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Space-Filling X-Ray Source Trajectories for Efficient
Scanning in Large-Angle Cone-Beam

Computed Tomography
Andrew M. Kingston , Glenn R. Myers, Shane J. Latham , Benoit Recur , Heyang Li, and Adrian P. Sheppard

Abstract—We present a new family of X-ray source scanning
trajectories for large-angle cone-beam computed tomography. Tra-
ditional scanning trajectories are described by continuous paths
through space, e.g., circles, saddles, or helices, with a large de-
gree of redundant information in adjacent projection images. Here,
we consider discrete trajectories as a set of points that uniformly
sample the entire space of possible source positions, i.e., a space-
filling trajectory (SFT). We numerically demonstrate the advan-
tageous properties of the SFT when compared with circular and
helical trajectories as follows: first, the most isotropic sampling of
the data, second, optimal level of mutually independent data, and
third, an improved condition number of the tomographic inverse
problem. The practical implications of these properties in tomog-
raphy are also illustrated by simulation. We show that the SFT
provides greater data acquisition efficiency, and reduced recon-
struction artifacts when compared with helical trajectory. It also
possesses an effective preconditioner for fast iterative tomographic
reconstruction.

Index Terms—Tomography, computed Tomography, X-rays, mi-
croscopy, trajectory optimization, sampling methods, robustness.

I. INTRODUCTION

X -RAY cone-beam computed tomography (CBCT) is a
non-destructive tool that can provide high-resolution,

high-quality, three-dimensional (3D) structural information of
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Fig. 1. Ideal geometry of a fine-focus cone-beam CT system for 3D mi-
croscopy comprised of an X-ray source, sample manipulators (rotation stage
and possibly a translation stage) and an X-ray detector.

specimens. In many cases, particularly with dual-energy scan-
ning (e.g., [1]), it can also provide compositional information.
Analysis of these 3D tomographic images is yielding new in-
sights into a broad range of subject areas including palaeontol-
ogy [2], geology [3], and materials science [4].

The system components and geometry of a CBCT microscope
are presented in Fig. 1. A fine-focus geometry is depicted that
provides optics-free (or lensless) geometrical magnification due
to the spherical wave propagation of X-rays from a micro-focus
X-ray source. The sample is not directly imaged in 3D from this
instrument, rather, the 3D information of the sample (or spec-
imen) is projected onto a 2D detector and recorded as a radio-
graph. 3D microscopy (or tomography) can be computed from a
set of radiographs acquired with many different sample orienta-
tions. This non-destructive 3D probe was enabled by Feldkamp
et al. [5] in 1984 when they presented an algorithm to recon-
struct a 3D volume (or tomogram) from a set of 2D radiographs
taken with a circular X-ray source scanning trajectory. The re-
construction technique developed by Feldkamp-Davis-Kress is
analytical, a technique known as filtered back-projection (FBP),
and denoted here as FDK-FBP. Reconstruction is only approx-
imate since a circular trajectory does not satisfy the Tuy data
sufficiency condition [6]. For faithful 3D microscopy, CBCT
geometry in this case is restricted to a small cone-angle (see
Fig. 1); the limiting angle depends on material structure and
is typically less than ±5◦. Never-the-less, this is a very simple
and robust technique that is still used today in the majority of
commercial CBCT microscopes.
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Lab-based micro-focus X-ray sources typically produce near-
isotropic X-ray flux in the forward direction; the low-cone-angle
geometry required for circular scans means only a small frac-
tion of these X-rays are utilised. Measurements are lower flux
when compared with high-cone-angle imaging. This leads to a
lower signal-to-noise ratio (SNR) for a given experiment time.
In order to perform high-fidelity imaging with a high-cone-angle
geometry, a scanning trajectory that satisfies the Tuy condition
and enables theoretically-exact tomographic reconstruction is
required. An ideal trajectory is helical since there exists an in-
version formula of the FBP type developed by Katsevich in 2002
[7]. Katsevich FBP (KFBP) has been utilised in CBCT micro-
scopes developed at the Australian National University (ANU)
that incorporate helical scanning with large cone-angles (±30◦)
since 2010 [8]. This yields greater than a 40-fold increase in
flux when compared with an equivalent circular scan. In order
to produce high-fidelity, high-resolution tomograms from a he-
lical scanning trajectory using KFBP at ANU, several issues
had to be overcome (as summarised in [9]). In the process of
this work, some fundamental drawbacks of the helical trajectory
were also revealed [10].

A major shortcoming is the non-uniformity of resolution
within the tomogram. This arises in a high-magnification fine-
focus geometry where geometric magnification across the sam-
ple varies significantly (e.g., a factor of three for a cone-angle
of 60◦). Regions of the specimen that are (on average) closest
to the source have a much higher magnification than regions
that are furthest. Trajectories that provide a greater uniformity
in the average distance from the source to each tomogram voxel
reduce this effect; double helix [10] and low-pitch helix (such
as 3PI e.g., [11]) trajectories achieve this at the cost of increased
data redundancy and additional overscan (i.e., the additional
data required as the X-ray source trajectory scans past the ends
of the specimen volume of interest).

Analytical reconstruction schemes, e.g., FBP inversion
schemes for helical scanning [7], [12], require that the vary-
ing degrees of redundancy in the measured data per voxel of
the tomogram be taken into account. This is typically achieved
by applying an apodisation or window function to each radio-
graph to remove unwanted redundancy; for a helical trajectory
this is the Tam-Danielsson (TD) window [13], [14]. For large-
cone-angle geometries with square detectors, windowing leads
to about half the measured data being ignored. Additionally, the
problem of inversion from a helical trajectory with this minimal
data (as defined by the TD window) is more poorly conditioned
than that for the circular trajectory which has a uniform factor-
of-two redundancy. Inversion is complex and highly sensitive to
specimen/component motion [15], sampling imperfections [16],
[17], and component misalignment [18].

Analytical reconstruction schemes impose strict requirements
on the input data: it must be linear projected attenuation that
is geometrically aligned with a precise continuous trajectory.
In practice, measured data is noisy and discretised (with in-
consistent pixel response), finitely sampled along an imperfect
trajectory with component misalignment and may have beam-
hardening and little signal through high-density minerals. A sig-
nificant amount of pre-processing of the measured radiographs
is therefore required. Many of these pre-processing steps are

performed as optimisations and require iteration, i.e., forward
and/or back-projection, incorporating a physical model of the
phenomenon, e.g., beam-hardening correction [19], geometric
component alignment [20], component motion correction [21].
Even when highly optimised, this cumbersome preprocessing
can easily take longer than the final analytical reconstruction.

