, an encoder and
2 decoders that share the same encoder network. It also uses
LSTM to capture temporal correlations. OmniAnomaly uses
a VAE with gated recurrent units (GRUs) to detect anoma-
lies. However, OmniAnomaly does not amplify the recon-
struction error. When processing time series data, LSTM
serves as the basic architecture of the generator and the dis-
criminator to capture temporal correlations. However, LSTM

exhibits gradient instability and model collapse problems.
The AMBi-GAN consists of bidirectional LSTM and an
attention mechanism, and it can capture temporal correla-
tions. Recently, Nguyen et al. [30] proposed an LSTM-based
method to detect anomalies. It uses LSTM to predict time
series and employs an AE-LSTM with a one-class support
mechanism to reconstruct time series. Prediction-based and
reconstruction-based methods have also been combined to
detect anomalies. However, reconstruction-based methods
can effectively fit the input data. Thus, these methods fit
anomalies when they are close to normal data [31]. Therefore,
the resulting overfitting problem decreases the accuracy of
anomaly detection.

Even though the above methods are effective, they do not
take spatial correlations into consideration.

B. ANOMALY DETECTION WITH GNNS
Deep learning can achieve great success in terms of data
representation. The patterns of anomalies can be learned by
deep learning methods. However, many deep learning meth-
ods have poor performance when handling non-Euclidean
data. GNNs have been proposed to tackle graph-structured
data. A GNN is based on deep learning. It enhances the
capability of the resulting model to process graph pattern
information. The anomalies can be easily identified accord-
ing to the extracted representation [32]. GCNs have been
proposed as the convolutional networks of computer vision.
Wu et al. [33] proposed the multitask GNN (MTGNN) for
multivariate time series forecasting problems. The MTGNN
consists of a graph convolution module and a temporal con-
volution module to capture the spatiotemporal dependencies
between time series. Weber et al. [34] proposed EvolveGCN
to detect anomalies in financial transaction networks. Their
approach uses a GCN as the feature extractor. The k most
influential nodes represent all the information contained in
the network at a certain moment. However, the overall char-
acteristics of the network are ignored. The graph deviation
network (GDN) [35] also uses the top-k method employed by
the MTGNN to construct a graph. It treats each time series as
a node on the graph, but the connections between the nodes
are learned. GATs are also used for feature extraction. A GAT
evaluates a graph deviation score as the difference between
the expected value and the observed value. Wang et al. [36]
proved that a GNN can effectively model multirelation data.
Attentionmechanisms have been widely applied to sequence-
based tasks. GNNs also benefit from this concept by using
an attention mechanism during aggregation, integrating the
outputs of multiple models, and generating random walks
that are oriented to important targets. A GAT is a spatial-
based GCN. It uses an attention mechanism to determine
the weights of node neighborhoods when aggregating feature
information, and it considers the correlations between differ-
ent time series. Huang et al. [37] proposed a hybrid-order
GAT (HO-GAT) to detect anomalies in attributed networks.
This network uses an HO self-attention mechanism to learn
node and motif instance representations. Two encoders are
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FIGURE 1. The architecture of the HAD-MDGAT.

used to reconstruct the attribute information. The recon-
struction errors can serve as anomaly scores for detecting
anomalies. Wu et al. [38] proposed Event2Graph, which uses
a dynamic bipartite graph structure to capture the interde-
pendencies between observations. Event2Graph converts the
predicted event edges into anomaly scores. If an anomaly
score is higher than the threshold, the corresponding event
is classified as an anomaly. Fan et al. [39] proposed Anoma-
lyDAE, which uses a GAT in its structural encoder to learn
the importance levels among nodes and their neighbors. Thus,
AnomalyDAE can efficiently capture structural information.

III. METHODOLOGY
Through the above description, we know that current deep
anomaly detection methods only concentrate on temporal
correlations while ignoring spatial correlations. In addition,
some methods overfit anomalies. In this section, we first state
the current problems, propose the HAD-MDGAT framework
for capturing the temporal and spatial correlations between
different observations, then discuss the proposed novel GAN
framework, and finally compute anomaly scores for anomaly
detection.

