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ABSTRACT This article outlines our point of view regarding the applicability, state-of-the-art, and potential
of quantum computing for problems in finance. We provide an introduction to quantum computing as well
as a survey on problem classes in finance that are computationally challenging classically and for which
quantum computing algorithms are promising. In the main part, we describe in detail quantum algorithms
for specific applications arising in financial services, such as those involving simulation, optimization, and
machine learning problems. In addition, we include demonstrations of quantum algorithms on IBMQuantum
back-ends and discuss the potential benefits of quantum algorithms for problems in financial services. We
conclude with a summary of technical challenges and future prospects.
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I. INTRODUCTION
In the financial services industry, there are many computa-
tionally challenging problems arising in applications across
asset management, investment banking, and retail and corpo-
rate banking. Quantum computing holds the promise of rev-
olutionizing how we solve such computationally challenging
problems. With the first noisy quantum devices—leveraging
the principles of quantum mechanics—available publicly to-
day (see, e.g., [1] and [2]), the applicability of quantum com-
puting for problems in finance and demonstrating Quantum
Advantage in first applications are active topics of current
research [3]–[12].
In this article, we provide an introduction to quantum com-

puting and the necessary foundational concepts to understand
this new technology and its implications to the financial ser-
vices industry [13]. We extend previous summaries [3], [14],
[15] in multiple directions, as follows. First, we review the
main algorithms, the benefits they bring as well as the tech-
nical challenges they pose, and how to approach problems
from a quantum perspective. We then also highlight the eco-
nomic benefits that applying quantum computing may bring

to financial institutions in improving operations, revenues,
and quality. Algorithms are categorized based on the type of
problems they solve and mapped to the financial solutions
they can be applied to. We showcase real-life examples of
using quantum computing algorithms, explaining how the
problems are solved and the solutions obtained. Overall, we
offer a holistic practical guide to quantum computing and its
applicability to financial problems for financial institutions
in banking, financial markets, and insurance.
All computing systems rely on a fundamental ability to

store and manipulate information. Today’s classical com-
puters manipulate individual bits, which store information
as binary 0 and 1 states. Millions of bits work together to
process and display information with a speed that everyone
is familiar with on smartphones, laptops, and the servers in
the cloud. Quantum computers use the physical phenomena
of nature to manipulate information via quantum mechanics.
At this fundamental level, we have quantum bits, or qubits.
Unlike a bit that has to be a 0 or a 1 (or, their probabilistic
combination), a qubit can be in a complex-value-weighted
combination of states called a superposition. Multiple qubits
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may be purposefully entangled into linear combinations of
(complex-valued-weighted) states across the qubits, which
“correlates” them, so their quantum state cannot be described
independently, i.e., entangled states. And quantum interfer-
ence allows us to bias the measurement of a qubit toward
a desired state; thus, controlling the probability a system of
qubits collapses into particular measurement states. Quan-
tum computers are not a replacement for classical ones. They
complement the traditional systems by possibly being able
to solve some forms of intractable problems that blow up, or
become extremely large or time-consuming during compu-
tation. Remarkable progress in the control and construction
of quantum computing hardware in recent years has led to
the development of systems with tens of physical qubits,
which in the absence of quantum error correction (QEC)
are dubbed noisy quantum processors [16]. This has sparked
strong interest in the pursuit of Quantum Advantage—the
exploration of computational tasks which a quantum com-
puter solves faster than a classical one. An example of a
task for which Quantum Advantage has been proven was
introduced in [4] This is also a step on the way to the
development of fault-tolerant universal quantum comput-
ers (FTQCs), which require error correction [17]–[19] and
which will allow for arbitrary quantum algorithms backed by
theory that proves quantum speedup compared to classical
algorithms.
The quantum computing hardware pursued by IBM in-

volves superconducting quantum circuits [20]. The fun-
damental building blocks of the hardware are Josephson-
junction-based qubits called transmons. When cooled to
ca. 10 mK, these transmons behave as artificial atoms, where
the two lowest energy levels may be employed as the compu-
tational 0 and 1 states. Over the past two decades, progress
with superconducting qubit technology has been driven by
tremendous improvements in coherence, control, and fab-
rication capabilities. A metric that has been proposed and
employed by IBM to measure progress in development in
quantum computing is Quantum Volume [21]. Quantum
Volume indicates the relative complexity of a problem that
can be solved on a quantum computer, and it depends on
a number of factors such as number of qubits, coherence
time, measurement errors, device crosstalk, circuit compiler
efficiency, and others. IBM currently has more than 20 su-
perconducting processors available via the cloud with up to
65 qubits and put forward a roadmap for scaling quantum
technology in the years ahead [22].
In the near-term future, quantum computers will continue

to rely on noisy qubits with relatively high error rates
and limited coherence times. In this era of noisy quantum
devices [16], we will be confidently in the realm of Quantum
Advantage once we are able to solve a good number of sig-
nificant real-world problemsmore efficiently with the help of
quantum devices than compared with solving them on a clas-
sical computers only. The problem classes where we expect
to demonstrate advantage first include: 1) modeling physical

processes of nature; 2) obtaining better solutions to optimiza-
tion problems; and 3) finding better patterns within machine
learning (ML) processes, since first promising proposals for
near-term compatible quantum heuristics exist [23]–[25].
At a basic level, any solution built on a quantum computer

will comprise three fundamental steps.

1) The Loading Step: The solution must load its data from
a classical computer into the quantum computer in a
small number of steps. This results in a superposi-
tion, which combines the fundamental states described
above in a way that reflects the dataset being loaded.
While loading data into a computer are often ignored
as a triviality in classical computing, quantum data
loading can be a substantial aspect of solution design.
While there are loading techniques that are linear in the
size of the dataset, this can often eclipse the coherence
times of the physical superposition, and techniques are
often employed to reduce the input data before loading
or encode the data into the computational steps.

2) The Compute Step: Once data are loaded, the solu-
tion must rapidly perform a computation on the loaded
data within the quantum computer. This involves ma-
nipulation of the qubits in a manner that changes the
fundamental states in a way that reflects the outcome
of a desired computation. There is an increasing body
of research into quantum algorithms that solve prob-
lems that are considered computationally difficult or
intractable classically. Quantum computations often
compute their results as an approximation to an optimal
valuewithin a high-dimensional search space and often
exploit the nature of quantum superpositions to simul-
taneously consider vast numbers of possibilities. The
computed “output” superposition reflects a probabilis-
tic distribution of possible outcomes, with the preferred
outcomes associated with higher probabilities in the
distribution.

3) The Measurement Step: The measurement step makes
an observation of the computed “output” superposition
and reports it back to a classical computer. However,
the act of observation “snaps” the superposition back to
a basis state, so the computation step must be designed
in such a way that the solution is often encoded in a
narrow decision space. Quantum algorithms are often
repeated multiple times, with each repetition called a
shot. Each shot reports an output among the distribu-
tion of possible outputs from the compute step. With
multiple repetitions, a probabilistic picture emerges
of which output has received the highest probability
within the superposition, and an “answer” may be read.
Typically, hundreds or thousands of shots are used. It
should be noted that the higher the number of qubits,
the higher requirements on precision, and hence, the
higher the requirements on the number of measure-
ments.
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TABLE 1. Segments of the financial services industry

II. PROBLEMS IN FINANCIAL SERVICES
Financial services are a forward-looking industry that has
always been in the lookout to leverage new technologies to
increase profits. Broadly, this industry covers three vertical
sectors (cf. also Table 1 for segments).

1) Banking: Banking products are mainly bank accounts,
investments, and loans for commercial and retail cus-
tomers. Their main challenges are to balance cash with
interest rates, while controlling threats related to liq-
uidity, fraud, money laundry, or nonperforming loans
(NPLs).

2) Financial Markets: They are focused mainly on future
gains and the marketplace to sell and buy assets by
dealers, exchanges, brokers, or clearing houses. Their
main challenges are to manage geographic time zones,
immediacy needs, and counterparty risk.

3) Insurance:Health insurance, automobile and property,
life insurance and annuity, and reinsurance. The main
challenge here is to maximize premiums and manage
threats related to unplanned risks, such as catastrophes
or market crashes.

The digital financial services revolution is full blast dis-
rupting the industry and opening the door to new players
threatening the current status quo [26]: FinTechs and In-
surTechs with new digital-style offerings, RegTech with au-
tomatized regulation processes, and new competition from
other industry corporations that can now offer digital fi-
nancial services to their customers. In addition, clients are
demanding customized offerings based on their behavioral
data, for example, personalized insurance premiums based
on their life events or targeted loan offers for smaller cus-
tomer segments. The regulatory environment poses an oper-
ational challenge by requiring risk mitigation and strict com-
pliance. All these trends have created new financial services
experiences: smooth global supply chains for trade finance
asset management, Artificial Intelligence (AI) augmentation
with trusted decision making for investment banking, and
banking platforms that become finance “as-a-service.”
In this article, we consider the regulatory framework given

by the Basel III rules, which is being implemented by regu-
lators worldwide. Under Basel III, a key performance indi-
cator for both the regulator and regulated entities is capital
adequacy ratio, which is a ratio of the combined tier-1 and
tier-2 capital and risk-weighted holdings. In particular, the
minimum is 8%, while the required ratio is 10.5%.

Moreover, the liquidity coverage ratio (LCR) reform [27],
with the aim of improving short-term resilience, promotes
the holding of unencumbered high-quality liquid assets
(HQLA), whose amounts are tested in the so-called 30
calendar day liquidity stress scenario. By January 1, 2019,
the LCR, i.e., the proportion of the value of the stock of
HQLA in stressed conditions to total net cash outflows
in the same scenario, has risen to 100%. Within HQLA,
“Level 1” assets include cash and certain state-backed
securities, as well as select other safe assets. “Level 2”
include further state-backed securities and bonds of nonstate
and nonbank entities with long-term rating AA- or better.
“Level 2” assets can only comprise up to 40% of the stock
of HQLA. Furthermore, the same LCR reform introduced
diversification requirements on the stock of HQLA. These
extensions complicate both risk assessment and portfolio
management problems considerably.
Indeed, many problems, such as risk management and

portfolio management, rely on various risk measures that we
now introduce for future reference. Volatility captures the
risk in a portfolio of assets. It is the standard deviation of the
returns, which can be calculated from the variance ωᵀ�ω.
Here, ω is a (column) vector made of the weights of each
asset in the portfolio and � is the covariance matrix of the
returns of the assets.
Risk management often uses value at risk (VaR) as a risk

measure. VaRα of a random variate X is the 1 − α quantile of
the loss distribution Y = −X . VaR is, therefore, the minimal
γ such that the probability that X exceeds γ is α, i.e.

VaRα (X ) := −inf{γ such thatFX (γ ) > α} (1)

where FX (x) is the cumulative distribution function (CDF)
of X . Since VaR is a quantile, it has the shortcoming that
it is not sensitive to extreme losses in the tail of X . The
conditional value at risk (CVaR) is, therefore, often used
as an additional risk metric. CVaRα , sometimes also called
expected shortfall, is the expectation value of all losses up
to the VaRα . In the financial services challenges discussed
in the remainder of this article, we are assuming a market
environment operating under the Basel III regulations.
Planned updates to the framework, upcoming under Basel

IV, focus on the approach to calculate risk-weighted assets
(RWAs) regardless of risk type. Banks will need to change
their projection models toward forward-looking statements,
which are statements that are not solely based on historical
facts and, therefore, have more assumptions. This will re-
quire more scenario building to comply with the new require-
ments for capital lower limits (72.5% “output floor”), credit
risk with common approach rather than internal, market risk
sensitivity-driven analysis as a standard, and operational risk
measured by “unadjusted business indicator” leveraging his-
torical loss data. Overall Basel IVwill reshape banks’ trading
activities and portfolio structures.
In this article, the focus is in three areas of financial ser-

vices, where problems challenging for classical computers
arise today:
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FIGURE 1. Transformative technologies in support of digital themes in
financial services [28].