Iterative reconstruction (IR) schemes can incorporate physi-
cal models, geometry and noise into the forward process, thereby
simulating the experiment [22]. They can converge on solutions
with reduced artifacts, in particular, those satisfying certain a
priori information, e.g., [23]. Iterative reconstruction schemes
are not restricted to continuous line trajectories since they do
not require differentiation of data like their analytical counter-
parts. In fact, IR is the method of choice for non-ideal, noisy,
sparse, or limited-angle measured data such as in positron emis-
sion tomography (PET), single-photon emission computed to-
mography (SPECT), and electron tomography. In these cases,
extremely robust but slowly converging statistical reconstruc-
tion algorithms are required such as maximum-likelihood ex-
pectation maximisation (MLEM) [24] or the simultaneous it-
erative reconstruction technique (SIRT) [25]. Conversely, for
large, low-noise data sets typical of CBCT in the materials and
geological sciences, convergence speed must be prioritised; ro-
bustness must come through the properties of the trajectory used
to collect the measured data. Our objective is the production of
high-resolution, high-fidelity tomograms from large CBCT data
sets through a computationally efficient IR scheme.

Assuming the employment of some iterative reconstruction
scheme, we require a trajectory (not necessarily limited to a
continuous line) that: 1) satisfies the Tuy data sufficiency con-
dition with a minimal number of projections (to enable high-
SNR imaging), 2) requires minimal windowing to fully utilise
the measured data, 3) is maximally isotropic, i.e., provides as
uniform resolution as possible, 4) is as well-conditioned as pos-
sible, i.e., maximum mutually independent information, and 5)
minimum sensitivity to geometric misalignments. In this paper
we present such a trajectory, referred to as the space filling tra-
jectory (SFT). We also demonstrate how the isotropic nature of
the trajectory can be leveraged to achieve rapid convergence in
iterative tomographic reconstruction.

The remainder of this article is organized as follows: The
space-filling trajectory is defined in Section II and the fulfill-
ment of some of the above requirements is presented in the
following sections. Data sufficiency of the SFT is explored in
Section IV. The isotropic nature and associated properties of the
SFT are outlined in Section V. It is demonstrated in Section VI
that the SFT maximises mutually-independent information. This
enables a maximum tomogram quality from a given scan time.
The sensitivity of the SFT to inconsistencies introduced by geo-
metric and projected-attenuation inaccuracies is investigated in
Section VII. The implications of this for automatic a-posteriori
geometric system alignment are also presented. Finally, some
concluding remarks are included in Section VIII.

II. SPACE-FILLING TRAJECTORIES (SFT)

For low-cone-angle CBCT, circular trajectory acquisition can
produce tomograms (using FDK-FBP) of reasonable fidelity,
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Fig. 2. Depiction of the cylindrical surface, of radius R about the sample
rotation/translation axis, accessible by the X-ray source. A helical path with
pitch P has been overlaid on this surface as an example trajectory.

despite only the central tomogram plane, (in which the source
points are located), being theoretically exactly reconstructible.
In this context, “theoretically exact” means the reconstruction
problem has a unique solution for noiseless data. The circular
trajectory involves rotation of the source and detector (or equiv-
alently, the specimen) about a single point and single axis. For
high-cone-angle CBCT, the circular trajectory becomes inad-
equate as tomogram fidelity rapidly diminishes with distance
from the central tomogram plane. Theoretically exact recon-
struction requires an X-ray source scanning trajectory that in-
volves motion in another dimension. This is commonly achieved
by translation of the specimen (or equivalently, the source and
detector) parallel to the rotation axis. The trajectory rotation
and translation degrees of freedom yield a 2D space of possible
X-ray source positions. These source positions lie on the sur-
face of a cylinder with radius R — the source-to-rotation-axis
distance (see Fig. 2). The co-ordinate (z,Rθ) specifies a point
on this cylinder surface, where z is the translation parallel to the
rotation axis and θ is the rotation angle.

The major innovation of this work is to consider CBCT scan-
ning trajectories not as a continuous curve but rather as a set
of distinct points placed in the space through which the source
point can move. Within this framework it is natural to consider
trajectories for which the source points are distributed in a uni-
form manner throughout the space. We call this type of trajectory
a space filling trajectory (SFT). Fig. 3 plots source points from
a SFT (black triangles) and traditional helical trajectory (HT)
closely-sampled source points (black dots). The system geom-
etry used to generate this figure is described in Section III-B.
Here however, we have used a detector binned by eight, i.e.,
pixels-per-side M = 600/8 = 75. Therefore, the reconstructed
volume is N = 68 voxels in the plane normal to the rotation
axis, and E = 96 projection images are required to reconstruct
each voxel. The HT has Ω = 375 source points, and the SFT
has Ω = 286.

There are two drawbacks when deviating from a closely sam-
pled continuous path. The first drawback is that the acquisition
protocol necessarily contains “dead time” as the system moves
to each new X-ray source position. This is a limitation when
rapid imaging is required, such as capturing dynamic processes,
(e.g., flow, compression, dissolution). However, due to the low

Fig. 3. The space of possible X-ray source positions, i.e., the surface of a cylin-
der with radius R = 1.85 mm (system geometry is described in Section III-B).
The squares depict a helical trajectory with maximum pitch calculated accord-
ing to (5). The triangles depict the proposed space-filling trajectory with Z
calculated according to (2).

X-ray flux emanating from a micro-focus source in a typical mi-
croscopic CBCT application, the required “dwell time” at each
source position to achieve a reasonable SNR is considerable and
this dead time becomes insignificant. The second drawback is
that tomograms must be computed using iterative reconstruc-
tion (IR), since the differentiation required along the trajectory
curve in analytical inversions can no longer be approximated
by finite difference. This means that the ability for rapid turn-
around from experiment to 3D volume is limited due to the
increased computational requirements of IR. However, as stated
in the introduction, IR enables more physics-based a priori in-
formation to be incorporated into the reconstruction process,
and can achieve a quantitative volume with greater fidelity than
traditional analytical inversion, (see e.g., [26]).

There are numerous practical ways to uniformly sample the
space of the cylindrical trajectory surface, some of the simplest
being: a regular grid and pseudo-random points [27]. However,
the source trajectory should also satisfy a discretized form of
the Tuy [6] sufficiency conditions in order to guarantee the pos-
sibility of a theoretically exact reconstruction. The following
Section II-A establishes bounds on the SFT sampling density
(step size) based on the Nyquist sampling theorem. Section II-B
then describes the SFT realization (low discrepancy sampling
of a helix) that is considered for the remainder of the paper.
Subsequently, in Section IV we computationally illustrate that
our low discrepancy helix sampling (subject to the Nyquist sam-
pling density) satisfies the discretized interpretation of the Tuy
sufficiency conditions.