A. PROBLEM STATEMENT
In our work, we focus on anomaly detection in multivariate
time series. We execute the HAD-MDGAT on real-world
datasets to find anomalous samples that are apparently dif-
ferent from other observations. In our work, the datasets are
derived from sensors at timestamp T ; the sensor data are
denoted as X = {x1, x2, . . . , xT , . . . , xn} ∈ RN∗n. At times-
tamp i, xi ∈ RN , i = 1, 2, . . . , n, is an N -dimensional
vector determined from N sensors, where N is the number of
features and n is the length of the input data. The inputs are
generated by a sliding window. The final output is a vector
y ∈ Rn, where yt ∈ {0, 1} and yt = 1 indicates that the
observation at time t is anomalous.
Our work simultaneously learns the dependencies between

sensors in both the temporal and spatial dimensions
with two MDGATs. Then, a GRU is applied to capture
the pattern features of the given time series. Next, we

propose a hybrid approach that combines a prediction-based
method and a reconstruction-based method to detect anoma-
lies. With respect to the overfitting problem faced by
reconstruction-based methods, we propose a novel GAN as
the reconstruction-based approach.

To further understand GNNs, we provide the following
foundational concepts.

1) GRAPH
A directed graph is defined as G = (V, E), where V =
{v1, v2, · · · , vn} denotes the nodes and E ⊆ V×V denotes the
edges. Here, vi (with the same dimensionality xi) denotes the
feature vector for each node and ei,j represents an edge from
a node vj to a node vi. An undirected graph has bidirectional
edges.

2) NODE NEIGHBORS
The neighbors of node vi are defined as N (i) ={
j ∈ V | ei,j ∈ E

}
.

3) PEAK OVER THRESHOLD (POT)
We apply the POT approach [40] as the threshold selection
method. It can automatically select the appropriate threshold
for a time series. Moreover, it does not make any assumptions
about the data distribution and fits the tails of a probability
distribution via a generalized Pareto distribution (GPD) with
parameters.

B. HAD-MDGAT FRAMEWORK
The HAD-MDGAT framework (shown in Fig. 1) simultane-
ously learns the dependencies between sensors in both the
temporal and spatial dimensions through MDGATs. Then,
the two GAT layers and the output of the 1-D convolution
layer are concatenated to extract the features of the input time
series. The concatenated vector is fed into a prediction-based
module and a reconstruction-based module (shown in Fig. 3).
The predicted results, the reconstructed samples and the real
values are used to compute anomaly scores. A threshold is
set by the POT method. If an anomaly score exceeds this

40970 VOLUME 10, 2022



L. Zhou et al.: Hybrid Anomaly Detection via Multihead Dynamic Graph Attention Networks for Multivariate Time Series

threshold, we can identify that the corresponding sample is
anomalous.

1) DATA PROCESSING
In multivariate time series, different variables have various
dimensions. This affects the selected threshold and the robust-
ness of hybrid modules. Thus, we process the input time
series by executing the maximum-minimum normalization
method on the training and testing data:

x̂i =
xi −minXTraining

maxXTraining −minXTraining
. (1)

2) MULTIHEAD DYNAMIC ATTENTION (MDA)
Due to increases in data volumes and the number of connected
sensory devices, it is difficult to achieve high accuracy in
the multivariate anomaly detection task. Many deep learning
methods concentrate on temporal correlations instead of spa-
tial correlations. Therefore, we introduce a GAT with MDA
to capture the temporal and spatial correlations between dif-
ferent observations. The output of each node computed by the
GAT layer is shown as follows:

hi = σ

 L∑
j=1

αijvj

 (2)

eij = a> LeakyReLU
(
w ·

(
vi‖vj

))
(3)

αij = softmax
(
eij
)
=

exp
(
eij
)∑

j′∈N (i) exp(eij′ )
(4)

where hi denotes the output representation of a node;
αij measures the correlation degree between vi and vj; ‖
denotes the concatenation of node representations; a ∈
R2N ′ ,w ∈ R2N are trainable parameters; a leaky rectified
linear unit (LeakyReLU) is used as the activation function to
consider the attention weights between node pairs (i, j) for
the representation of node i; and j′ denotes node i’s adjacent
neighbors.