1) asset management;
2) investment banking;
3) retail and corporate banking.

A few examples of transformative technologies leveraged
in these areas include the use of AI for Asset Management
through bots as the new user interfaces, the adoption of algo-
rithmic trading that changed the stock market with High Fre-
quency Trading for Investment Banking, and the increased
use ofmobile devices for payments impacting financial trans-
actions in Retail Banking (see also Fig. 1).
The adaption of new technologies and evolution of fi-

nancial services can be traced in waves leading to a dig-
ital future. The first wave focused on mobile adoption to
engage customers. This was followed by the exploration of
new business models to leverage new data sources and the
threat from technology providers. The third current wave is
driven by a combination of challenges, including cost pres-
sures, technology disruptions, and regulatory changes (see
Fig. 2). This is causing a fundamental redefinition of the fi-
nancial institution, its internal operations, and how it engages
externally. Further background is provided in [28]. Within
this context, the future benefits of quantum computing for
businesses could be measured across a set of key business
metrics.

1) Reduce regulatory penalty costs or avoidable human
labor.

2) Improve customer satisfaction and brand perception.
3) Increase customer interaction and financial activity.
4) Reduce capital levels and improve cash flow.

In the following sections, we group specific problems aris-
ing in the financial services where classical computers face
challenges or are insufficient, in three classes: simulation, op-
timization, andML; we introduce the quantum algorithms ap-
plicable to them and discuss results obtained on IBM Quan-
tum back-ends for some specific problems. Each quantum
algorithm is applied on tasks and calculations that affect one
or more phases of the customer life cycle, shown in Fig. 3,
and we describe the specific business benefits it may bring.

III. SIMULATION
In this section, we discuss simulation problems, where quan-
tum computingmay be beneficial. There are simulation prob-
lems at each stage of the customer life cycle (see Fig. 3).

1) Customer Identification: Obtain new revenue sources
for value-added services such as derivative pricing us-
ing sophisticated quantum computing algorithms. This
offering can help compensate for the monetary losses
of MiFIDII new transparency measures in trading, es-
timated to cost $240 million [29].

2) Financial Products: Better manage VaR and the eco-
nomic capital requirement (ECR) providing more ac-
curate estimates to improve liquidity management by
activelymanaging the balance sheet, increase capital to
maintain a 7% equity capital ratio to its riskier assets,
and avoid Basel-III-related compliance fines [30] that
are up to 10% of Bank’s turnover (revenue).

3) Monitor Transactions: Allow for a more precise
approach to incorporating market volatility into
an institution’s Tier 1 reporting [31], optimizing
RWA results through a much more accurate/precise
calculation process.

4) Customer Retention: Improve risk analysis for the new
net stable funding ratio time-frame requirements that
will impact the cost of doing business for Prime Bro-
kers and hedge funds. The stable funding for securities
Lending Transactions shifts from 0% to 10% for Level
1 collateral and to 15% for other collateral [32].

Overall, Basel regulation implementation and the new
needs of risk management is of mandatory interest for finan-
cial institutions, with an estimated technology cost between
EUR 45 million and EUR 70 Million [33].
Simulation focuses on creating scenarios of potential out-

comes, such as the impact of volatility on risk, evaluating
asset values for pricing, or monitoring economic system im-
pacts in the market.
One key task in the finance industry where simulation is

crucial is the pricing of financial instruments and estimating
their risk. For example, the buyers and sellers of complex
financial instruments gain a competitive advantage when
they can price such instruments with a better accuracy
than their competition. Regulations such as Basel III require
banks to perform stress tests and to hold an amount of capital
that depends on their RWAs.However, pricing and estimating
the risk of many financial instruments is computationally in-
tensive. Analytical models are often too simplistic to capture
the complex dependencies between financial instruments or
cannot take into account some of their features such as path
dependence. Monte Carlo (MC) simulations are, therefore,
used to estimate risk metrics, to price financial instruments,
and to perform scenario analysis that can be used in stress
tests. In an MC simulation, M samples are drawn from the
model input distributions and are used to construct an estima-
tion of a quantity of interest. The confidence interval of this
estimation scales asO(1/

√
M), makingMC computationally

intensive. For instance, decreasing the size of the confidence
interval by an order of magnitude requires increasing the
computational cost by a factor of 100. In this section, we
briefly discuss MC for option pricing and risk calculations

3101724 VOLUME 1, 2020



Egger et al.: QUANTUM COMPUTING FOR FINANCE: STATE-OF-THE-ART AND FUTURE PROSPECTS Engineeringuantum
Transactions onIEEE

FIGURE 2. Finance industry transformation in waves driving to a digital future [28].

FIGURE 3. Customer life cycle conceptual design. Here, a customer can
be a corporation, fund, financial institution, government, or individual.

and then discuss how such tasks can be performed on
quantum computers using amplitude estimation (AE) (see
Section III-A).
(1) Option Pricing: Options are financial derivative con-

tracts that give the buyer the right, but not the obligation,
to buy (call option) or sell (put option) an underlying asset
at an agreed-upon price (strike) and time-frame (exercise
window). In their simplest form, the strike price is a fixed
value and the time frame is a single point in time, but exotic
variants may be defined on more than one underlying asset;
the strike price can be a function of several market parameters
and could allow for multiple exercise dates [34]. Options
provide investors with a vehicle to profit by taking a view
on the market or exploit arbitrage opportunities and are core
to various hedging strategies. As such, understanding their
properties is a fundamental objective of financial engineer-
ing. Due to the stochastic nature of the parameters options are
defined on, calculating their fair value can be an arduous task.
Analytical models exist for the simplest types of options [35],
but the simplifying assumptions on the market dynamics re-
quired for the models to provide closed-form solutions often
limit their applicability [36]. Hence, more often than not,
numerical MC simulations are employed for option pricing
since they are flexible and can generically handle stochas-
tic parameters [37], [38]. Option pricing with MC generally
proceeds by simulating many paths of the time evolution un-
dergone by the underlying assets to build a distribution of the
option payoff at maturity. The option price is then obtained
by discounting the expected value of this distribution. Classi-
cal MC methods require extensive computational resources
to provide accurate option price estimates, particularly for
complex options. Because of the widespread use of options
in the finance industry, accelerating the methodology to price
them can significantly impact the operations of a financial
institution.
(2) Risk Management: Risk management plays a central

role in the financial system. It allows companies, institutions,

and individuals to avoid monetary losses and grow their busi-
ness. Financial risk, which comes in many forms such as
credit risk, liquidity risk, and market risk, is often estimated
using models and simulations. The accuracy of these models
has a direct impact on the operations of the entity using them.
For instance, the capital requirements imposed on banks un-
der the Basel accords depend on the accuracy of risk models
[39]. Therefore, banks with more accurate models can make
better use of their capital. VaR [40], a quantile of the loss
distribution, is a widely used risk metric. For example, the
Basel III regulations require banks to perform stress tests
using VaR [41]. MC simulations are the method of choice to
determineVaR andCVaR. They are done by building amodel
and computing the loss/profit distribution for M different
realizations of the model input parameters. Many different
runs are needed to achieve a representative distribution of
the loss/profit distribution. Classical attempts to improve the
performance are variance reduction or quasi-MC techniques
[38], [42], [43]. The first aims at reducing the constants
while not changing the asymptotic scaling, whereas the latter
improves the asymptotic behavior, but only works well for
low-dimensional problems.
In Section III-A, we discuss how quantum AE can provide

a quadratic speedup over classical MC simulations and high-
light the steps needed to calculate VaR in Section III-B. We
then employ these methods in the context of credit risk, as al-
ready discussed in [5] and summarized here in Section III-C.
For a detailed discussion on how quantumAE can provide an
advantage for options pricing, we refer to [6], [7], and [44].

A. QUANTUM AE
AE is a quantum algorithm that can estimate a parameter a
with a convergence rate O(1/M), where M is the number of
quantum samples. This corresponds to a quadratic speedup
compared to classical MC. AE is based on a unitary operator
A acting on a register of (n+ 1) qubits such thatA |0〉n+1 =√
1 − a |ψ0〉n |0〉 + √

a |ψ1〉n |1〉 for some normalized states
|ψ0〉n and |ψ1〉n, where a ∈ [0, 1] is unknown. AE allows the
efficient estimation of a, i.e., the probability of measuring
|1〉 in the last qubit [45]. This is done using an operator Q
defined as

Q = A(I − 2 |0〉n+1 〈0|n+1)A†(I − 2 |ψ0〉n |0〉 〈ψ0|n 〈0|)
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FIGURE 4. Quantum circuit for AE as introduced in [45]. H is the
Hadamard gate and F†

m denotes the QFFT−1 on m qubits.

where I denotes the identity operator, and quantum phase
estimation [46] to approximate certain eigenvalues of Q.
AE requires m additional qubits and M = 2m (controlled)
applications of Q. The m qubits are first put into equal
superposition, i.e., |0〉m → 1/

√
M
∑M−1

k=0 |k〉m, by applying
Hadamard gates, which are single-qubit gates that perform
|0〉 → (|0〉 + |1〉)/√2. Then, them qubits are used to control
the applied power of Q, which leads to the state

1/
√
M

M−1∑
k=0

|k〉m QkA |0〉n+1 (2)

where each Qk imparts the phase e−2ikθa and e+2ikθa , respec-
tively, to the two eigenstates of Q that lie in the span of
the states |ψ0〉n |0〉 and |ψ1〉n |1〉. Next, the inverse quantum
Fourier transform (QFFT−1)

F†
M : |k〉m → 1√

M

M−1∑
y=0

e−2π iyk/M |y〉m (3)

is applied to interfere these phases. Last, measuring the
m qubits results in an integer y ∈ {0, . . . ,M − 1}, which
corresponds to the states for which the phases interfered
constructively, i.e., y � Mθa/π , see the circuit in Fig. 4.
The integer y is then classically mapped to the estimator
ã = sin2(yπ/M) ∈ [0, 1]. The estimator ã satisfies

|a− ã| ≤ 2
√
a(1 − a)π

M
+ π2

M2

≤ π

M
+ π2

M2
= O(M−1) (4)

with probability of at least 8/π2. This represents a quadratic
speedup compared to theO(M−1/2) convergence rate of clas-
sical MC methods [40].
Recently, several variants of AE have been proposed that

simplify the required quantum circuits [8], [47], [48]. They
leverage the same underlying structure, but allow us to re-
move the m additional qubits as well as the quantum Fourier
transform. For a comparison of available AE variants, we
refer to [48].