A. Space-Filling Trajectories for Large-Angle CBCT

For the continuum cone beam tomography inverse prob-
lem, Tuy [6] derived an analytic reconstruction formula which
imposed a set of weak conditions on the “source trajectory”
(bounded curve) that ensured acquisition data was sufficient
for a theoretically exact reconstruction. For the discrete inverse
problem, there is yet to appear in the literature an equivalent
to the Tuy trajectory conditions. Instead, for discrete/digitally
acquired (band-limited) radiograph data and digital tomogram
reconstruction, we use Nyquist sampling arguments in or-
der to calculate bounds on the z and Rθ sampling density
(step sizes) of the space-filling trajectory discretization. These



450 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 4, NO. 3, SEPTEMBER 2018

step-size bounds are dependent on the acquisition geometry and
the detector discretization.

Let L denote the source-detector-distance, and W and H
specify the detector width and height respectively. The radius
of support, (or limiting radius of the specimen), is found as
r = RW/2

√
L2 + (W/2)2 . Given a pixel size p, the highest

frequency of the measured data is 1/2p at the detector; this
corresponds to L/2Rp at the rotation axis (or specimen). To
maximise tomographic resolution, the Nyquist sampling theo-
rem dictates that the source points sample the z-direction with
a minimum frequency of L/Rp.

The angular-space variant of Nyquist sampling commonly
used in tomography is the Crowther criterion [28]. This requires
that the minimum number of angular samples for reconstruc-
tion of an N × N array is πN/2, i.e., an angular frequency
of N/4. Typically N is specified as N = W/p (although for
very large fan angles N = 2rL/Rp = WL/p

√
L2 + (W/2)2

is more appropriate); the sampling frequency becomes W/4p.
Traditional helical and saddle acquisition trajectories (among

others) can be calculated to satisfy these sampling requirements.
Additionally, one can enhance traditional trajectory sampling to
possess space-filling properties, some enhancements include

1) reordering of the angular positions in a helical trajectory
[29], [30];

2) multi-helix, i.e., generalisation of double helix [10];
3) low-pitch helix [30].
4) reordering of the angular positions in a saddle trajectory;
5) multi-saddle, i.e., stacked or interleaved vertically;
6) high-frequency saddle [31];
The space-filling trajectory sampling considered in this pa-

per is produced by stepping along an extremely low-pitch helix.
Indeed, enhancements A-F can be described (or closely approx-
imated) in this manner. For the remainder of the paper, the SFT
is generated using a low-discrepancy sequence of strides along
a low-pitch helical path. The generation of this sequence is de-
scribed in the next section.

B. A Low-Discrepancy Space-Filling Helix

Let E denote the number of projection images (or radio-
graphs) in an ensemble required to exactly reconstruct a tomo-
gram voxel. Let Z denote the vertical translation attained while
collecting E radiographs. Let Q define the number of radio-
graphs (or source points) per revolution. For circular trajectories
E = Q in the source rotation plane. However, for helical and
space-filling trajectories E and Q are distinct. A trajectory with
Ω source points and starting at position (z0 , Rθ0) is defined as:

{(ωZ/E, ω2πR/Q) + (z0 , Rθ0) : ω ∈ [0,Ω)}. (1)

Here, we use the quantity E to enforce the satisfaction of the
Tuy data sufficiency criterion. For practical acquisitions, we
are yet to determine expressions that yield optimal values for
E, Z, and Q that sample the cylindrical surface as uniformly
as possible and also satisfy the vertical and angular sampling
bounds of the previous section. However, in the following, we
calculate bounds for Z and Q (and subsequently E) based on
the previous Nyquist sampling density bounds and the number

of source positions for which a ray intersects both a tomogram
voxel and the detector.

The number of radiographs containing the projection of a
point in the tomogram varies depending on the position of the
point in the tomogram. This has been illustrated in Fig. 3, where
the region between the dashed grey lines bounds the source
points for which the ray through the central tomogram voxel
intersects the (finite sized) square detector. The region between
the solid grey lines in Fig. 3 shows the source points where
the ray through a single edge voxel (from the central tomogram
plane at radius r from the rotation axis) intersects the same
square detector.

To define Z conservatively, such that no voxel is under-
sampled, we require that all voxels project to at least E con-
secutive radiographs, i.e., an ensemble of radiographs. This is
equivalent to finding the shortest distance between the solid grey
lines in Fig. 3 and is found as:

Z =
H(R − r)

L
. (2)

Observe that the area between the grey lines (solid or dashed)
in Fig. 3 is constant regardless of voxel location; removing the
“consecutive” restriction above, Z = HR/L produces fewer
redundant ray paths but has some proportion of voxels projecting
to fewer than E radiographs. However, we will use Eqn. 2 when
exploring SFT properties by simulation. The set of E source
positions ordered by height must have a vertical stride no greater
than pR/L, i.e., EpR/L ≥ Z or E ≥ H(R − r)/Rp. Similarly,
the set of positions ordered by angle must have an angular stride
no greater than 4p/W , i.e., E4p/W ≥ 2π. Therefore, we have
the lower bound on E:

E ≥ max
{

πW/2p,
H(R − r)

Rp

}
. (3)

Uniform coverage of the source point plane can be achieved
with source positions which lie at the vertices of a regu-
lar triangular tessellation, i.e., P =

√
3πR/Q and frac(Q) =

Q − �Q� ≈ 1/2. Of course if frac(Q) = 1/2 then only 2Q
unique angles are sampled. We desire a frac(Q) that is not
equal to, or approximated by, a rational fraction with a small
denominator (relative to the number of revolutions). An ideal
value for generating low-discrepancy sequences is the golden
ratio φ = (

√
5 − 1)/2 ≈ 0.618. The partitioning properties of

the residual 2πφR/Q on the range (0, 2πR/Q) provide an ap-
proximately uniform angular sampling with each new sample
dissecting the current largest partition. The number of radio-
graphs per revolution, Q is then found as:

Q =

⎢
⎢⎢
⎣

√√
3πER

Z

⎥
⎥⎥
⎦ + φ. (4)

The next Section III outlines the experimental method of sim-
ulation. The following Section IV numerically demonstrates that
this SFT satisfies a discretized form of the Tuy data sufficiency
condition. The remainder of the paper uses simulation to explore
the properties of this trajectory along with demonstrations of the
implications of these properties.
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Fig. 4. Central 2D slice, x = 0, through the 3D sandstone/limestone phantom.
Greyscale window: [black = 0.0 mm −1 ,white = 1.0 mm−1 ].