A multihead attention mechanism is also applied in the
HAD-MDGAT. After the feature vectors calculated by the
K-head attention mechanism are concatenated, the corre-
sponding output feature vectors are denoted as follows:

h′i =
K∏
k=1

σ

 ∑
j′∈N (i)

αkij′w
khj′

 (5)

where
∏

denotes vector concatenation; σ is the sigmoid
activation function; K indicates that K attention heads are
used to calculate the attention scores; αkij′ is the attention score
obtained after the calculation of the k-th attention mechanism
head; and wk is the parameter matrix of the linear transfor-
mation of the input vector. From [12], if we apply MDA on
the last layer of the network, the concatenation method is
no longer sensible. Therefore, concatenation is used in the
intermediary layers. Regarding the output of the last layer,
the concatenation approach does not achieve good results.
Therefore, the averaging approach is applied. The output of

the last layer calculated by the MDA mechanism is denoted
as follows:

h′i = σ

 1
K

K∑
k=1

∑
j′∈N (i)

αkij′w
khj′

 (6)

h′i is the feature vector that is input into the GRU after feature
extraction is performed by the HAD-MDGAT.

For multivariate time series anomaly detection, we use two
kinds of graph attention layers with MDA (the MDGAT)
to learn the dependencies in both the temporal and spatial
correlations.

a: SPATIAL LAYER
To capture spatial correlations, we view a multivariate time
series as a complete graph. Every node is a value of one
feature across n timestamps, and an edge represents the
dependency between two nodes. N denotes the number of
features (nodes). xi is denoted as xi =

{
xt,i | t ∈ [0,N )

}
.

An MDA mechanism is applied to calculate EhS for a certain
node. The spatial layer is shown in Fig. 2.

FIGURE 2. The spatial graph attention layer. The final output is shown in
the red circle.

b: TEMPORAL LAYER
We also use MDA to capture the temporal correla-
tions between different observations. Each node xt ={
xi,t | i ∈ [0, n)

}
denotes one timestamp with N features (or

sensors). The output of the spatial layer is an N × n matrix
(EhTemp). The output of the temporal layer is an n×N matrix.
Finally, we concatenate the outputs of the two layers and

the processed vector x̂i. This forms an n×3N matrix contain-
ing spatial and temporal correlations.

C. RE-ENCODING GANS
As mentioned in Section II, the prediction-based methods
and reconstruction-based methods all have their own advan-
tages. Therefore, we use the two types of methods to detect
anomalies together. The output of the GRU is input into
the prediction-based method (a multilayer perceptron, MLP)
and reconstruction-basedmethod (re-encodingGANs) simul-
taneously. However, a better reconstruction performance
often results in the overfitting of anomalies. This reduces
the accuracy of anomaly detection. Moreover, model col-
lapse is a common situation during GAN training. There-
fore, we propose a novel GAN (shown in Fig. 3) as the

VOLUME 10, 2022 40971



L. Zhou et al.: Hybrid Anomaly Detection via Multihead Dynamic Graph Attention Networks for Multivariate Time Series

FIGURE 3. The architecture of the proposed GAN.

reconstruction-based method to generate samples. To deal
with model collapse in GANs, we use the Wasserstein
loss [41] to train the GAN. GRU cells have the advantage of
generating time series. Therefore, we apply fully connected
neural networkswithGRUcells to achieve improved anomaly
detection performance. The two generators serve as encoders
(E1 and E2). Each generated sample is encoded again into the
latent space. The re-encoding loss can be obtained by the dif-
ference between the two values in the latent space. The output
ofDx is a probability score ranging from 0 to 1, which can be
used as a part of the anomaly score for detecting anomalies.
Dz identifies whether the input is obtained from random noise
or the encoded latent space. This enables the z distribution be
as close as possible to the X (original time series) distribution
and can deal with the overfitting problem.

The objective functions of Dz and Dx are as follows:

min
G

max
Dx∈Dx

Vx (Dx ,G) = Ex∼PX [Dx(x)]− Ez∼Pz [Dx (G(z))]

(7)

min
G

max
Dz∈Dz

Vz (Dz,E1) = Ex∼PX [Dz(z)]− Ez∼Pz [Dz (E1(x))]

(8)

However, during training, it is not guaranteed that the
learned mapping can map each individual input xi to the
desired x̂i by relying on the adversarial and Wasserstein loss
functions alone. When a network has a sufficiently large
capacity, any random arrangement of the input data can be
mapped to the output distribution that matches the target.
The cycle consistency loss [42] was proposed by Zhu et al.
It ensures that images in the corresponding domains have a
one-to-one correspondence and prevents conflicts between
the samples generated by the two generators. Therefore, the
two generators can transform the generated samples back
to their original states. Our GAN maps the input xi to the
target zi in the latent space via E1 and then generates x̂ with
a generator. To reduce the size of the space derived from
function mapping, the learned function should be cyclically
consistent to keep the mappings G and E1 from contradicting
each other. E1, E2, and G are trained with the adaptive cycle
consistency loss:

min
{G,E1}

Vcyc (E1,G) = Ex∼PX
[
‖x − G (E1(x))‖2

]
(9)