B. ESTIMATING VAR WITH AE
The discussion above shows that to efficiently estimate a
parameter a, we need the corresponding operator A. We
make use of AE in finance by building the A operator for
each quantity of interest, such as a risk measure, of a random
variate X . We represent the distribution of X as an n-qubit
quantum state

|ψ〉n =
N−1∑
i=0

√
pi |i〉n (5)

by discretizing the outcomes of X and mapping them to i ∈
{0, ...,N − 1}, where N = 2n. Here, pi ∈ [0, 1] is the proba-
bility of measuring the state |i〉n, which is a binary represen-
tation of i. By adding an ancilla qubit to the n-qubit register
and applying the operator

F : |i〉n |0〉 → |i〉n
(√

1 − f (i) |0〉 +
√
f (i) |1〉

)
(6)

for some function f (i), to the state |ψ〉n |0〉 results in the
quantum state

N−1∑
i=0

√
pi
√
1 − f (i) |i〉n |0〉 +

N−1∑
i=0

√
pi
√
f (i) |i〉n |1〉 . (7)

By comparing this state to A |0〉n+1 = √
1 − a |ψ0〉n |0〉 +√

a |ψ1〉n |1〉, we find that the probability of measuring |1〉 in
the ancilla qubit is a = ∑N−1

i=0 pi fi. We can, therefore, obtain
an estimate for VaRα (X ) by choosing

f (i) =
{
1, i ≤ l
0, otherwise

(8)

for some level l. With this definition of f (i), the probability
of measuring |1〉 in the ancilla qubit is∑l

i=0 pi = P [X ≤ l].
With a binary search over l, we find the smallest lα such that
P [X ≤ lα] ≥ 1 − α. The smallest lα corresponds to the VaR.
This estimation of VaRα (X ) has accuracy O(M−1), i.e., a
quadratic speedup compared to classical MCmethods (omit-
ting the additional logarithmic complexity of the bisection
search)—where O(·) indicates the big-O notation. Here, we
assumed a 1-D probability distribution. Probability distribu-
tions with more than one random variable can be loaded into
a corresponding number of qubit registers [9]. Correlations
between the random variables are then introduced by suitably
entangling these qubit registers.

C. CREDIT RISK
The quantum method to calculate VaR, outlined in the pre-
vious sections, can be applied in the context of credit risk
to determine the ECR associated with holding a portfolio of
K loans [5]. The ECR is the amount of capital that needs to
be held on the balance sheet to protect against unexpected
losses. It is, therefore, defined as the VaR less the expected
value of the loss distribution L, i.e.

ECRα (L) = VaRα (L) − E(L) (9)

3101724 VOLUME 1, 2020



Egger et al.: QUANTUM COMPUTING FOR FINANCE: STATE-OF-THE-ART AND FUTURE PROSPECTS Engineeringuantum
Transactions onIEEE

where α is the confidence level. Estimating the VaR is of-
ten a computationally intensive task requiring classical MC
simulation. However, quantum AE can achieve the same re-
sult with a quadratic speedup. We illustrate AE for a port-
folio of K assets for which the multivariate random vari-
able (L1, ...,LK ) ∈ RK

≥0 denotes each possible loss associ-
ated with each asset. The expected value of the total loss
L = ∑K

k=1 Lk is E[L] = ∑K
k=1 E[Lk]. The VaR for a given

confidence level α ∈ [0, 1] is defined as the smallest total loss
that still has a probability greater than or equal to α, i.e.

VaRα[L] = inf
x≥0

{x | P [L ≤ x] ≥ α} . (10)

Common values of α for ECR found in the finance industry
are around 99.9%. We assign a Bernoulli random variable Xk
to each asset to indicate if it is in a default state such that
Lk = λkXk, where λk > 0 is the loss given default (LGD).
The probability that Xk = 1, i.e., a loss for asset k, is pk. The
expected loss of the portfolio E[L] = ∑K

k=1 λk pk is easier to
evaluate than VaRα[L], which usually requires an MC simu-
lation. The defaultsXk are usually correlatedwhichwemodel
following a conditional independence scheme [49]. Given
a realization z of a latent random variable Z , the Bernoulli
random variables Xk | Z = z are assumed independent, but
their default probabilities pk depend on z. We follow [49] and
assume that Z has a standard normal distribution and that

pk(z) = 


(

−1(p0k ) − √

ρkz√
1 − ρk

)
(11)

where p0k denotes the default probability for z = 0, 
 is the
CDF of the standard normal distribution, and ρk ∈ [0, 1) de-
termines the sensitivity of Xk to Z . This scheme is similar
to the one used for regulatory purposes in the Basel II (and
following) internal rating-based approach to credit risk [41],
[50] and is called the Gaussian conditional independence
model [49].
To estimate VaR, we use AE to efficiently evaluate the

CDF of the total loss, i.e., we will construct A such that
a = P [L ≤ x] for a given x ≥ 0, and apply a bisection search
to find the smallest xα ≥ 0 such that P [L ≤ xα] ≥ α, which
implies xα = VaRα[L] [9].
Mapping the CDF of the total loss to a quantum operator

A requires three steps. Each step corresponds to a quantum
operator. First, U loads the uncertainty model. Second, S
computes the total loss into a quantum register with nS qubits.
Finally, C flips a target qubit if the total loss is less than or
equal to a given level x, which is used to search for VaRα .
Thus, we have A = CSU , and the corresponding circuit is
illustrated in Fig. 5 on a high level.
We now discuss the operators U , S , and C in more detail.

The loading operator U loads the distribution of Z and pre-
pares the Xk of each asset. To include correlations between
the default events, we representZ in a register with nZ qubits.
We use a truncated and discretized approximation with 2nZ

values, where we consider an affine mapping zi = azi+ bz
from i ∈ {0, ..., 2nZ − 1} to the desired range of values of Z .

FIGURE 5. High-level circuit of the operator A used to evaluate the CDF
of the total loss: the first qubit register with nZ qubits represents Z , the
second qubit register with K qubits represents the Xk , the third qubit
register with nS qubits represents the sum of the losses, i.e., the total
loss, and the last qubit is flipped to |1〉 if the total loss is less than or
equal to a given x. The operators U , S, and C represent the loading of
uncertainty, the summation of losses, and the comparison to a given x,
respectively.

Since Z follows a standard normal distribution, we can effi-
ciently load it to a quantum register with controlled rotations
[51]. We encode the Xk of each asset in the state of a corre-
sponding qubit by applying to qubit k a Y -rotation RY (θ kp ),
controlled by the qubit register representing Z , with angle
θ kp(z) = 2 arcsin(

√
pk(z)). For simplicity, we use a first-order

approximation1 of θ kp(z) and include the affine mapping from
z (a value of the normal distribution) to i (an integer repre-
sented by nZ qubits), i.e., θ kp(zi) ≈ aki+ bk. This prepares
qubit k in the state

√
1 − pk |0〉 + √

pk |1〉 for which the
probability to measure |1〉 is pk. The |1〉 state of qubit k, thus,
corresponds to a loss for asset k.
Next, we need to compute the resulting total loss for ev-

ery realization of the Xk. Therefore, we use a weighted sum
operator

S : |x1, . . . , xK〉K |0〉nS
�→ |x1, . . . , xK〉K |λ1x1 + · · · + λKxK〉nS (12)

where xk ∈ {0, 1} denote the possible realizations of Xk. We
set the size of the sum register to nS = �log2(λ1 + · · · +
λK )
 + 1 qubits to represent all possible values of the sum
of the losses given default λk, assumed to be integers. To
implement S , we apply a divide and conquer approach and
first sum up pairs of assets, then pairs of the resulting sums,
and so on until we computed the total sum. This implies that
we start with a weighted-sum operator, discussed in detail in
[7], and then continue with adder circuits [52] to iteratively
combine the intermediate results.
Finally, we need an operator that compares a particular

loss realization to a given x and then flips a target qubit from
|0〉 to |1〉 if the loss is less than or equal to x. This operator is

1Higher order approximations of θ kp (z) can be implemented using multi-
controlled rotations. Furthermore, by using quantum arithmetic, one could
also compute θ kp (z) directly [9].
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FIGURE 6. Loss distribution of the two-asset portfolio. The green- and
orange-dashed lines show the expected value and the 95% VaR of the
distribution, respectively.

defined by

C : |i〉nS |0〉 �→
{

|i〉nS |1〉 , if i ≤ x

|i〉nS |0〉 , otherwise
. (13)

A fixed-value comparator, i.e., a comparator that takes a fixed
value to compare to as a classical input, can be based on adder
circuits [53]. Here, a logarithmic scaling can be achieved by
adding a linear number of ancilla qubits.
We now show the performance of the quantum algorithm

for an illustrative example with K = 2 assets. Each asset is
defined by the triplet (λk, p0k, ρk ), i.e., the LGD, the default
probability for z = 0, and the sensitivity of Xk to Z , respec-
tively. We chose (1, 0.15, 0.1) and (2, 0.25, 0.05) for asset
1 and 2, respectively, which results in the loss distribution
shown in Fig. 6. This distribution is naturally encoded into
the four states of two qubits, indicated by the state labels in
Fig. 6, which illustrates how a qubit register can encode the
exponential number of portfolio states as a quantum super-
position. From the chosen λks, it follows that the sum reg-
ister requires nS = 2 qubits to represent all possible losses.
We represent Z with nZ = 2 qubits. Thus, A is operating
on seven qubits that represent this problem on a quantum
computer, including the objective qubit.
To simulate our algorithm, we input the circuit for A to

the AE subroutine implemented in Qiskit [54] and perform
the bisection search using the result to find xα . We usem = 4
evaluation qubits giving us 16 quantum samples. Our imple-
mentation requires one additional ancilla qubit to create Q.
Therefore, this experiment requires a total of 12 qubits that
we simulate on classical computers using the statevec-
tor_simulator back-end provided by Qiskit Aer. Since
nS = 2, the bisection search requires at most two steps, as
shown in Fig. 7. To ensure that the entire probability dis-
tribution is captured by the initial lower and upper bounds
of the bisection search, we set them at losses of −1$ and
3$, respectively. The simulations, shown in Fig. 7, properly
identify the 95% VaR, located at a loss of 2$, on the first
iteration of the bisection search. We expect that the number
of iterations needed in the bisection search will scale linearly
with the number of assets in the portfolio.

FIGURE 7. CDF (left) of the total loss L (blue), shown in Fig. 6, for a
two-asset portfolio. The red-dashed line is the target VaR level α = 95%.
Bisection search to compute VaR (middle and right) using m = 4
sampling qubits, i.e., 16 quantum samples: orange and blue represent
the lower and upper bounds of the search interval, respectively, and
green is the resulting midpoint. The red-dashed line shows the exact
value.

We have investigated in [5] the quantum resources re-
quired for K = 220 assets, i.e., a portfolio of approximately
1 million assets. With nZ = 10, nS = 30, and m = 10, an
FTQC would require approximately 37 million T/Toffoli
gates. If we assume that error-corrected T/Toffoli gates can
be executed in 10−4 s [55] and that the quantum phase esti-
mation can be removed [8], which reduces the circuit depth
by a factor of 2, we estimate a runtime of 30 min to estimate
the VaR for a 1-million-asset portfolio [5]. This estimate may
change as quantum computing technology advances.

D. DISTRIBUTION LOADING
Replacing an MC simulation with AE requires efficiently
loading the distributions of the random variables in themodel
to the quantum computer to avoid diminishing the poten-
tial quantum advantage. This is feasible, e.g., for efficiently
integrable probability distributions such as log-concave dis-
tributions for which the loading operator can be built from
controlled rotations [51]. The loading of arbitrary states
into quantum systems, however, requires exponentially many
gates [56], making it inefficient to model arbitrary distribu-
tions as quantum gates. Since the distributions of interest
are often of a special form, the limitation may be overcome
by using quantum generative adversarial networks. These
networks allow us to load a distribution using a polynomial
number of gates [57].