III. EXPERIMENT SIMULATION

Since much of the exploration of the properties of the SFT are
through simulations, we will first present the details of how these
simulations were performed. Here we describe the phantom
utilised, the experiment simulation (forward-projection) proce-
dure performed with various scanning trajectories, and the noise
model used.

A. Sandstone/Limestone Phantom

This phantom has been generated from a reconstructed tomo-
gram of stacked sandstone and limestone rock cores as depicted
in Fig. 4. The original volume was vertically truncated to be-
come cubic, and sub-sampled to N = 512 voxels per side with a
cubic voxel dimension of 4.11 μ m. The attenuation values rang-
ing from 0.0 to 1.0 mm−1 were binned into 12 equally spaced
discrete values.

B. Simulation Geometry

Unless otherwise stated, the specimens are placed at R =
1.85 mm from the X-ray source (i.e., source-specimen-
distance), a W × H = 400 × 400 mm2 detector is located
L = 300 mm from the source (i.e., source-detector-distance).
This gives a large cone-angle of 67.38◦. Reconstructed voxel
size is calculated as detector pixel size scaled by R/L =
0.00617, equivalently given the detector is M × M pix-
els, voxel size = WR/ML. The limiting radius of sup-
port is r = RW/2

√
L2 + (W/2)2 = 1.0262 mm. The diam-

eter (and thus reconstruction domain) in voxels is N =
ML/

√
L2 + (W/2)2 = 0.832M . We use M = 600 as a typi-

cal geometry. This yields N = 500, and the number of radio-
graphs E = πN/2 = 784; however, to make this suitable for
under-sampling, we select E = 768. The specimen height di-
mension is 2.0524 mm, i.e., N voxels, giving an N 3 voxel
reconstruction.

Note that in order to simulate physical X-ray cone-beam in-
tegrals (as opposed to unrealistic line-integrals) and avoid the
inverse crime, the forward-projection data was calculated with

a 3M × 3M pixel detector that was rebinned to M × M pix-
els. It is worth noting at this point that the projection and back-
projection operators used in our code are not exactly adjoint. The
projection process steps through the volume along each line of
integration and sums the result of tri-linear interpolation at reg-
ular intervals along this line; the back-projection process sums
the result of bi-linear interpolation of the projection-images at
the projected voxel position.

a) Circular trajectory: by definition Z = 0, and we use Q =
E = Ω = 768. Note that L = 300 mm gives a large cone-angle
which invalidates the pseudo-parallel-beam requirements, so we
have used L = 1200 mm in many cases. Note that this increase
in L by four increases required exposure time by 16 (which is
relevant for the noise calculations in Section VI-B.).

b) Helical trajectory: in order to minimise redundancy, we
use the maximum pitch (or vertical translation per rotation), P ,
according to equation 5 from [18]:

|P | ≤ πRLH

((W/2)2 + L2)(π/2 + arctan W/2L)
. (5)

Given the above parameters, this is defined as P = QZ/E. From
the simulation geometry used here we calculate P = 2.485 mm.
Since each point is reconstructed from PI-lines, (i.e., approxi-
mately half a revolution of data), we set Q = 2E and therefore
Z = 1.243 mm; for overscan we use the conservative estimate
presented in [18] of an additional π/4 + 3αf rotation at each
end, where αf is the fan-angle; this gives Ω = 3.897E = 2993.

c) Space-filling trajectory: we use Z = 1.098 mm calcu-
lated according to (2); Q is calculated according to (4); an over-
scan of E/2 radiographs is used at each end of the trajectory
to ensure all voxels project to at least E radiographs; this gives
Ω = 2.977E = 2286.

C. Poisson Noise

Noise has been included in Figs. 9(c) and 10 in accordance
with [32]. Here, noise is parameterised solely by exposure time,
t in seconds. A mean X-ray energy of ξ = 30.0 keV is used, with
a typical scaling factor (that encompasses, for example, lumi-
nescent conversion efficiency and electronic gain) of τ = 0.016.
We define measured intensity to be γ = 1024 intensity units (IU)
per second, according to γ = nξτ, where n is the number of de-
tected photons. Assuming a Poisson distribution, the variance of
measurement is σ2 = nξ2τ 2 . We have also included dark cur-
rent noise assuming a normal distribution with a typical value
σd = 24 IU.

IV. DATA SUFFICIENCY OF THE SPACE-FILLING TRAJECTORY

As outlined in the introduction, not all scanning trajecto-
ries provide sufficient information for a theoretically-exact re-
construction. For the continuum tomography inverse problem,
source trajectories which satisfy the Tuy sufficiency criterion
[6] ensure a theoretically exact reconstruction is possible. The
essence of this criterion stipulates that a trajectory is sufficient
if all planes that intersect the reconstruction volume also cut the
source trajectory. Of course, the Tuy condition is only applica-
ble for continuous source trajectories. For discretely sampled
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trajectories, the continuum is traditionally approximated by us-
ing angular step-sizes which are at or below the Crowther cri-
terion [28], i.e., the angular spacing between adjacent source
points is comparable to the angular spacing between adjacent de-
tector pixels. Theoretically exact reconstruction schemes (e.g.,
of the FBP type) also require such dense sampling along the
acquisition path in order to perform differentiation, but iterative
reconstruction methods liberate us from this constraint. The dis-
tributed sampling of the SFT, by design, means there exists no
such continuous curves that can represent the trajectory.

Development of a method to apply the Tuy condition to dis-
crete sets of vertices (source positions) is an ongoing problem.
It was first considered by Noo et al. [27] for the strided helix,
multi-circle and a pseudo-random distribution of source points.
They devised a parameter ε, the furthest distance of any plane
to the nearest vertex, but found it wasn’t necessarily indicative
of tomographic resolution. Many subsequent attempts to extend
this analysis have been made, particularly in the field of SPECT,
with limited success. Here, we demonstrate data sufficiency for
a small example SFT by presenting the 3D Radon transform
(RT) of the trajectory with the same discrete resolution used
in reconstruction. The value at each point in 3D Radon space,
at x = (x, y, z), is determined as the integration of the volume
over the plane through x that is normal to the vector from the
origin to x. The 3D RT yields precisely the set of plane integrals
required to test the Tuy condition (although the effect of a finite
detector is ignored).