To further improve the accuracy of anomaly detection,
we use two encoders in the GAN to amplify anomalies.
The re-encoding loss is used to detect anomalies according
to the observed differences in the latent space. When the
comparison is conducted in the latent space after encoding,
anomalies can be more effectively detected. By minimizing
the input features and the encoded features of the generator,
the differences between them allow the generator to learn how
to encode real samples into the corresponding latent space.
Therefore, the generator can address the overfitting problem
encountered by the reconstruction-based method. The object
re-encoding process is as follows:

min
{G,E1,E2}

Venc (E1,G,E2)

= Ex∼PX
[
‖E1(x)− E2 (G (E1(x)))‖2

]
(10)

D. PREDICTION-BASED METHOD
We combine prediction-based and reconstruction-based
methods to detect anomalies. Fully connected layers form the
basic architecture of the prediction-based method. The loss is
as follows:

lpre =

√√√√ N∑
i=1

(
xn,i − x̂n,i

)2 (11)

where xn is the next timestamp. xn,i denotes the value of the
i-th feature of xn.

E. ANOMALY SCORES
1) RECONSTRUCTION ERROR
Dynamic time warping (DTW) can identify areas with small
differences over a long period of time and can address time
drift issues. Each series is linearly deflated to perform some
‘‘twisting’’ operation to achieve better alignment. The best
match of a given time series is calculated to measure the
similarity between local regions. Thus, we use DTW to mea-
sure the differences between real and reconstructed samples.
There are two time series X and X̂ , and a 2*l*2*l matrix
is used to compare the two time series. The warping path
traverses this matrix, and the k-th element of the warping path
is denoted as wk = (i, j)k , which is the minimum distance
between xi and x̂j.

REi = W ∗ = DTW(X , X̂ ) = min
W

 1
K

√√√√ K∑
k=1

wk

 (12)

where X = (xi−l, xi−l+1, . . . , xi+l) and X̂ =(
x̂i−l, x̂i−l+1, . . . , x̂i+l

)
are the real and reconstructed sam-

ples for the i-th feature, respectively.

2) RE-ENCODING LOSS
The re-encoding loss is computed as follows:

lrei =

∑T
i=1

∥∥E1 (x̂i)− E2 (G (E1 (x̂i)))∥∥1
T

(13)
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3) PREDICTION LOSS
We calculate the asis for the N features. The final anomaly
score produced by the prediction-based method is the sum of
the scores of all features.

Lpre =
N∑
i=1

(
x̂i − xi

)2 (14)

The final anomaly score is computed as follows:

AS =
N∑
i=1

asi = (1− λ) · Lpre + λ ·
N∑
i=1

(REi + lrei ) (15)

where λ is a hyperparameter used to combine the
prediction-based and reconstruction-based errors. The default
value is 0.5. According to the POT technique, if AS exceeds
the threshold, the corresponding samples can be identified as
anomalies.

IV. PERFORMANCE ANALYSIS
First, we describe the utilized experimental datasets, baseline
models and evaluation metrics. Then, we conduct experi-
ments to demonstrate the performance of our method. Finally,
to illustrate the effectiveness of the proposed modules,
we conduct an ablation study on five datasets to validate the
GAT, the prediction-based module and the reconstruction-
based module, which contribute to the performance improve-
ment achieved by the proposed approach.

A. DATASETS
We use five real-world datasets to validate the performance of
the HAD-MDGAT, namely, SecureWater Treatment (SWaT),
Water Distribution (WADI), Mars Science Laboratory Rover
(MSL), Soil Moisture Active Passive (SMAP), and the Server
Machine dataset (SMD). SWaT1 and WADI2 come from a
water treatment test bed coordinated by Singapore’s Public
Utility Board and a network, respectively. MSL and SMAP
contain spacecraft telemetry signals provided byNASA.3 The
SMD4 is a five-week dataset obtained from a large Internet
company. The dataset is derived from 28 machines, and the
anomalies in the training dataset are labeled by experts.

The five datasets contain different numbers of anomalies,
and the location of each anomaly is known. Table 1 provides
the details of each dataset (including their anomaly ratios,
etc.).