E. SUMMARY
We have shown how AE can be used to estimate the ECR
for a portfolio of loans. This results in a quadratic speedup
(omitting the logarithmic cost of the bisection search in VaR)
over classical MC simulations. The example also shows that
the quantum circuit needed to implement A depends on the
task at hand. Therefore, extending this work to other financial
simulation tasks requires task-specific quantum circuits to
implement A.

IV. OPTIMIZATION
In this section, we discuss optimization problems, where
quantum computing may be beneficial. As in the case of
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simulation, there are optimization problems at each stage of
the customer life cycle (see Fig. 3).

1) Customer Identification (and Assessment): Improve
Financial Supply Chain Efficiency [58] in procurement
and payment focusing on customers and suppliers to
increase to reduce working capital levels, enhance liq-
uidity, minimize risk, and avoid late payments (47% of
suppliers are paid late [59]).

2) Financial Products:Accelerate trade settlement capac-
ity [10], [60] (i.e., from 45% transactions to 90%) to
reduce associated capital requirements, systemic risk,
and operational costs.

3) Monitor Transactions: Keep investment portfolios rel-
evant by rebalancing aligned to market changes [61],
while handling all the associated fees (taxes, commis-
sions, etc.). This can reduce transaction costs by 50%
and lead to $600k savings in trading costs for an exam-
ple of four-asset $ 1billion portfolio [62].

4) Customer Retention: Improve the process of matching
companies to potential buyers to avoid current cus-
tomer churn toward automated investment banking.
This can reduce current work losses; in 2015, 26% of
the $1B+ merger and acquisitions were done without
involvement of financial advisors [63].

Overall, investment banks are increasingly applying tech-
nology to automate the trading pipeline, hiring technologists,
which are 20–40% job openings on the main investment
banks [64]. Also, JPMorgan spends the most a year on tech-
nology with $10.8 billion [65].
Many financial services firms may want to take actions

that result in the best possible outcome for a given goal. In
the language of mathematical optimization, finding the best
decision or action with respect to maximizing or minimiz-
ing given goals or objectives is cast as maximizing or min-
imizing an objective function in a decision variable, subject
to constraints, often given again by functions of a decision
variable. This has extensive applications, e.g., finding the
best supply-chain route for delivery, determining the best
investment strategy for a portfolio of assets, or increasing
productivity with a number of fixed resources in operations.
Optimization problems in finance may consider a single

period, where all information are available at time 0 and one
takes a one-off decision, or their generalizations. In mul-
tistage problems, information become available at multiple
points in time, and also, the decisions can be made at mul-
tiple points in time (stages). In optimal control problems,
one optimizes over policies, which drive the repeated de-
cisions. Throughout, one can work with either discrete de-
cisions (e.g., yes/no, number of round lots) or real-valued
decisions (e.g., price). Throughout, one can enforce the con-
straints given by the Basel III regulatory framework directly,
or produce the decision that would be optimal without the
constraints, and test whether these constraints are satisfied
using simulation tools, as introduced above.

Correspondingly, there is a breadth of approaches, which
model active and passive investment management. Within
active investment management, one often tries to find the
optimal investment strategy striking a balance between the
expected profit and some measure of risk involved. Within
passive investment management, one can imagine index-
tracking funds and their “calibration problems,” which are
based on portfolio diversification, and aim at representing a
portfolio with a large number of assets by a smaller num-
ber of representative assets. Within auction mechanisms, the
clearing of the so-called combinatorial auctions, where bids
on a subset of items are accepted, is an example of a difficult
discrete-valued optimization problem. In this section, we in-
troduce idealized versions of these problems, where only the
decision in the next period is considered, transaction costs
are ignored, and Basel III constraints are not enforced, and
the corresponding quantum algorithms.
As we will discuss shortly, different quantum algorithms

have been advocated for different optimization problem
classes, e.g., the algorithms for convex problems are different
from the ones for discrete problems. In discrete problems,
e.g., we will discuss variational approaches, such as vari-
ational quantum eigensolver (VQE) and quantum approxi-
mate optimization algorithm (QAOA). While, for other ap-
plications, quantum computing offers more clear-cut benefits
with respect to classical computing (e.g., Shor’s algorithm),
in the application of optimization algorithms, these benefits
are still an active research area; see, for instance, [11], [12],
[16], and [66]–[74]. What it is fair to say is that with the
advance of technology, quantum computing will play a ma-
jor role in optimization, and in some problem classes, one
will see tangible benefits, either in terms of solution quality,
computational time, or both.

A. PROBLEM CLASSES: CONVEX PROBLEMS
First, we consider convex optimization, which encompasses
linear programming (LP), quadratic programming (QP), and
semidefinite programming (SDP). Convex optimization [80]
is a subclass of continuous optimization problems, where the
decision variables are continuous, and it has been advocated
for a large variety of applications, amongwhich finance prob-
lems [81].
Not surprisingly, much of the recent interest in quantum

algorithms for continuous optimization has focused on ap-
proaches to solving convex optimization problems and, in
particular, SDP. An SDP can be mathematically modeled as

inf 〈C,X〉 s.t. AX = b,X �K 0 (14)

where cone K is the cone of positive-semidefinite
symmetric n× n matrices Sn+, i.e., {X = Xᵀ ∈
Rn×n| X is positive semidefinite}, and A : Sn → Rm is
a linear operator between Sn+ and Rm:

X �→

⎛
⎜⎝〈A1,X〉

. . .

〈Am,X〉

⎞
⎟⎠ .
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TABLE 2. Overview of recently proposed quantum algorithms for convex optimization

See Section IV-A for the notation, but note that Õ hides polylogarithmic terms in the upper bound.

This is a proper generalization of LP, second-order cone pro-
gramming, and convex cases of quadratically constrained QP
and hence of considerable practical interest.
Within classical algorithms, there exist polynomial-time

algorithms that can solve SDP. In particular, there are classi-
cal upper bounds on the runtime as

O(m(m2 + nω + mnz)polylog(m, n,P, 1/ε))

where, as said, O(·) indicates the big-O notation, n is the
dimension of the problem, ω ∈ [2, 2.373) is the exponent for
matrix multiplication, m is the number of constraints, and
nz is the maximal number of nonzero entries per row of the
input matrices. P is an upper bound on the trace of an optimal
primal solution of an SDP, which could be seen as bound on
a diameter of a ball outscribed to feasible solutions, in a suit-
able norm. This bound shows that SDPs can be approximated
to any ε in polynomial time classically.
As for quantum algorithms, the early papers [75], [77], and

[78] quantized the so-called multiplicative-weight-update
(MWU) algorithm of Arora and Kale and variants by Hazan.
As has been shown in [77, Appendix E], in the MWU algo-
rithm, PD

ε
should be seen as an important parameter (D being

the dual counterpart of P), as one can trade off dependence
on one of the three individual parameters for the dependence
on the others.
Subsequently, the work in [79] attempted a translation of

primal-dual interior-point methods to quantum computers
but, due to their reliance on solving linear systems, ended
up with a bound dependent on the condition number κ of the
Karush–Kuhn–Tucker system, which goes to infinity for all
instances, by the design of the method, which may be not
ideal in practice.
Finally, in [82], the authors study the relationship of sev-

eral oracles useful in subgradient algorithms, but do not
claim a runtime of a particular algorithm for SDPs.
The key results are summarized in Table 2. As can be ob-

served, some of the quantum algorithms listed report scaling
with O(

√
mn) [75] or even O(

√
m poly(log(m), log n)) [76].

However, these upper bounds hide the diameters of balls
outscribed to the primal and dual solutions. That is, these
upper bounds assume that parameters P and D are constants
independent of dimension, which could, however, be hard to
satisfy in practice.
In fact, if one assumes that P and D are dependent on the

dimension of the problem, then lower bounds on the runtime

of quantum algorithms can be derived, e.g., for continuous
Markowitz portfolio optimization problems in Section IV-B.
Before moving on to an actual finance application, it is

useful to briefly outline the quantum part of a quantum SDP
algorithm. We focus here on the one of [75], since it seems
to be the one that has spurred much of the following re-
search. As said, the authors in [75] quantize the classical
MWU algorithm for solving SDPs. In particular, they replace
two steps of the classical algorithm by quantum subroutines
that are more efficient than classical ones. Consequently, the
quantum SDP algorithm is not purely quantum, which is also
the case for VQE in combinatorial optimization. The steps
that are replaced are as follows. First, it turns out that one can
use a “Gibbs sampler” to prepare the new primal candidate as
a log(n)-qubit quantum state in much less time than needed
to compute it as an n× nmatrix. Second, one can efficiently
implement an oracle that is needed in the algorithm based
on a number of copies of the quantum state, and using those
copies to estimate trace operations. The resulting oracle is
weaker than what is used classically, in the sense that it
outputs a sample rather than the whole vector (as typical in
quantum computing). However, such sampling still suffices
to make the algorithm work. The interested reader is referred
to [73] and [77] for more technical details.

B. MODERN PORTFOLIO MANAGEMENT—ACTIVE
INVESTMENT MANAGEMENT: CONTINUOUS CASE
Let us now consider modern portfolio management and de-
velop lower bounds on the runtime of any quantum algorithm
in the quantum query model of Beals et al. [83], where
quantum computation with T queries is a sequence inter-
leaving T unitary and T query (oracle) transformations, with
a measurement at the end. These lower bounds on the run-
time are generally based on lower bounds on parameters P,
D = �(min{n,m}2), as discussed in Section IV-A, and sug-
gest that the quantum speedup of MWU algorithms [75],
[77], [78] may be limited in practice.
In modern portfolio theory, one often assumes that there

are n possible assets and a number m of forecasts of their
returns bi ∈ Rn, 1 ≤ i ≤ m, based on some historical returns
c ∈ Rn, with a known covariance matrix � ∈ Rn×n of the
returns. Minimization of the risk subject to lower bounds μi
on the forecast returns leads to

min
w∈Rn+

wᵀ�w s.t. bᵀi w ≥ μi ∀ 1 ≤ i ≤ m (15)
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possibly with normalization such as
∑n

j=1 wi = 1 or similar.
In the spirit of Markowitz, one may consider a linear combi-
nation of the returns and the risk

max
w∈Rn+

cᵀw − qwᵀ�w s.t. bᵀi w ≥ μi ∀ 1 ≤ i ≤ m.

(16)

One can also formulate a Lagrangian of theMarkowitzmodel
above andmaximize cᵀw − qwᵀ�w, where the higher q≥ 0,
the more risk-averse the portfolio will be.
In any case, due to the general result that there exist prob-

lem instances for which complexity of every quantum LP
solver (and hence also SDP solver) is the same as classi-
cal [77], there are instances of Markowitz portfolio man-
agement (16) with n assets and m forecasts of the returns,
for which a quantum algorithm has the same complexity
of a classical one. This has to be taken as an understand-
ing that quantum algorithms may help in some instances of
Markowitz portfolio management but not in others, depend-
ing on the actual input data.