We set up a set of source points in a discrete (gridded) volume
by placing a delta function at each source point and tri-linearly
interpolating to the nearest voxels. Circular, helical, and space-
filling trajectories have been simulated for comparison with
M = 140 m thus N = 116 voxels and E = 180; Here the cir-
cular trajectory used Ω = E while the HT and SFT both used
Ω = 4E. We define a spherical region of support (or reconstruc-
tion domain) within this plotted trajectory. If every point of the
3D Radon transform computed for each trajectory volume is
greater than 0.5 within the sphere then all planes, of thickness
one voxel (the spatial sampling required), through the domain
contain at least one source point. The 3D Radon transform of
each trajectory is presented in Fig. 5. Red indicates the bound-
ary of the spherical support. Blue indicates a plane sum below
0.5. The well known solid torus of data sampling for the circular
trajectory can be observed with data missing in the z direction.
Both the helical and space-filling trajectories have complete data
inside the spherical support. Due to the symmetrical nature of
the SFT, we observe a more uniform distribution of redundancy.

V. ISOTROPY OF THE SPACE-FILLING TRAJECTORY

A. Resolution and Signal Uniformity

A helical scanning trajectory is anisotropic, i.e., highly non-
uniform when viewed from the perspective of a point (or voxel)
within the object [10]. Regardless of windowing, the number of
source points where each voxel projects onto the detector area
[Fig. 6(a-i) and (a-ii)] and the average distance to the source
[Fig. 6(b-i) and (b-ii)] varies considerably.

Fig. 5. Horizontal (i) and vertical (ii) slices through Radon space, deter-
mined by taking the 3D Radon transform of discrete sets of source points.
Greyscale window: [black = 0, white = 8]. Geometry specified in Section III-B.
(a) Circular trajectory, (b) helical trajectory, and (c) space-filling trajectory. Only
Radon data out to R = 1.85 mm (85 px) was calculated, the extent of spherical
region of support (i.e., reconstructed domain) is red. Blue indicates plane sums
≤0.5.

In the large cone-angle fine-focus geometry considered here,
non-uniform source distances leads to non-uniform resolution
in the reconstructed volume when under high-magnification.
Average magnification is computed as L/R, however, we have
an expanding cone beam with magnification of regions of the
sample close to the source being (R − r)/L and far from the
source being (R + r)/L. Thus sample regions that are on-
average close to the source are projected with better resolution
than regions that are far on-average. The SNR of a reconstructed
voxel improves with the number of source points that project
that voxel onto the detector area. A large variation in this num-
ber across the volume leads to a large variation in tomogram
SNR.

In contrast to the anisotropy of the helix, the number of source
points where each voxel projects onto the detector area for
the SFT [Fig. 6(a-iii)] and the average distance to the source
[Fig. 6(b-iii)] is isotropic and as uniform as can be achieved
with standard CT imaging configurations.

B. Point-spread-function (PSF) Uniformity

In fact, the SFT is maximally isotropic assuming the source is
restricted to lie on the surface of a cylinder. This is quite distinct
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Fig. 6. Central 2D horizontal (i.e., XY-plane) slice through the reconstruction
volume showing (a) number of X-ray source positions that back-project through
each voxel, and (b) the average X-ray source distance, for the (i) helical trajectory
with Tam-Danielsson window applied, (ii) un-windowed helical trajectory, and
(iii) space filling trajectory. Geometry is given in Section III-B. Note that E =
768 and source-specimen-distance = 1.85 mm.

from continuous path trajectories where the blurring from back-
projection is highly anisotopic and location dependent: for the
SFT the directions of the set of measured rays passing through
each voxel in the tomogram are as uniformly distributed on the
unit sphere as is possible within the constraints of the imaging
apparatus, and with little potential for improvement with other
imaging configurations.

Even for the SFT, the range of directions of the set of measured
rays passing through a given voxel depends on the location of
that voxel within the reconstructed volume. This is due to the
limited acceptance-angle dictated by the finite detector height.
A voxel in the center of the volume (i.e., on the rotation axis)
is projected onto the detector area from source points in all
directions equally well. An example of this is presented in 3, the
set of source points in the region between the grey dashed lines
project the central voxel to the detector area. In contrast, the set
of source points that project an off-axis voxel to the detector area
is shaped by a sinusoidal envelope. For a voxel position (x, y) in
the plane, the amplitude of the sinusoid is determined by radius
(
√

x2 + y2), while the phase is determined by tan−1(y/x).
Fewer near-side source points project the voxel to the detector
area than far-side source points due to the finite detector height.
An example of this scenario is also presented in Fig. 3, the source

Fig. 7. Apodisation functions, or windows, that may be applied to radiographs:
(a) Tam-Danielsson window for the HT, and (b) n-PI window for the SFT
assuming it is a low-pitch HT, to remove redundancy; (c) Colsher window for
the SFT to equalise the acceptance angles for each reconstructed voxel. System
geometry specified in Section III.

points in the region between the solid grey lines project a voxel
at maximum radius onto the detector area. The area enclosed
by the sinusoidal envelope is unchanged by phase or amplitude,
so the total number of source points that project all voxels onto
the detector area is approximately constant [as can be seen in
Fig. 6(a-iii)]. A source point cropped on the side near to the
voxel is compensated by an additional source point on the side
far from the voxel (180◦ apart). The principal consequence of
this symmetry is that an unfiltered backprojection of linearised
radiographs, to a decent approximation, results in shift-invariant
blurring of the volume.

C. Leveraging Isotropy for Effective Pre-Conditioning

Shift-invariant blurring can be inverted using deconvolution
(an operation similar to ramp-filtering in FBP). In 1980, Col-
sher [33] analysed the case of idealised positron emission to-
mography (PET) data and proposed reconstruction algorithms
of the back-projection filtration (BPF) and FBP type with shift-
invariant spatial filtering. X-ray transmission data collected us-
ing an SFT is similar to PET, except that (a) the SFT contains
a distinct source position per radiograph where each data point
in PET has a distinct source point, and (b) the SFT, based on a
standard CT configuration, has a planar detector. An apodisation
function (or window) can be applied to the radiographs to sim-
ulate a cylindrical detector by enforcing a constant acceptance
angle as assumed for the inversion by Colsher in [33]. This will
be referred to as the Colsher window, defined as:

C(w) = ±(H/2)

√
L2 + w2

L2 + (W/2)2 . (6)

This is depicted in 7 for the experiment geometry described in
Section III-B. Fig. 7 also shows the Tam-Danielsson window for
a HT for comparison. The generalisation of this for a low-pitch
HT known as the n-PI window [34] is also presented for the
SFT. Note that these windows are designed to reduce unwanted
redundancy rather than restrict X-ray detection to a constant
acceptance angle. Colsher or n-PI windowing are not strictly
necessary for IR but cause the SFT to have higher symmetry
more amenable to the accelerated IR methods discussed below.
For a typical geometry used at the ANU micro-CT labs with a
fan angle of 60◦, Colsher and n-PI windows for the SFT removes
only∼15% and 25% of data respectively compared with∼ 50%
removed by the Tam-Danielsson window for the HT.
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Fig. 8. Vertical 2D slices through the sandstone/limestone phantom, reconstructed from a space filling trajectory, Z = HR/L = 2.47 mm, Ω = 1400, with
(a) Backprojection with Colsher filtering, (b) 8 iterations of Colsher-filter pre-conditioned CGM. Acquisition details are in Section III-B; both (a) and (b) use
Colsher windowing of projections.