B. BASELINE MODELS
We implement 7 state-of-the-art baseline models for a perfor-
mance comparison with the HAD-MDGAT.

1) DAGMM
The deep autoencoding Gaussian mixture model (DAGMM)
contains a compression network and an estimation network.

1https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
2https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/
3https://s3-us-west-2.amazonaws.com/telemanom/data.zip
4https://github.com/NetManAIOps/OmniAnomaly/tree/master

TABLE 1. Dataset statistics.

The compression network is an AE. The estimation network
can obtain the features and reconstruction errors of themiddle
hidden layer for anomaly detection purposes.

2) LSTM-VAE
LSTM serves as the basic architecture of the encoder. How-
ever, it does not consider the temporal correlations between
observations.

3) LSTM-NDT [43]
LSTM is applied to detect anomalies in multivariate time
series. This approach utilizes an unsupervised, nonparametric
algorithm for threshold determination.

4) OMNIANOMALY
This method learns latent representations through a GRU and
aVAE. It takes dependence and stochastic factors into consid-
eration and applies reconstruction probabilities for anomaly
detection.

5) USAD
An AE is the basic architecture of USAD. USAD conducts
two-phase training in an adversarial manner to reconstruct
samples. The input is identified as an anomaly if its corre-
sponding anomaly score is higher than the threshold.

6) MAD-GAN
The MAD-GAN applies LSTM to capture temporal corre-
lations and embeds the captured dependencies into a GAN.
It uses reconstruction errors to detect anomalies in multivari-
ate time series.

7) GDN
The GDN also learns the interrelationships between variables
in multivariate time series. It directly applies GATs to capture
features and uses graph deviation scores to detect anomalies.

C. EVALUATION METRICS
We apply the accuracy (Prec), recall (Rec) and F1 score (F1)
metrics to evaluate the anomaly detection performance of the
HAD-MDGAT.

Prec =
TP

TP+ FP
(16)

Rec =
TP

TP+ FN
(17)

F1 = 2×
Prec× Rec
Prec+ Rec

(18)
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FIGURE 4. Testing set results with the total error in orange, number of predicted anomalies in blue, number of true anomalies in red, and number of
correct detections in purple.

The true positive (TP) indicator is the number of sam-
ples that a detection model correctly identifies as anomalies.
The false positive (FP) indicator represents the number of
normal samples that are identified as anomalies. The false
negative (FN)metric is the number of anomalous samples that
are identified as normal. Moreover, the true negative (TN)
measure indicates the number of normal samples that are
correctly recognized as the normal type. The model is more
robust if the values of the three above metrics (precision,
recall, and F1 score) are higher. To evaluate the robustness
of the HAD-MDGAT, dynamic Gaussian mixture noise [44]
with different signal-to-noise ratios (SNRs) is added to the
original data.

D. EXPERIMENTAL SETTINGS
The experiments are implemented in Python 3.6with PyTorch
1.9 and are performed on a PC with a Ubuntu 18.04.5 LTS,
an Intel R© Xeon(R) E5-2678 v3 CPU, 2 RTX 3060 GPUs,
and 32 GB of RAM. We use the same sliding window w =
100 for all datasets. We set the kernel size k0 = 7 for 1D
convolutions. The dimensionalities of the GRU layer (k1) and
the fully connected layers (k2) are all set to 150. Our model is
trained with the Adam optimizer for 300 epochs. The initial
learning rate is 0.001. In the GAN, the generator uses the tanh
activation function, and the discriminator uses the sigmoid
activation function. The numbers of GRUs in the generators
and discriminators are all 4.

E. RESULTS
We evaluate the performance of the HAD-MDGAT and com-
pare it with that of with 7 other baselines on five datasets.
An ablation study on different components is conducted to
determine the impacts of these components on the perfor-
mance of the HAD-MDGAT. The appropriate thresholds for
anomaly detection are used for all models, and the optimal
F1 scores are obtained. The optimal results obtained by all
models on the public datasets are shown in Table 2 and
marked in bold. The HAD-MDGAT detects anomalies on the
SMAP training set (shown in Fig. 4). It can detect the most
anomalies.