C. PROBLEM CLASSES: COMBINATORIAL PROBLEMS
Wemove now to overview combinatorial problems and quan-
tum algorithms that have been advocated for them. Combina-
torial optimization problems are the ones for which the deci-
sion variables can also be discrete. Combinatorial problems
are, in general, nonconvex and not solvable with polynomial-
time algorithms, classically. In the quantum domain, varia-
tional algorithms for general mixed-binary constrained opti-
mization problems have been studied, and we will overview
them as well as apply them for financial problems [84]. First,
we will look at quadratic unconstrained binary optimization
(QUBO), whereVQE/QAOAheuristic approaches have been
advocated on noisy quantum devices [12], [24]. Then, we
will explore how the classical alternating direction method
of multipliers (ADMM) can help solving certain classes of
mixed-binary constrained optimization problems [11]. We
note that, currently, there is no theoretical guarantee that
variational algorithms on quantum devices can achieve sig-
nificant speedups for QUBOs, and the algorithms reported in
this section are used as heuristics. On the other hand, varia-
tional algorithms do have nontrivial provable guarantees, and
they are not efficiently simulatable by classical computers.
They are thus appealing algorithms to explore on near-term
quantum machines [70].

D. VARIATIONAL APPROACHES FOR QUBO
The attempts to solve mathematical optimization problems
on early generation of universal quantum computers have
mainly focused on variational approaches [85]–[87]. In broad
terms, a variational approach works by choosing a parame-
terization of the space of quantum states that depends on a
relatively small set of parameters, and then by using classical
optimization routines to determine values of the parameters

Algorithm 1: Outline of VQE.
Require: Hamiltonian H. Set θ = θ0
1: while Error tolerance is unmet: do
2: Quantum part:

• Form variational state |ψ (θ )〉 = U (θ ) |0〉
• Compute information about λ = 〈ψ (θ )|H|ψ (θ )〉

3: Classical part:
• Update θ via a classical optimization algorithm

(e.g., COBYLA, SPSA, etc.)
• Compute the error metric

4: end while
5: return λ, θ

corresponding to a quantum state that maximizes or mini-
mizes a given utility function. Typically, the utility function
is given by a Hamiltonian encoding the total energy of the
system, to be minimized. The variational theorem then en-
sures that the expectation value of the Hamiltonian is greater
than or equal to the minimum eigenvalue of the Hamiltonian.
A large problem class tackled by such variational approaches
is that of QUBO problems

min
x

cᵀx+ xᵀQx

s.t.: x ∈ {0, 1}n, with c ∈ Rn,Q ∈ Rn×n.

Each QUBO can be transformed into an Ising model with
Hamiltonian constituted as a summation of weighted tensor

products of Z Pauli operators, i.e., Z = ( 1 0
0 −1

)
, by mapping

the binary variables x to spin variables y ∈ {−1, 1}, i.e.,
x = y+1

2 . In case equality constraints Ax = b are present
in the mathematical programming formulation, a QUBO
can still be devised by adding a quadratic penalization
α‖Ax− b‖2 to the objective function, as a soft constraint in
an augmented Lagrangian fashion [12], [88], [89].
A typical variational approach on quantum devices, such

as VQE [23], would involve the following two key steps
in solving a QUBO, given its Ising Hamiltonian H ∈ Cn×n.
First, one would parameterize the quantum state via a small
set of rotation parameters θ : each state can then be expressed
as |ψ (θ )〉 = U (θ )|0〉, whereU (θ ) is the parameterized quan-
tum circuit applied to the initial state |0〉. The variational
approach would then aim at solving minθ 〈ψ (θ )|H|ψ (θ )〉.
Such optimization can be performed in a setting that uses
a classical computer running an iterative algorithm to select
θ and a quantum computer to compute information about
〈ψ (θ )|H|ψ (θ )〉 for given θ (e.g., its gradient). The algorithm
outline of VQE is reported in Algorithm 1.
Another variational approach on quantum devices is

QAOA [70], which can be seen as a generalization of VQE.
First, one would define rotation parameters θ = [θ1, . . . , θd]
and β = [β1, . . . , βd] together with the Ising Hamiltonian
H ∈ Cn×n, and a mixing Hamiltonian HX ∈ Cn×n defined
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Algorithm 2: Outline of QAOA.
Require: Hamiltonian H, mixer Hamiltonian HX . Set
θ = θ0, β = β0
1: while Error tolerance is unmet: do
2: Quantum part:
• Form variational state |ψ (θ, β )〉 = U (θ, β ) |0〉
• Compute information about

λ = 〈ψ (θ, β )|H|ψ (θ, β )〉
3: Classical part:
• Update θ, β via a classical optimization algorithm

(e.g., COBYLA, SPSA, etc.)
• Compute the error metric

4: end while
5: return λ, θ, β

as a summations of X Pauli operators. Then, one would con-
struct the quantum state as

|ψ (θ, β )〉 = exp(−iβdHX ) exp(−iθdH ) · · ·
exp(−iβ1HX ) exp(−iθ1H ) |0〉 = U (θ, β ) |0〉 .

(17)

The variational approach would then aim at solving
minθ,β〈ψ (θ, β )|H|ψ (θ, β )〉. Such optimization can be per-
formed in a setting that uses a classical computer running an
iterative algorithm to select θ, β, and a quantum computer to
compute information about 〈ψ (θ, β )|H|ψ (θ, β )〉 for given
θ and β (e.g., its gradient). The algorithm outline of QAOA
is reported in Algorithm 2.

E. COMBINATORIAL APPLICATION 1: ACTIVE
INVESTMENT MANAGEMENT AND PORTFOLIO
OPTIMIZATION
To illustrate the VQE and the QAOA in the context of port-
folio optimization, we solve a combinatorial optimization
problem, in which we seek to allocate capital to a subset of
B = 3 assets selected from a larger investment universe with
size n = 6 [87]. In particular, we will solve the combinatorial
problem

min
x∈{0,1}n

qxᵀ�x− μᵀx, subject to: 1ᵀx = B (18)

where we use the following notation.

1) x ∈ {0, 1}n denotes the vector of binary decision vari-
ables, which indicate which assets to pick (xi = 1) and
which not to pick (xi = 0).

2) μ ∈ Rn defines the expected returns for the assets.
3) � ∈ Rn×n specifies the covariances between the

assets.
4) q > 0 controls the risk appetite of the decision maker.
5) and B denotes the budget, i.e. the number of assets to

be selected out of n.

We also assume the following simplifications: 1) all assets
have the same price (normalized to 1); and 2) the full budget
B has to be spent, i.e., one has to select exactly B assets.

TABLE 3. Comparison of the VQE solution, obtained with an Ry
variational form of depth 3, a depth p = 4 QAOA solution, and a
diagonalization of the hamiltonian of the portfolio optimization problem

Assets selected shows the candidate solution where a 1 in
position i indicates that asset i was selected. The energy
is the energy of the selected state, and the probability
shows the likelihood of sampling the selected assets from
the quantum state created by the quantum algorithm.

With these assumptions, the portfolio optimization problem
corresponds to building a portfolio by selecting a subset of
B assets from the available n assets and equally allocating
capital to the B assets. To map the problem (18) to a QUBO,
the equality constraint 1ᵀx = B is mapped to a penalty term
(1ᵀx− B)2, which is scaled by a parameter and subtracted
from the objective function. The resulting problem can be
mapped to a Hamiltonian whose ground state corresponds to
the optimal solution.
We use the state vector simulator in Qiskit Aer [54] as

back-end and compare the results to a diagonalization of the
Ising Hamiltonian, which encodes the portfolio optimization
problem. The VQE and the QAOA both produce variational
states, which, when sampled from, result with high probabil-
ity in an asset selection that respects the budget constraint as
shown by the fact that the three most probable states all select
three assets (see Table 3). Furthermore, the selected states are
either optimal or near optimal as seen by comparing them
with the state resulting from the diagonalization in Table 3.
The probability to sample near-optimal states with QAOA
are lower than for VQE (see Table 3), which may indicate
that deeper QAOA variational forms are needed [90] or that
the COBYLA optimizer we used was trapped in a local mini-
mum [68], [91]. For such a small problem size, the diagonal-
ization runs in less time than simulations of the VQE and the
QAOA. Performing VQE and QAOA on quantum hardware
would require even more time. However, such a classical
brute force approach scales exponentially in the number of
assets, and even for a few tens of assets (n ∼ 30–40), we
expect it not to be a practically viable approach.
In a second example, we optimize the portfolio for differ-

ent values of the risk–return tradeoff parameter qwithout the
budget constraint. We compare solutions obtained with VQE
and solutions obtained from a classical exhaustive search.
The most probable asset selections obtained from the state
of the VQE closely follow the efficient frontier, therefore
maximizing return and minimizing risk (see Fig. 8).
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FIGURE 8. Reconstruction of the efficient frontier using an exhaustive
search with exponential scaling (blue line) and the VQE (green triangles).
Both methods find the optimal portfolios, i.e., which maximize return
and minimize risk, out of the 64 possible asset combinations (black
dots). Both quantum and classical algorithms are run several times with
different risk–return tradeoff values q to find the efficient frontier.

F. COMBINATORIAL APPLICATION 2: PASSIVE
INVESTMENT MANAGEMENT AND PORTFOLIO
DIVERSIFICATION
In passive investment management, one of the main chal-
lenges is to build a diverse portfolio with a relatively small
number of assets that track the dynamics of a portfolio with
a much larger number of assets. This portfolio diversifica-
tion makes it possible to mimic the performance of an index
(or a similarly large set of assets) with a limited budget,
at limited transaction costs. The purchase of all assets in
the index may be impractical for a number of reasons: the
total of even a single round lot per asset may amount to
more than the assets under management, the large scale of
the index-tracking problem with integrality constraints may
render the optimization problem difficult, and the transaction
costs of the frequent rebalancing to adjust the positions to
the weights in the index may render the approach expen-
sive. Thus, a popular approach is to select a portfolio of q
assets that represent the market with n assets, where q is
significantly smaller than n, but where the portfolio replicates
the behavior of the underlying market. To determine how to
group assets into q clusters and how to determine which q
assets should represent, the q clusters amounts to solving a
large-scale optimization problem.
As discussed in [81], we describe a mathematical model

that clusters assets into groups of similar ones and selects
one representative asset from each group to be included in
the index fund portfolio. The model is based on the following
data, which we will discuss in more detail later:

ρi j = similarity between stock i and stock j.

For example, ρii = 1 and ρi j ≤ 1 for i �= j and ρi j is larger
for more similar stocks. An example of this is the correlation
between the returns of stocks i and j. It allows for similarity
measures between time series beyond the covariance matrix.
Consider, for instance, a company listed both in London and

New York. Although both listings should be very similar,
only parts of the time series of the prices of the two listings
will overlap, because of the partial overlap of the times the
markets open. Instead of covariance, one can consider, for
example, dynamic time warping of [92] as a measure of
similarity between two time series, which allows for the fact
that for some time periods, the data are captured by only one
of the time series, while for others, both time series exhibit
the similarity due to the parallel evolution of the stock price.
The problem that we are interested in solving is

(M) f = max
xi j,y j

n∑
i=1

n∑
j=1

ρi jxi j

subject to the clustering constraint
n∑
j=1

y j = q

to consistency constraints
n∑
j=1

xi j = 1 ∀ i = 1, . . . , n

xi j ≤ y j ∀ i = 1, . . . , n; j = 1, . . . , n

x j j = y j ∀ j = 1, . . . , n

and integral constraints

xi j, y j ∈ {0, 1} ∀ i = 1, . . . , n; j = 1, . . . , n.