We recall that iterative methods are required to reconstruct the
sparsely sampled SFT projection data. In order to pre-condition
and accelerate convergence we can incorporate Colsher filtering
in the radiographs. We model data acquisition as a linear process:

Ax = b,

where b is the measured data, x represents the object attenua-
tion (our objective function), and A describes X-ray projection.
Back-projection is the adjoint of projection,AT . Applying back-
projection to the measured data, AT b, recovers a heavily low-
pass filtered form of x. This can be significantly improved by
applying Colsher filtering and windowing. Let F be the Colsher
filtering applied in the projection domain; let W be a diagonal
matrix giving the Colsher windowing function. Fig. 8(a) depicts
the result of AT WFb; it is a far better approximation to x than
that from simple back-projection. However, it contains some ar-
tifacts since F is a shift invariant approximation to (AT )−1A−1 .
Note that F is a self-adjoint circular convolution that can be ap-
plied very efficiently as a multiplication in Fourier space. This
filtering technique can be used as a pre-conditioner to speed up
a conjugate gradient method (CGM) iterative reconstruction.

In a tomography context, CGM seeks to find the most likely
function x assuming a Gaussian distribution in the measured
data b according the the model:

AT Ax = AT b.

Inserting filtering and windowing as a pre-conditioner, we arrive
at the following:

AT WFAx = AT WFb.

Although, both F and W are self-adjoint, this can not be rewrit-

ten symmetrically as (
√

F
T √

W
T
)(
√

W
√

F) due to the win-
dowing operation. Thus convergence is not guaranteed, how-
ever, windowing is beneficial since the filtered data outside the
Colsher window is produced using a significant degree of extrap-
olated data. The result of applying this pre-conditioner in to our
simulated data is presented in Fig. 8(b). The convergence plot
in Fig. 8(c) shows this simple pre-conditioned CGM (PCGM)
gives an order of magnitude speed up in convergence.

Although finding an efficient reconstruction scheme for the
SFT is a relatively unexplored problem, this demonstrates

that the properties of the trajectory can be leveraged heavily.
pre-conditioning can also be applied by Colsher filtering of
the post-backprojected volume. A form of this that incorpo-
rates multi-grid iterative reconstruction schemes and converges
to reasonable quality in just 2 iterations has been presented
in [35].

VI. MAXIMISING MUTUALLY-INDEPENDENT INFORMATION

THROUGH THE SPACE-FILLING TRAJECTORY

With a large stride between adjacent source points, data col-
lected using the SFT contains information about the specimen
that is more mutually independent. The pseudo-hexagonal tiling
of the source point plane minimises the area of unpopulated re-
gions and maximises the distance between two neighbouring
source points. This makes the SFT data maximally independent
given the constraints of the imaging apparatus. The space-filling
concept is optimal in the absence of a priori knowledge of the
object, as distinct from the method of Stayman and Siewerd-
sen [36] which determines an optimal trajectory for a particular
specimen.

Tomographic reconstruction from projection data is by nature
an ill-posed problem [37], however, this SFT property of max-
imally independent information should lead to a problem that
is better conditioned and yield reconstructed tomograms with
lower levels of noise and geometric artifacts for a given exper-
imental acquisition time. Proof of this is an open problem; for
the remainder of this section we attempt to demonstrate these
properties by example.

A. Condition Number

Through research with multi-source X-ray CT systems for
security screening, Thompson et al. [29], [38], [39] have in-
vestigated highly-constrained, discrete source trajectories with
properties similar to those proposed here. Their trajectories are
limited to a set of fixed X-ray sources and detectors located in
a ring around a conveyor belt. The set of sources are offset in
z with respect to the set of detectors. They seek to optimise the
source firing order, as the conveyor belt runs through the ring, to
maximise tomogram quality (or minimise artifacts). Thompson
investigated the condition number for these discrete trajectories
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Fig. 9. Log(MSE) convergence plots of gradient descent IR for HT compared with SFT using geometry specified in Section III-B for a) standard experiment
simulations, b) simulations with restricted total number of radiographs, Ω, and c) simulations with various radiograph exposure times (or noise levels). Mean
square error (MSE) is calculated compared with the known phantom volume data.

by computing the singular-value-decomposition (SVD) analysis
of some small simulations [38] – for larger data sets this analysis
is too computationally demanding to be feasible. The condition
number can be defined as the ratio of largest to smallest singular
values of the forward projection matrix. Thompson investigated
the condition number when reconstructing both a single z-slice
and 12 slices with varying x/y pixel size, as well as varying the
number of z-slices from one to 60 with a fixed x/y pixel size. He
found that the lattice trajectory (“k = 35”) had a better condition
number than the helix trajectory (“sequential”) in all cases. He
also showed that the singular vectors were much more smooth
and symmetric for “k = 35” compared with “sequential”.

The speed of convergence for gradient descent algorithms
depends on the condition number of the forward-projection ma-
trix. To show that the SFT is less ill-conditioned than the helical
trajectory, we reconstruct the phantom from data collected with
both HT and SFT using the Landweber algorithm [40] which
is a special case of gradient descent. The value used for the
Landweber relaxation parameter was 1/EN ; This is typical in
computed tomography as it approximates a diagonal rescaling
of the problem. Fig. 9(a) presents convergence plots. It can be
seen that overall the IR from the SFT data does indeed con-
verge more rapidly, indicating an improved condition number
compared with the HT. We also investigated the effects of win-
dowing and removing the “cone-beam” integrals in forward
projection (as described in Section III-B). Applying windowing
significantly degraded the rate of convergence for the HT with
only a slight loss of performance for the SFT. However, for
these noise free cases, windowing is predominantly removing
additional information, the decrease probably just reflected the
proportion of data masked out, i.e., 50% for the HT and 15%
for the SFT. Replacing “cone-beam” integrals with line integrals
had little effect.