Table 2 shows that the HAD-MDGAT significantly out-
performs the other state-of-the-art baselines by achiev-
ing the highest mean F1 value (0.929) across all public
datasets. The second- and third-best methods in terms of

TABLE 2. Performance comparison among the best F1 scores of different
baseline methods on five datasets.

overall performance are the GDN (0.881) and OmniAnomaly
(0.785), respectively. The HAD-MDGAT outperforms them
by 5.45% and 18.34%, respectively. We make the following
observations. (1) The LSTM-VAE is used for classification.
It exhibits robustness to imbalanced data and has fast con-
vergence. However, it does not take the temporal correlations
between different observations into account. Its performance
on the five datasets is not good, especially its value of 0.38 on
WADI. The DAGMM is suitable for balanced datasets. How-
ever, it exhibits slow convergence for unbalanced data, and its
generalization ability is not decent. Additionally, it has poor
performance on high-dimensional datasets, such as WADI
(0.201). USAD applies a VAE as its basic architecture; it has
a fast training speed, and it has the second-best performance
onMSL (0.911). However, it achieves a lower value onWADI
(0.43). The MAD-GAN has many hyperparameters, making
it unsuitable for training. It also has poor generalizability.
However, it has better performance on SWaT (0.81) and
the SMD (0.872). USAD, the LSTM-VAE, the DAGMM
and the MAD-GAN are not suitable for high-dimensional
datasets. (2) LSTM-NDT has better performance on SWaT
(0.804). However, it does not perform well on MSL (0.564)
and the SMD (0.604). This means that LSTM-NDT is sen-
sitive to different scenarios because it cannot conduct effec-
tive modeling for all of the cases. OmniAnomaly has better
performance on SWaT (0.833), MSL (0.901) and the SMD
(0.931). However, it does not take the spatial correlations
between observations into consideration. (3) The GDN has
good performance on the SMD (0.92) and the other datasets.
However, strong connections cannot be merely determined
by the tightness of their spatial distances. This approach has
a poorer performance on WADI (0.815) than on the other
datasets.
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1) PERFORMANCE COMPARISON
The HAD-MDGAT achieves the best performance on all
datasets. As shown in Fig. 5, the HAD-MDGAT out-
performs the other baselines and scores 65.3% higher
than the MAD-GAN (0.562). The HAD-MDGAT outper-
forms USAD (20.03%), OmniAnomaly (18.34%) and the
LSTM-VAE (44.48%). The reconstruction-based methods
are prone to overfitting anomalies, which leads to low per-
formance. However, these methods have good performance
on low-dimensional datasets. We use an extra encoder to
address the overfitting problem. The HAD-MDGAT has a
higher F1 score than the DAGMM (40.33%). Similar to
the LSTM-VAE, the DAGMM does not consider temporal
correlations. This indicates that temporal correlations are
critical for anomaly detection. As introduced in Section III,
we use a temporal layer to capture temporal correlations.
The GDN scores 12.23% higher than OmniAnomaly. The
GDN applies a GAT to extract the temporal and spatial corre-
lations between different observations. OmniAnomaly does
not consider spatial correlations. Therefore, it is essential to
utilize spatial correlations when reconstructing samples for
anomaly detection. However, the GDN cannot achieve high
performance on high-dimensional datasets such as WADI.
We use a spatial layer to learn the spatial dependencies
between different observations. In our GAN, we propose the
use of a re-encoder to amplify the reconstruction error and
improve the efficiency of anomaly detection; however, Omni-
Anomaly does not have a similar effect. The HAD-MDGAT
has better performance than LSTM-NDT (37.43%). LSTM-
NDT has better performance on SWaT than on MSL,
WADI and the SMD. The reconstruction-based methods
mostly achieve better performance than the prediction-based
methods (the DAGMM and LSTM-NDT) on WADI, the
SMD and MSL. This means that the prediction-based and
reconstruction-based methods all have separate advantages
in terms of anomaly detection. The HAD-MDGAT uses a
hybrid method that combines both kinds of approaches to
detect anomalies. This technique improves the performance
of the HAD-MDGAT on all five datasets.

FIGURE 5. The 7 baselines are compared with the HAD-MDGAT based on
their average F1 scores on the overall datasets. The HAD-MDGAT
outperforms all baselines.

2) ROBUSTNESS
Gaussian noise based on SNRs is typically used to evaluate
the robustness of models [7]. We set different SNRs to evalu-
ate the HAD-MDGAT. The results are shown in Table 3. Even
though the F1 value decreases with increasing SNRs, our
HAD-MDGAT is still more competitive than the other base-
lines, especially at an SNR of 10. Overall, the HAD-MDGAT
is less impacted by noise.