The variables y j describe which stocks j are in the in-
dex fund (y j = 1 if j is selected in the fund, 0 otherwise).
For each stock i = 1, . . . , n, the variable xi j indicates which
stock j in the index fund is most similar to i (xi j = 1 if j is
the most similar stock in the index fund, 0 otherwise).
The first constraint selects q stocks in the fund. The second

constraint imposes that each stock i has exactly one repre-
sentative stock j in the fund. The third and fourth constraints
guarantee that stock i can be represented by stock j only if
j is in the fund. The objective of the model maximizes the
similarity between the n stocks and their representatives in
the fund. Different cost functions can also be considered.
From (M), one can construct a binary polynomial opti-

mization with equality constraints only, by substituting the
xi j ≤ y j inequality constraints with the equivalent equality
constraints xi j(1 − y j ) = 0. Then, the problem becomes

max
xi j,y j

n∑
i=1

n∑
j=1

ρi jxi j (19a)

s. t.:
n∑
j=1

xi j = 1 ∀ i = 1, . . . , n (19b)

xi j(1 − y j ) = 0 ∀ i = 1, . . . , n

∀ j = 1, . . . , n (19c)

x j j = y j ∀ j = 1, . . . , n. (19d)
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FIGURE 9. Portfolio selection for classical and quantum algorithm. The
stocks are represented in an arbitrary 2-D plane for visualization
purposes. The selected stocks are indicated with red stars, while the
green link indicates the association of the unselected stock to a selected
one. Classical and quantum solution are different but fare very similarly
in terms of benefit.

We can now construct the Ising Hamiltonian (QUBO) by
penalty methods (introducing a penalty coefficient A for each
equality constraint) as

H =
n∑
i=1

n∑
j=1

ρi jxi j+A
⎛
⎝ n∑

j=1

y j−q
⎞
⎠

2

+
n∑
i=1

A

⎛
⎝ n∑

j=1

xi j−1

⎞
⎠

2

+
n∑
j=1

A(x j j − y j )
2 +

n∑
i=1

n∑
j=1

A
(
xi j(1 − y j )

)
. (20)

For the simulation in Qiskit, we use three assets (n = 3)
and two clusters (q = 2); this leads to a 12-qubit Hamilto-
nian. We solve the problem classical with CPLEX and on
the quantum computer with VQE (with depth 7 and full
entanglement).
In Fig. 9, we report the results that we obtain conveniently

(and arbitrarily) displayed in a 2-D graph for visualization
purposes. Solution shows the selected stocks via the stars and
in green the links (via similarities) with other stocks that are
represented in the fund by the linked stock. As we see, both
for classical and quantum, we can find a feasible solution for
our diversification (clustering and selecting two stocks, while
associating the third to a selected one), although the classical
algorithm here finds a slightly better solution (the classi-
cal benefit fares at 2.001, while the quantum one at 2.000).

Algorithm 3: 3-ADMM-H Mixed-Binary Heuristic.
Require: Initial choice of x0, x̄0, y0, λ0. Choice of
�, β, c > 0, tolerance ε > 0, and maximum number of
iterations Kmax.
1: while k < Kmax and ‖A0xk − A1x̄k − yk‖ < ε, do
2: First block update (QUBO) on the quantum

device:

xk = arg minx∈{0,1}n q(x) + c

2
‖Gx− b‖22+

+ λ
ᵀ
k−1A0x+ �

2
‖A0x+ A1x̄k−1 − yk−1‖2

(21)

3: Second block update (Convex) on the classical
device:

x̄k = arg minx̄∈Rm f1(x̄) + λ
ᵀ
k−1A1x̄

+ �

2
‖A0xk + A1x̄− yk−1‖2 (22)

4: Third block update (Convex+quadratic) on the
classical device:

yk = arg miny∈Rn
β

2
‖y‖22

− λ
ᵀ
k−1y+ �

2
‖A0xk + A1x̄k − y‖2

5: Dual variable update on the classical device:
λk = λk−1 + �(A0xk + A1x̄k − yk )

6: Compute merit value:

ηk = q(xk ) + φ(x̄k )+
+ μ(max(g(xk ), 0) + max(l(xk, x̄k ), 0))

(23)

7: end while
8: return xk∗ , x̄k∗ , yk∗ , with k∗ = mink ηk.

This is reasonable for such small problem instance, since the
classical solver can be run to find the exact solution, while
VQE is a heuristic and may find less optimal solutions, but
this might not be the case when the classical solver will not
be able to run at optimality for larger size problems.

G. MULTIBLOCK ADMM HEURISTIC FOR MIXED-BINARY
OPTIMIZATION
We move on to mixed-binary optimization (MBO) formula-
tions. In a general MBO problem, the decision maker faces
binary and continuous decisions, subject to equality and in-
equality constraints. MBO formulations enable to tackle fi-
nance problems, such as the combinatorial auction problem,
which is the scope of Section IV-H.
In order to introduce solvers for MBO, we consider the

following reference MBO problem (P):

min
x∈X ,u∈U⊆Rl

q(x) + ϕ(u) (24a)
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FIGURE 10. Illustration diagram of the 3-ADMM-Happroach. There are two nested loops for the selected implementation, specifically the outer ADMM
loop and the inner VQE loop (Note that VQE can be substituted via QAOA seamlessly).

s.t. : Gx = b, g(x) ≤ 0 (24b)

�(x, u) ≤ 0 (24c)

with the corresponding functional assumptions.
Assumption 1: The following assumptions hold.

1) Function q : Rn → R is quadratic, i.e., q(x) =
xᵀQx+ aᵀx for a given symmetric squared matrix
Q ∈ Rn × Rn,Q = Qᵀ, and vector a ∈ Rn.

2) The set X = {0, 1}n = {x(i)(1 − x(i) ) = 0,∀i}
enforces the binary constraints.

3) Matrix G ∈ Rn × Rn′
, vector b ∈ Rn′

, and function g :
Rn → R is convex.

4) Function ϕ : Rl → R is convex and U is a convex set.
5) Function � : Rn × Rl → R is jointly convex in

x and u.

In order to solveMBO problems, Gambella and Simonetto
[11] proposed heuristics for (P) based on the ADMM [93].
ADMM is an operator-splitting algorithm with a long history
in convex optimization, and it is known to have residual, ob-
jective, and dual variable convergence properties, provided
that convexity assumptions hold [93].
The method of [11] (referred to as 3-ADMM-H, and dis-

played in Fig. 10) leverages the ADMM operator-splitting
procedure to devise a decomposition for certain classes of
MBOs into:

1) a QUBO subproblem to be solved by on the quan-
tum device via variational algorithms, such as VQE or
QAOA, described in Section IV-D;

2) a continuous convex constrained subproblem, which
can be efficiently solved with classical optimization
solvers [80].

Algorithm 3 reports the 3-ADMM-H algorithm, along
with stopping criteria and evaluation metrics. A comprehen-
sive discussion on the conditions for convergence, feasibility,
and optimality of 3-ADMM-H is out of the scope of this
article and can be found in [11]. Combinatorial auction (A)
belongs to the class of MBOs represented by (P) and can
be solved by 3-ADMM-H. Simulations on representative in-
stances are conducted in Section IV-H.

H. COMBINATORIAL APPLICATION 3: AUCTIONS
Both governments and private issuers finance its activities,
in part, by the sale of marketable securities. The issuer often
uses an auction process to sell such marketable securities and
determine their parameters (such as yield). For example, the
United States treasury issued over $10T (ten trillion U.S. dol-
lars) in securities in 2018. Many further auction mechanisms
abound in electrical energy markets, pollution management,
and within airport operations (airport landing slots). Some
of these auctions may be combinatorial, in the sense that the
value that a bidder has for a set of items may not be the sum
of the values that he has for individual items. It may be more
or it may be less.
Combinatorial auctions allow the bidders to submit bids

on subsets (combinations) of items. Specifically, let M =
{1, 2, . . . ,m} be the set of items that the auctioneer has
to sell. A bid is a pair Bj = (S j, p j ) where S j ⊆ M is
a nonempty set of items and p j is the price offer for
this set. Suppose that the auctioneer has received n bids
B1,B2, . . . ,Bn. How should the auctioneer determine the
winners in order to maximize his revenue? This can be
formulated as an integer program. To render the problem
a bit more interesting, we consider the case in which (as
in some auctions) there are multiple indistinguishable units
of each item for sale. A bid in this setting is defined as
Bj = (λ j1, λ

j
2, . . . , λ

j
m; p j ), where λ ji is the desired number

of units of item i and p j is the price offer. Let x j be a binary
variable that takes the value 1 if bid Bj wins, and 0 if it loses.
The auctioneer maximizes his revenue by solving the integer
program (A)

max
x j

n∑
j=1

p jx j (25)

s.t.:
∑
j:i∈S j

λ
j
i x j ≤ ui, for i = 1, . . . ,m (26)

x j ∈ {0, 1}, for j = 1, . . . , n (27)

where ui is the number of units of item i for sale [81].
The presence of inequality constraints (26) makes a re-

formulation of (A) into a QUBO not possible; hence, the
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VQE algorithm described in Section IV-D is not directly
applicable. We here report results obtained by solving (A)
with the 3-ADMM-H heuristic described in Section IV-G.
For simulation purposes, an instance with m = 3 items

and n = 16 bids with randomly generated profits has been
created. For each item, six units are available. The number
of units of the items in each bid has been randomly sam-
pled from the interval [1, 6]. This means that not all bids
are necessarily feasible if more than one object is in the
bid. Because the decision of accepting a bid j is a binary
decision x j, the number of bids is the number of qubits
the algorithm 3-ADMM-H necessitates. The optimal solu-
tion, found by solving Problem (A) via the classical opti-
mization solver IBM ILOG CPLEX, consists of accepting
bids B0 = {0},B1 = {1},B4 = {1, 2} with a profit of 24. The
3-ADMM-H algorithm has been tested on the instance by
choosing VQE as quantum solver in Qiskit Aqua and Con-
strained Optimization By Linear Approximation (COBYLA)
[94] as classical VQE optimizer with 20maximum iterations.
The qasm_simulator has been used as Qiskit Aer back-
end for the simulations on quantum devices. The ADMM
parameters ρ and β have been set to 12 and 11, respectively:
this is to leverage the convergence properties described in
[11] for ρ > β. When run on classical devices, the first block
update is performed with the CPLEX solver.
The 3-ADMM-H solution with CPLEX as QUBO solver

is B1 = {1},B3 = {0, 2},B4 = {1, 2}, with a profit of 27,
and a violation of constraints (26) of 2. Setting VQE as
QUBO solver makes 3-ADMM-H converge to the same so-
lution in 43 iterations. The residuals rk = A0xk − A1x̄k − yk
are reported for the classical and quantum simulations, in
Fig. 11(a) and (b). Residuals are not guaranteed to decrease
in each 3-ADMM-H iteration. The convergence guarantees
of 3-ADMM-H are not valid for inexact QUBO solvers, such
as the currently available quantum algorithms. However, the
convergence curves show that 3-ADMM-H terminates in a
finite number of iterations, even when the QUBO solver is
inexact. Hence, 3-ADMM-H exhibits a certain degree of tol-
erance to inexact computations. This corroborates the empir-
ical findings of [11] on packing problems.
The 3-ADMM-H algorithm proposes a decomposition of

an MBO problem, in which the most computationally de-
manding part is solving the QUBO subproblem (21). The ad-
vantage of using 3-ADMM-H algorithm over classical opti-
mization solvers, such as CPLEX, lies in leveraging quantum
algorithm to tackle QUBO subproblems.