Landweber IR convergence rates for simulated experiments
with the total number of source points (or radiographs), Ω,
limited to 256, 512, and 1024 is presented in Fig. 9(b). In the
simulations we have maintained the ratio of E/Ω compared
with that for a full set of radiographs. Here the IR from the
SFT data again converges more rapidly than that for the HT,
however, the performance benefit seems to reduce for sparser
sampling levels. Assuming a Poisson noise model as described
in Section III-C, Landweber IR convergence rates for simulated

Fig. 10. Mean square error (MSE) convergence plot for CGM reconstruction
of the sandstone/limestone phantom, from data collected over approximately
constant experiment time (geometry specified in Section III-B) using circu-
lar trajectory, circular trajectory with a long source-detector distance (L × 4),
helical trajectory, and space-filling trajectory.

experiments with 4 s, 8 s, and 16 s exposure times are presented
in Fig. 9(c). The IR from the SFT data converges more rapidly
than that for the HT in all cases. A similar degradation of the
convergence plots with increased noise is observed for both SFT
and HT data.

B. Improved SNR or Reduced Scan-time and Reduced Data

The SFT satisfies data sufficiency, utilises the entire detec-
tor area, and has a better condition number than a HT with
less radiographs; it is a very efficient trajectory. Other methods
to include redundancy such as double-helix and 3PI helix tra-
jectories require a certain sampling rate along the continuous
trajectory and significantly increase the number of radiographs
required. Fig. 10 shows the relative performance of circular
(with both short and long source-detector distances, L), helical
and space-filling trajectories given an approximately constant
experiment time. To allow comparison, IR has been performed
using the conjugate gradient method (CGM). Convergence plots
are given in Fig. 10. Convergence of all data sets is comparable
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Fig. 11. Subsets of vertical 2D slices through a sandstone/limestone phantom, with misalignments of 2ou in all parameters (as specified in [18]), reconstructed
with ramp-filtered back-projection from (a) circular trajectory, (b) helical trajectory, and (c) space-filling trajectory. Geometry is specified in Section III-B.

for the first few iterations. The reconstruction artefacts due to
high-cone angle for the circular trajectory give a strangely be-
haved convergence with the worst MSE (>0.08). These artefacts
are overcome by using a 4× larger source-detector distance
(L × 4), however, this reduces flux by a factor of 16. The high
level of noise in this case causes the MSE to diverge quickly with
a poor optimal MSE (0.07). The convergence of the HT and SFT
data are more well behaved with the SFT providing the highest
fidelity tomogram, i.e., the lowest MSE (0.033 compared with
0.04), from fewer projections.

VII. SENSITIVITY OF SPACE-FILLING TRAJECTORY

A. Sensitivity to Component Misalignment/Motion

The SFT is insensitive to perturbation of the input data, i.e.,
it is relatively well behaved when components (or the spec-
imen) are misaligned, or under specimen/component motion
during scanning. This is a very important property in practice.
Kingston et al. determined a referenceless post-acquisition soft-
ware alignment protocol for the circular trajectory [20]. Due to
its redundancy, the circular trajectory is also insensitive to per-
turbations and misalignment of radiographs manifests as blur
in the tomogram. The alignment protocol is robust since blur is
easily detected, quantified, and minimised. In contrast, Varslot
et al. showed that given the helical trajectory with Katsevich
filtering, it is quite difficult to align using this protocol [18].
The reason for this is that the HT has no redundancy and is
sensitive to perturbations [15], misalignment introduces geo-
metrical distortions and disjoint features. This was mitigated in
[18] by employing horizontal ramp-filtered back-projection with
no Tam-Danielsson window applied when scanning for align-
ment parameter values. Redundancy is then introduced leading
to increased blurring as desired, however, we note that some
streaking is still present. These streaks make it very difficult to
align helical data using sharpness measures.

As for the circular trajectory, the isotropic nature of the SFT
causes misalignment of radiographs to degrade the tomogram as
blur when using horizontal ramp-filtered back-projection. It is
an ideal trajectory for software alignment that maximises sharp-
ness in the tomogram (as in [20]). Using the parameterisation
and optimal units (ou) defined in [18], Fig. 11 shows the recon-
struction from by ramp-filtered back-projection for a circular,
helical, and space-filling trajectory, given a misalignment of

Fig. 12. An example of the position of all PI-line X-ray paths on a radiograph
given the geometry described in Section III-B for (a) helical trajectory, (b) space
filling trajectory.

the radiographs of 2ou in each parameter. The behaviour under
misalignment from each trajectory (as described above) is quite
evident.

Alignment can also be performed by minimising the PI-line
difference in the projection data [41]. PI-lines are points on the
radiograph where the X-ray source is positioned elsewhere in the
trajectory. Thus, there exists an X-ray path with an equivalent but
opposite trajectory on a different radiograph that should have
the same (or very similar in cone-beam geometry) measured
intensity. Geometric alignment can be found post-acquisition
by varying the alignment parameter values (with corresponding
transformation of the radiographs) until the difference between
these pairs of PI-line measurements is minimised. This is a
very fast method since it does not require the computationally
complex projection or back-projection operations.

For the circular trajectory only a subset of the parameters
can be determined since the PI-lines all lie on the central row
of the radiograph. The helical trajectory is better suited since
the PI-lines are more distributed over the entire detector area
[see Fig. 12(a)] and Kingston et al. [41] showed that PI-line
alignment is more robust than tomogram sharpness but less
precise. The distribution of PI-lines over the detector for the
SFT is ideal for alignment as it uniformly samples the detector
[see Fig. 12(b)] giving improved sensitivity to detector rotation
misalignments. The set of PI-lines in Fig. 12 was binned by
eight, i.e., used M = 600/8 = 75. Therefore, N = 68 voxels
and E = 96. The HT has Ω = 375, and the SFT has Ω = 286.
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Fig. 13. Registered 2D (i) horizontal and (ii) vertical slices through a 25.4 mm
diameter pendant made of timber injected with pewter using (a) double-helical
trajectory (maximum pitch used according to (5) as P = 51.49 mm, Q = 1440
per helix, Ω = 2294 per helix) with each helix reconstructed by KFBP and
averaged, (b) space-filling trajectory (with Z = HR/L = 51.51, E = 1440,
Ω = 1902) reconstructed using multi-grid BPF method described in [35]. The
total scan time for each experiment is similar. Greyscale window: [black =
0.183 mm−1 , white = 0.732 mm−1 ].

Another indication that the SFT is insensitive to perturba-
tions is that the SFT is well-behaved under motion of the
specimen/components during scanning. For the SFT, the source
rotates relatively rapidly about the specimen with time and with
z-translation; any motion that is smooth in time or with stage
translation causes a blurry but geometrically faithful reconstruc-
tion. Consequently, re-projecting this degraded tomogram (to
simulate the experiment) yields a blurry but aligned set of ra-
diographs to which the measured data can be registered. Using
the iterative reprojection method set out by Dengler [21] for
aligning electron tomography data, Latham et al. showed con-
vergence given SFT data is an order of magnitude faster than that
given the equivalent HT data [42]. Latham et al. showed, that
this reprojection method can be integrated into the multi-grid IR
scheme developed for the SFT [35] for very little computational
cost (2D registration per radiograph) and converges in the first
multi-scale iteration.