TABLE 3. Test performance on five datasets with dynamic Gaussian
mixture noise based on different SNRs.

F. ABLATION STUDY
To illustrate the effectiveness of each component of our
method, we conduct an ablation study on the same five
datasets. The results validate the improvements provided by
the MDA mechanism, the hybrid architecture and the spatial
layer. The different components are denoted as follows: w/o
MDA: disabling theMDAmechanism;w/o prediction-based:
disabling the prediction-based method; w/o reconstruction-
based: disabling the reconstruction-based method; and w/o
spatial layer: preventing the GAT from learning spatial cor-
relations (only the temporal layer remains). The results are
shown in Table 4.

TABLE 4. F1 scores obtained in the ablation study.

Fig. 6 shows that the spatial layer and the reconstruction-
based method achieve good performance based on their mean
F1 scores. The reconstruction-based method outperforms the
prediction-based method. Moreover, the MDA mechanism
also contributes to the anomaly detection accuracy.

The MDAmechanism can model the different correlations
between different keys and different queries to assign node
neighbor scores. TheGATwithMDA can fit unbalanced data,
and it has superior robustness. We find that the GAT with
MDA can also capture the interrelationships between non-
adjacent timestamps. The HAD-MDGAT scores are 10.86%
higher than those of the version without the spatial layer.
When a sample is anomalous, its spatial correlation is greatly
different from that of a normal sample in Fig. 7 (which
includes 13 features). A darker block indicates a higher spa-
tial correlation and vice versa. This means that it is critical to
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FIGURE 6. Components’ average F1 scores on the overall datasets.

FIGURE 7. Heat map of the spatial correlations between the normal
samples and anomalous samples.

FIGURE 8. Losses incurred during training.

capture spatial correlations when conducting anomaly detec-
tion. The prediction-basedmethod is sensitive to random time
series.

However, the reconstruction-based method trains a model
to learn the distribution of the input data; this model is less
affected by noise and other perturbations. The overfitting

FIGURE 9. Validation losses incurred during training.

problem is a limitation of the reconstruction-based method.
If an anomaly is very close to the normal data, it may be unde-
tectable by the reconstruction-based method. We propose a
novel GAN to reconstruct data and compare the differences
between the representations of two encoders in the latent
space, thereby amplifying the errors between the normal
and anomalous samples. The prediction-based method can
detect anomalies that are sudden time series perturbations.
Hence, the hybrid method, which combines both types of
methods, can achieve higher anomaly detection accuracy.
In order to further optimize proposed model, the Adam
gradient descent method is implemented in HAD-MDGAT.
Mini-batch algorithm is applied to improve the efficiency
of HAD-MDGAT. Data can divided into batches by mini-
batch algorithm. In gradient descent training, only a portion
of the data set instead of all training set is used and updates
the parameters by batch. Therefore, a set of data in a batch
jointly determines the direction of this gradient, reducing
randomness. As shown in Fig. 8 and Fig. 9, the hybrid method
exhibits fast convergence on the training and validating sets.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a hybrid method based on a GAT
called the HAD-MDGAT. A GAT with MDA is proposed
to learn the temporal and spatial correlations between dif-
ferent observations. Ablation study shows that MDA makes
greate contributions to improving anomaly detection accu-
racy. HAD-MDGAT scores are 10.86% higher than those of
the version without the spatial layer. The prediction-based
method can detect anomalies that are sudden time series
perturbations and the reconstruction-based method trains a
model to learn the distribution of time series. The combi-
nation of two methods makes that HAD-MDGAT is less
affected by noise and other perturbations.In order to evaluate
the robustness of HAD-MDGAT, we set different SNRs to
evaluate the HAD-MDGAT. HAD-MDGAT are still more
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competitive than other baselines. We use the re-encoding loss
as a portion of the final anomaly score. Two encoders control
the fitting of the learned features in the reconstruction-based
method so that the GAN can deal with the overfitting prob-
lem. What’s more, HAD-MDGAT scores are 6.05% higher
than those of the version without the reconstruction-based
method from ablation study. Experiments show that the
HAD-MDGAT achieves improved anomaly detection perfor-
mance and outperforms the other seven tested baselines.

For GAN-based anomaly detection models, choosing an
appropriate sliding window length is difficult. Additionally,
a GAN is unstable during training. In the future, we will
investigate these issues and combine other prediction-based
methods with GATs.
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