V. MACHINE LEARNING
Finally, in this section, we discussML problems where quan-
tum algorithms may demonstrate an advantage.
ML focuses on finding relations in data and building as-

sumptions around them for the following: 1) prediction by
anticipating future events from historic data; or to 2) classify
data by dividing an end result into different categories; or 3)
to find patterns by the discovery of regularities or anomalies
in data. In finance, such approaches are important in many

FIGURE 11. Convergence of the residuals for 3-ADMM-H algorithm, in
the classical (a) and quantum (b) simulations. The simulation with
quantum QUBO solver shows that, even with an inexact QUBO solver,
3-ADMM-H can reach convergence in a finite, and relatively low, number
of iterations.

financial problems that deal with uncertainty in the future
evolution of asset prices and risk. For example, the invest-
mentmanagement strategies and optimization in the previous
section make use of the estimation of future risks and asset
prices that can be obtained from the output ofML algorithms.
Banks can estimate the risk level of their customers’ loans
by credit scoring, which can be formulated as classification
[95] and/or regression problem based on the rich features of
customers, such as age, salary, historical payment, micro-
and macroeconomic indicators, and so on. Financial insti-
tutions can also detect frauds by finding patterns that devi-
ates greatly from normal behavior by classification and/or
anomaly detection [96], [97]. Such ML tasks are known to
face the curse of dimensionality as there are much more
features available to model customers. Principal component
analysis and variational autoencoder [98] are some of the
popular methods for dimensionality reduction when dealing
with high-dimensional features.
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To summarize ML problems at each stage of the customer
life cycle (see Fig. 3):

1) Customer Identification (and Scoring): Refine cus-
tomer rating and segmentation to improve know your
customer (KYC) and avoid noncompliance annual
penalties, which have grown to $8.3 Million annually
by 2018 [99].

2) Financial Products: Increase credit scoring realism to
improve customer targeting and align product offering.
a) Avoid NPL costs that are still increasing in many

European economies [100].
b) Increase customer interaction with the bank re-

sulting in more profits.
c) Improve recommendation techniques to target

customers prone to accept them.
3) Monitor Transactions: Improve suspicious transaction

signals to decrease false alerts, that today cost $4 tril-
lion due to 75–90% false positives in anti money laun-
dering (AML) and credit card fraud alerts.

4) Customer Retention: Maximize engagement to avoid
customer churn rates to new entrants, 25% of small-
medium business (SMB) are turning to FinTech com-
panies for ease and speed of completing loan applica-
tions [101].

Overall, AI and ML are of deep interest for financial in-
stitutions, with a current global spending in the banking in-
dustry worth of $3.3 billion in 2018 [102] with the hopes to
build better classification models that will improve customer
service in external facing and internal activities. The Inter-
national Data Corporation reported that of global spending
on AI worth $50.1 Billion in 2020, which is expected to
double in four years, banking is one of the largest industries
spending the most in AI/ML solutions for fraud analysis,
investigation, program advisors, and recommendation sys-
tems [103].
In the following, we discuss how quantum-enhanced fea-

ture space can be used in a simple task of binary classification
that can be applied to financial applications, such as fraud
detection (for transaction monitoring) and credit risk scor-
ing (for customer identification). There are many other tasks
addressable by quantum ML techniques (see, e.g., [3] and
[104]) for more tasks and applicable quantum techniques.We
focus on supervised learning using support vector machine
(SVM): We have access to labeled training data S to classify
test data T and labels of unseen future data (with assumption
that all data come from the same underlying distribution).
Assume that we are given the training data S =

{(x1, y1), (x2, y2), . . . , (xmS , ymS )}, where each xi ∈ Rd and
yi ∈ {−1, 1}. The goal of learning a binary classifier from S is
to construct a function f (x) so that f (x)yi > 0. The simplest
form of such function is a linear classifier f (x) = wᵀx+ b,
where (w, b) ∈ Rd+1. S is called linearly separable if there
is a (w, b) ∈ Rd+1 satisfying f (x)yi > 0. Such function, if
exists, can be found by solving an optimization problem
known as Hard-SVM.

In general, the dataset may not be linearly separable. In
such a case, we can still find a classifier that predicts the
training dataset with some error margin. The formulation is
known as Soft-SVM, as shown below, and can be solved
efficiently by techniques such as stochastic gradient descent
(SGD)

(w0, b0) = arg min
(w,b)

‖w‖2 +C
mS∑
i=1

εi

subject to : y j (w
ᵀx j + b) ≥ 1 − ε j for j ∈ [mS]

ε j ≥ 0 for j ∈ [mS].

The slack variables {εi} determine the quality of the clas-
sifier: the closer they are to zero, the better the classifier.
For this purpose, we can embed the data {x j} into a larger
space by preprocessing the data, namely, by finding a map
x : 
(x) ∈ Rn for n > d. The classifier f (x) is now defined
as f (x) = wᵀ
(x) + b. When 
(x) is an embedding of
data nonlinearly to quantum state |
(x)〉, then we can use
quantum-enhanced feature space for the classifier. There are
two techniques to construct such a quantum-enhanced fea-
ture space that may lead to a quantum advantage: variational
quantum classification (VQC) and quantum kernel estima-
tion (QKE).
The VQC is similar to SGD for finding the best hyperplane

(w, b) that linearly separates the embedded data. At VQC,
the data x ∈ Rd are mapped to (pure) quantum state by the
feature map circuitU
(x) that realizes 
(x). This means that
conditioned on the data x, we apply the circuit U
(x) to the
n-qubit all-zero state |0n〉 to obtain the quantum state |
(x)〉.
A short-depth quantum circuit W (θ ) is then applied to the
quantum state, where θ is the hyperparameter set of the quan-
tum circuit that can be learned from the training data. Finding
the circuitW (θ ) is akin to finding the separating hyperplane
(w, b) in the Hard-SVM and Soft-SVM, with the path to
quantum advantage stemming from the fact that there is no
efficient classical procedure to realize the feature map 
(x).
While the size of the hyperparameter set θ is polynomial
in the number of qubits and can be tuned with variational
methods similar to Algorithms 1 and 2, it controls an expo-
nentially large space of the feature map. The binary decision
is obtained by measuring the quantum state in the compu-
tational basis to obtain z ∈ {0, 1}n and linearly combining
the measurement results, say with g= ∑

z∈{0,1}n g(z)|z〉〈z|,
where g(·) ∈ {−1, 1}.

A quantum circuit that realizes the quantum feature map,
as well as the variational classifier is shown in Fig. 12. We
can see that the probability of observing z is given as

|〈z|W (θ ) |
(x)〉|2 = 〈
(x)|W †(θ ) |z〉〈z|W (θ )|
(x)〉.
By linear combination of the measurement results z with g,
we can obtain the function f (x) as follows, which resembles
the linear classifier f (x) = wᵀ
(x) + b

f (x) = 〈
(x)|W †(θ )gW (θ )|
(x)〉 + b.
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FIGURE 12. Quantum circuit for VQC that consists of fixed quantum
feature mapping U�(x) and the separator W (θ) trained with variational
methods.

The predicted label of f (x) is then simply its sign. The hy-
perplane (w, b) is now parameterized by θ . The ith element
of w(θ ) is wi(θ ) = tr(W †(θ )gW (θ )Pi), where Pi is a diag-
onal matrix whose elements are all zeros except at the ith
row and column which is 1, and the ith element of 
(x) is

i(x) = 〈
(x)|Pi|
(x)〉.

Learning the best θ can be obtained by minimizing
the empirical risk R(θ ) with regard to the training data
S = {(x1, y1), (x2, y2), . . . , (xmS , ymS )}. Namely, the empiri-
cal risk (or, cost function) to be minimized is

R(θ ) = 1

|S|
∑
i∈[mS]

| f (xi) − yi| . (28)

The above empirical risk can then be approximated with a
continuous function using sigmoid function, as detailed in
[25]. This enables applying variational methods as in Algo-
rithms 1 and 2 with SGD algorithms (such as COBYLA or
SPSA) for tuning θ to minimize the cost function.

The binary classification with VQC now follows from first
training the classifier to learn the best θ∗, that minimizes
the empirical risk R(θ ), to obtain (w(θ∗), b∗). This can be
done with Algorithm 1 with the Hamiltonian replaced by
the empirical risk. The classification against unseen data x
is then performed according to the classifier function f (x)
with (w(θ∗), b∗). Both training and classification need to be
repeated for multiple times (or shots) due to the probabilistic
nature of quantum computation. The former may need sig-
nificant number of shots proportional to the size of S, but
it can be performed in batch offline. On the other hand, the
latter needsmuch less number of shots andmay be performed
online (or, near real time) as long as the quantum feature map
for nonlinear embedding can be computed efficiently.
In the conventional SVM, there are many known methods

of nonlinear embedding of data x : 
(x) ∈ Rn for n > d,
such as Polynomial-SVMs. For example, in a Polynomial-
SVM, the 2-D data (x1, x2) can be embedded into a 3-D
(z1, z2, z3) such that z1 = x21, z2 = √

2x1x2, and z3 = x22. On
the other hand, in the quantum-enhanced SVM, the embed-
ding of data to n-qubit feature space can be performed by
applying the unitary U
(x) = U
(x)H⊗nU
(x)H⊗n, where H
is the Hadamard gate, and U
(x) denotes a diagonal gate in

the Pauli-Z basis as follows:

U
(x) = exp

⎛
⎝i ∑

S⊆[n]

φS(x)
∏
k∈S

Zk

⎞
⎠ (29)

where the coefficients φS(x) ∈ R are fixed to encode the
data x. For example, for n = d = 2 qubits, φi(x) = xi and
φ1,2(x) = (π − x1)(π − x2) were used in [25]. In general,
the U
(x) can be any diagonal unitary that can be imple-
mented efficiently with short-depth quantum circuits. In to-
tal, one needs at least n ≥ d qubits to construct such a
quantum-enhanced feature map. There are other proposed
methods promising quantum advantage for nonlinear embed-
ding of data into quantum feature space, such as squeezing
in continuous quantum systems [105] that guarantees linear
separability or amplitude encoding [106] that can exploit
tensorial feature map or density-operator encoding [107]. A
recent paper studies the embedding in the context of metric
learning [108].
Classification models in real-world datasets often also de-

pend on binary features, such as gender and yes–no answers
to questions, in addition to (discrete) categorical and qual-
itative features, such as zip code, age, and color. Such dis-
crete features have to be encoded into continuous features
before they can be used effectively in ML models that rely
on continuity of their inputs, such as VQCs. There have been
many proposed encodings, with one-hot encoding as one of
the most populars, for such purposes [109]. It is known that
the encodings can heavily impact the performance of the
learning models. Efficient mapping of such discrete features
into quantum-enhanced feature space is very important in
finance models with structured data. A recent study [110]
reports the possibility of using quantum random access cod-
ing (QRAC) [111] to map discrete features into the quantum-
enhanced feature space resulting in faster training and better
classification accuracy due to using less number of qubits
and hence less hyperparameters in the VQC models. The
idea is to split the encoding of x into that for the discrete
and continuous parts, each represented as x(b) and x(r). The
discrete parts x(b) are obtained from the encoding of categor-
ical features into binary strings using determined techniques
such as one-hot encoding or into integer numbers for ordinal
features. Fig. 13 depicts a VQC with QRAC for encoding
discrete features.
In particular, let us consider the case of classifying credit

card transactions into fraudulent or not from a synthesized
dataset from [112], which was generated with state machines
in simulated world to be representative for the U.S. cus-
tomers. For our purpose, the synthesized credit card trans-
action data were prepared to contain 100 records of purchase
transactions. The ith transaction xi contains the transaction
time, the transaction amount, the transaction method, the
transaction location (in ZIP code), and the Merchant Cate-
gory Code (MCC). The first two are in real numbers, and
the rest are categorical; there are three types of transaction
methods, ten different locations, and ten different MCCs.
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TABLE 4. Average and standard deviation of accuracy of classifiers on fivefold cross validations of the synthetic credit-card transaction dataset

LR, SVC1, and SVC2, are, respectively, the logistic regression, the SVC with linear, and RBF kernel. VQC and
VQCwQRAC are quantum-enhanced SVMs with the latter using QRAC for encoding the transaction method.