B. Sensitivity to Beam-hardening/Metal Artifacts

The SFT is also less sensitive to perturbations of data val-
ues resulting from e.g., the non-linear remapping of data due to

X-ray beam-hardening or metal inclusions. The isotropic na-
ture of the SFT causes the streak artifacts from such pertur-
bations to be distributed over the largest possible solid-angle;
this minimises impact on image quality. An extreme example
demonstrating the improved fidelity from real data is presented
in Fig. 13. Here a pendant made of timber and pewter was
imaged with both double-helix and space-filling trajectories.
Tomographic results will depend on the reconstruction algo-
rithm used; although different algorithms were used for each
trajectory, neither used any beam-hardening models or spectral
information. The sample was placed R = 39.98 mm from the
micro-focus X-ray source. A 400 mm × 400 mm detector with
a pixel size of 0.278 mm (i.e., 1520 × 1520 pixel array) was sit-
uated L = 336.3 mm from the source. The accelerating voltage
of the X-ray source was 120 kV and heavy filtering was applied
to the X-rays (1.2 mm stainless-steel) resulting in a high energy
spectrum, making the timber almost invisible in the tomogram.
Although artifacts are still visible in the results using the SFT,
and segmentation would still be non-trivial, a significant im-
provement in image quality can be observed. This is primarily
due to the properties of the trajectory and not the difference in
reconstruction algorithms used.

VIII. CONCLUSION

Traditional X-ray source trajectories are continuous due to
either: a) practical reasons such as very rapid (or even non-
stop) rotation and short acquisition times for the case of med-
ical and synchrotron CT, or b) to enable differentiation as part
of analytical reconstruction. Micro-CT is not restricted by (a)
due to inherently low-flux and relatively long radiograph ac-
quisition times, and the development of general purpose GPUs,
that are particularly suited to projection/back-projection cal-
culations, has made IR schemes the natural choice even for
3D tomography with large datasets [43]. Given these con-
siderations, we have introduced a family of sparse discrete
scanning trajectories. These trajectories sample the space of
possible viewing angles in a more uniform manner compared
with traditional line-trajectories. These space-filling trajectories
are maximally isotropic for typical system geometries, giving
more uniform resolution and signal-to-noise ratio than the he-
lical trajectory. The isotropic nature provides an approximately
shift-invariant point-spread-function under back-projection; the
straight-forward filtering of this inverse filter (as developed by
Colsher for PET [33]) produces an effective pre-conditioner to
speed convergence of iterative reconstruction. The SFT provides
maximally independent information that has a better condition
number yielding improved data acquisition efficiency. The SFT
has a lower sensitivity to perturbations than the helical trajec-
tory. We have shown that it is well behaved under specimen and
component misalignment or motion; the effects of which are
readily detected, quantified and corrected. Streak artifacts from
beam-hardening and metal inclusions are also reduced com-
pared with the HT, even without any attempt at correction. The
SFT along with the multigrid reconstruction scheme outlined
in [35] lays a foundation for more general application of iter-
ative reconstruction techniques in high resolution X-ray CT to
improve acquisition efficiency and image quality.
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[3] S. Schlüter, A. Sheppard, K. Brown, and D. Wildenschild, “Image pro-
cessing of multiphase images obtained via x-ray microtomography: A
review,” Water Resour. Res., vol. 50, no. 4, pp. 3615–3639, 2014.

[4] P. J. Withers and M. Preuss, “Fatigue and damage in structural materials
studied by x-ray tomography,” Annu. Rev. Mater. Res., vol. 42, pp. 81–103,
2012.

[5] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J.
Opt. Soc. Amer. A, vol. 1, no. 6, pp. 612–619, 1984.

[6] H. Tuy, “An inverse formula for cone-beam reconstruction,” SIAM J. Appl.
Math., vol. 43, pp. 546–552, 1983.

[7] A. Katsevich, “Theoretically exact filtered backprojection-type inversion
algorithm for spiral CT,” SIAM J. Appl. Math., vol. 62, no. 6, pp. 2012–
2026, 2002.

[8] T. Varslot, A. Kingston, A. Sheppard, and A. Sakellariou, “Fast high-
resolution micro-CT with exact reconstruction methods,” Proc. SPIE De-
velop. X-Ray Tomography VII, vol. 7804, 2010, Art. no. 780413.

[9] A. Sheppard et al., “Techniques in helical scanning, dynamic imaging, and
image segmentation for improved quantitative analysis with x-ray micro-
CT,” Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 324, pp. 49–56,
2014.

[10] T. Varslot, A. Kingston, G. Myers, and A. Sheppard, “Considerations
for high-magnification high-cone-angle helical micro-CT,” Proc. SPIE
Develop. X-Ray Tomography VIII, vol. 8506, 2012, Art. no. 850614.

[11] A. Katsevich, “3PI algorithms for helical computer tomography,” Adv.
Appl. Math., vol. 36, no. 3, pp. 213–250, 2006.

[12] Y. Zou and X. Pan, “Image reconstruction on PI-lines by use of filtered
backprojection in helical cone-beam CT,” Phys. Med. Biol., vol. 49, no. 12,
pp. 2717–2731, 2004.

[13] K. Tam, S. Samarasekera, and F. Sauer, “Exact cone beam CT with a spiral
scan,” Phys. Med. Biol., vol. 43, no. 4, pp. 1015–1024, 1998.

[14] P. Danielsson, P. Edholm, J. Eriksson, and M. Magnusson, “Towards
exact reconstruction for helical cone-beam scanning of long objects. A
new detector arrangement and a new completeness condition,” in Proc.
Int. Meeting Fully 3D Image Reconstruction Radiol. Nucl. Med., 1997,
pp. 141–144.

[15] C. Bontus, R. Proksa, J. Timmer, T. Köhler, and M. Grass, “Movement
artifacts in helical ct cone-beam reconstruction,” in Proc. Int. Meeting
Fully 3D Image Reconstruction Radiol.Nucl. Med., 2001, pp. 199–202.

[16] H. Yu and G. Wang, “Studies of artifacts of the katsevich algorithm for spi-
ral cone-beam ct,” Proc. SPIE Develop. X-Ray Tomography IV, vol. 5535,
pp. 540–549, 2004.
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