FIGURE 13. Quantum circuits for variational quantum classifier with
QRAC for encoding discrete features. Latent qubits may be included to
add the dimension of the embedding in the Hilbert space.

FIGURE 14. Comparison of the training loss of VQC against that with
QRAC (VQCwQRAC) for encoding discrete features on a synthetic
credit-card transaction dataset.

Each ith transaction is labeled as either fraudulent (yi = −1)
or normal (yi = 1). A similar study on the same dataset has
also been carried out using variational quantum Boltzmann
machines, an alternative approach to VQC or QKE, and we
refer to [113] for more details.
We applied the VQC as in Fig. 12 by regarding all fea-

tures as real values to use the feature mapping in (29) with
second-order expansion. On the other hand, we applied the
VQC as in Fig. 13 by the QRAC of the one-hot encoding of
the transaction method, and the rest similar to the VQC. The
latter is denoted as VQCwQRAC. Both models used 5 qubits
and were trained with variational circuitsW (θ ) defining the
separating hyperplanes that consist of the RXRY variational
gates and one layer of fully connected entangler as imple-
mented in Qiskit [54]. Both classification models were run
on qiskit simulators and tested with fivefold cross validation
of the dataset. The average training losses, where (28) is

approximated with the cross entropy, are shown in Fig. 14.
We can see that usingQRAC for encoding binary features can
result in better training losses. The accuracy of VQCwQRAC
is better than the VQC using real-valued quantum feature
mapping, as shown in Table 4, and is comparable to sup-
port vector classifier with radial basis function (RBF) kernel
(SVC2 in the table).
Finally, we note that the possible quantum advantage for

ML task is somewhat speculative; there is no known theo-
retical proof that the quantum feature map, which is hard to
compute classically, can result in better accuracy than any
classical classifiers. Also, the underlying variational meth-
ods, as in Algorithms 1 and 2, are heuristics that may only
find local optima instead of the global one and thus can lower
the accuracy of the resulting quantum-enhanced SVM.

VI. TECHNICAL CHALLENGES IN QUANTUM
COMPUTING
In the following section, we outline some of the technical
challenges to address when solving computationally chal-
lenging problems on a quantum computer.

A. LOADING DATA
To understand constraints on quantum computing both near
term and long term, it may be useful to contrast quantum
computers against classical computers. Classical computing
utilizes the well-known von Neumann model: there is a cen-
tral processing unit (CPU), which performs nonreversible
computation, including branching, and this is connected by a
system bus to volatile memory (RAM) and nonvolatile mem-
ory (such as a hard drive). Loading data from the nonvolatile
memory to RAM and accessing the data in RAM from the
CPU is taken for granted. In contrast, there are no quantum
(memory) hard drives at the current level of hardware tech-
nology; most blueprints do not involve any RAM, and all of
the computations are reversible without branching (excepting
postselection).
The key difference lies in the time complexity of “loading

data.” A quantum state can be seen as a volatile memory of
substantial capacity, but with nontrivial issues in addressing
it. With k qubits, we work with 2k × 2k density matrices,2 but
working with these matrices is limited to a certain set of one-
and two-qubit gates (unitary matrices applied to the quantum
state). The quantum circuit complexity of state preparation,

2A density matrix is a representation of a quantum state. A density matrix
can represent both pure states (i.e., states represented by a state vector |ψ〉)
and mixed quantum states (i.e., a statistical ensemble of pure states).
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i.e., minimum number of gates required in order to “load” a
given arbitrary quantum stateU using any sequence of one-
and two-qubit gates, is greater or equal than 4k for almost all
U . Note that this is not a worst-case result: this holds generi-
cally for all states and it applies to the best possible sequence
of one- and two-qubit gates. Consider a dimension-counting
argument. There are also explicit constructions showing that
this is tight.
While this means theoretically that a 4k-dimensional state

can be prepared into a quantum machine having k qubits via
a quantum loader having O(4k ) circuit complexity—which
is linear in the data dimension—it is also exponential in
the number of qubits k. Whereas in classical computing, we
usually assume that we can load the data in time linear in
the number of bits and then worry about the runtime (circuit
complexity of processing) on the loaded data, in quantum
computing, preparation of a quantum state may require a
quantum circuit complexity exponential in the number of
qubits. The complexity of generic state preparation can im-
pede a potential quantum advantage, as the loading time
may eclipse coherence times for the physical quantum state
and also for some algorithms, loading the data can become
computationally as expensive as using a classical algorithm
to solve the problem [114].
There are multiple ways of circumventing this issue. One

is to allow j-qubit gates, where j may grow with k, which
poses a major challenge in quantum optimal control. One is
to “split” the state preparation into an independent system,
such as circuitry of some potential qRAM [115], and utilize
quantum optimal control there, perhaps across all of the k
qubits. Given the (quantum circuit complexity) equivalence
[116] of state preparation and an arbitrary circuit, it seems
unlikely that it would be possible to implement one way of
circumventing the quantum circuit complexity without be-
ing able to implement the other, and without being able to
utilize the same quantum optimal control in the execution of
the quantum circuit. Indeed, it is believed that the physical
realization of qRAMmodel may be even much more difficult
than the fault-tolerant quantum computers [104], [114].
In some cases, the problem can also be circumvented be-

cause the data to be loaded have structure or properties that
can be exploited for efficient loading, e.g., if the data can
be described by a log-concave probability distribution [51].
Alternatively, and depending on the application, we may
drop the goal of loading the data exactly and try to prepare
a quantum state that, at least, is close to our original data.
This enables approximate data loading schemes, which have
some potential to work around this problem [57]. It is also
possible to exploit periodic properties in certain datasets, for
example, time-series data, which exhibit periodic properties.
By extracting periods in the data via classical techniques such
as fast Fourier transform, we may then load only the domi-
nant periods via a small number of steps onto the quantum
machine and then recover an approximation of the original
data in the quantum machine via a QFFT−1 algorithm.

B. QUANTUM ERROR CORRECTION
As has been suggested in Section I, a key watershed between
noisy quantum computers and universal fault-tolerant quan-
tum computers is the availability of QEC.
The key technical challenge within QEC is the tradeoff

between the overhead of the QEC and the so-called error
threshold. The overhead is, essentially, the number of phys-
ical qubits required to protect a certain number of logical
qubits against errors. The error threshold comes from the fa-
mous (quantum) threshold theorem [17], [18], which shows
that if the errors on individual qubits are not correlated and
the error of the physical qubits falls below a certain threshold,
QEC schemes can correct the remainder of the error, at a
cost of the overhead. Actually, the dissertation of Gottesman
[17] shows that there is a simple construction, starting with
classical error correcting codes, which makes it possible to
estimate the threshold. For one of the best-known classes of
QEC, it is sometimes assumed [19] that a 0.1% probability of
a depolarizing error would require more than 1000 physical
qubits per protected qubit—although the details of the calcu-
lation are also often disputed. There is a substantial interest
in further classes of QEC (e.g., hyperbolic surface codes),
which could perform substantially better.
For the same QEC mentioned above [19], one should no-

tice that there need not be a substantial increase in the depth
of the circuit: for gates within the Clifford algebra, which
includes the Hadamard gate (H), controlled not (CNOT), and
S = diag(1, eiπ/2), we can apply the gate to all the physical
qubits in order to apply the same gate to the protected qubit.
The increase in depth of the circuit is hence only due to gates
outside of the Clifford algebra.
In Section III, we showed that AE can replace MC-based

simulations. The resulting quantum circuits are too deep
for quantum computers without error correction due to the
controlled Q2 j operators (see Fig. 4). We, therefore, antic-
ipate that AE-based applications will require fault-tolerant
quantum computers. By contrast, the optimization and ML
applications discussed in Sections IV and V that are based
on variational quantum circuits as in the VQE and the QAOA
could be executed on near-term noisy quantum computers.
However, these heuristic algorithms do not provide a theoret-
ical guarantee as does AE. Further research is thus needed to
fully understand under what conditions they will outperform
their classical counterparts.

C. PRECISION AND SAMPLE COMPLEXITY
Generally, the higher probability of outputting the correct
answer is required, the more “shots,” or repetitions of the
execution of quantum circuit followed by measurement, are
needed. In some cases (e.g., HHL), because the solution is
encoded in the probability amplitudes of the quantum states,
one may need to perform quantum state tomography to ob-
tain the complete solution. The quantum state tomography
requires an exponential number of shots in the number of
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TABLE 5. Algorithms can improve computational efficiency, accuracy, and addressability for defined use case

qubits involved and, hence, can diminish the exponential
advantages of the subroutines. In many algorithms, the error
also depends on the number of qubits used in the output
register.
For example, for the phase estimation mentioned in Sec-

tion III-A, the probability of not determining phase angle to
an accuracy of s bits, i.e., up to error 2−s, using s+ p qubits
for the output is

ε(s, p) = 1 − 1

22(p+s)−2

2p−1∑
l=1

1

1 − cos π (2l−1)
2p+s

. (30)

While the expression may be difficult to read, it is essen-
tially positive, in that it suggests that the error rate decays
exponentially with the extra p qubits. Especially, when many
instances of phase estimation are used sequentially, the error
propagation may still be a cause for concern, though, and
it may get progressively more difficult to analyze the error.
Still, estimates of forward error of more complex algorithms
[117] are available.

VII. CONCLUSION
There are a number of computationally challenging problems
in financial services that are demanding in terms of required
precision or runtime. For these, we have outlined three prob-
lem classes.

1) One class are optimization problems that scale expo-
nentially limiting their resolution in a given time frame.
The holistic problem-solving approach to optimization
problems of quantum computers raises the potential to
find better solutions in a smaller number of steps.

2) A second class areML problems, where one faces com-
plex data structures that hinder classification or pre-
diction accuracy. The multidimensional data modeling
capacity of quantum computers may allow us to find
better patterns, with increasing accuracy.

3) A third class are simulation problems, where there are
time limits to perform sufficient scenario tests to find
the best potential solution. Efficient sampling methods
leveraging quantum computers may require less sam-
ples to reach a more accurate solution faster.

TABLE 6. Financial services focus areas and algorithms

For each of them, we have introduced quantum algorithms,
which can be applied to specific problems in there. Table 5
summarizes the quantum algorithms introduced, their appli-
cability for the three problem classes, and their advantages
and challenges. In addition, for the three initial focus areas
in financial services, asset management, investment banking,
retail and corporate banking, example problems, and appli-
cable quantum algorithms are summarized in Table 6.
Quantum computers and the algorithms that leverage them

may help to solve hurdles and challenges arising in the finan-
cial industry given increasing demand for more sophisticated
risk analysis, dynamic client management, constant updates
to market volatility, and faster transaction speeds.
Finally, we have also demonstrated the performance of

quantum algorithms on IBM Quantum back-ends for three
specific applications. In general, simulation, optimization,
and ML are among the areas where we may demonstrate an
advantage of quantum computing over classical computing
for certain applications first.
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