
Using Structural Bootstrapping for Object Substitution in Robotic
Executions of Human-like Manipulation Tasks

Alejandro Agostini1, Mohamad Javad Aein1, Sandor Szedmak2, Eren Erdal Aksoy1,
Justus Piater2, and Florentin Wörgötter1

Abstract— In this work we address the problem of finding re-
placements of missing objects that are needed for the execution
of human-like manipulation tasks. This is a usual problem that
is easily solved by humans provided their natural knowledge to
find object substitutions: using a knife as a screwdriver or
a book as a cutting board. On the other hand, in robotic
applications, objects required in the task should be included
in advance in the problem definition. If any of these objects
is missing from the scenario, the conventional approach is
to manually redefine the problem according to the available
objects in the scene. In this work we propose an automatic way
of finding object substitutions for the execution of manipulation
tasks. The approach uses a logic-based planner to generate a
plan from a prototypical problem definition and searches for
replacements in the scene when some of the objects involved
in the plan are missing. This is done by means of a repository
of objects and attributes with roles, which is used to identify
the affordances of the unknown objects in the scene. Planning
actions are grounded using a novel approach that encodes the
semantic structure of manipulation actions. The system was
evaluated in a KUKA arm platform for the task of preparing
a salad with successful results.

I. INTRODUCTION

In the last decades efforts have been made towards the
development of a service robot capable of executing human-
like tasks [3], [2]. Robots are now capable of manipulating
different objects found in human environments that, com-
bined with AI techniques for reasoning and planning [11],
allows them to execute basic human-like manipulation tasks.
The declarative, human-like notation used by AI planning
techniques permits to easily transform a set of instructions
for executing simple human-like tasks into a problem defi-
nition for planning. With this, it is possible to have a large
number of precoded problem definitions for a wide spectrum
of human-like tasks. For example, we can have problem
definitions for each of the recipes of a cookbook.

Provided a specific task, the robot can simply take the
corresponding domain definition and generate a plan for
completing the task. However, it may happen that some of the
objects considered in the plan are not present in the current
scenario, preventing its execution. The usual approach under
this circumstance is to manually redefine the problem with

*The research leading to these results has received funding from the Eu-
ropean Community, Seventh Framework Programme FP7/2007-2013 (Spe-
cific Programme Cooperation, Theme 3, Information and Communication
Technologies) under grant agreement no. 270273, Xperience.

1Third Institute of Physics & BCCN, University of Göttingen.
{aagosti,maein,eaksoy,worgott}@gwdg.de

2Intelligent and Interactive Systems, ICS, University of Innsbruck.
{Sandor.Szedmak,Justus.Piater}@uibk.ac.at

objects that can replace the missing ones, which are present
in the current scenario and can be employed instead of the
missing ones. However, this strategy is limited since it only
solves the problem for the current scenario and might not be
widespread to others.

In this work we propose a planning architecture that uses a
logic-based planner to generate a plan based on a prototypical
problem definition and to automatically find replacements for
missing objects without the need of a manual redefinition of
the problem. The object replacement strategy is based on the
concept of structural bootstrapping [6]. In brief, structural
bootstrapping is a method derived from child language ac-
quisition research and consists of transferring the knowledge
about known objects and actions to unknown ones, leading
to the creation of generative models able to perform large
generalization of knowledge. We use this concept to search
for substitutions of objects that are involved in a plan but
are missing in the scene. The basic idea behind this is that
the replacement should have the same affordances than the
missing object for the task at hand, e.g. a knife could be
replaced by a cleaver for a cutting action. In our architecture,
the affordances of evaluated objects are extracted from a
repository of objects and attributes with roles (ROAR) [23].
This repository acts as an intelligent database, where objects
can be retrieved by their affordances and the affordances of
novel objects can be inferred.

The concept of combining database techniques with arti-
ficial intelligence to improve the performance of robots has
been discussed since the dawn of computers [18]. Some of
the most recently developed systems similar to ROAR can be
found in [22], [20]. Since the ROAR system is built around
a broadly used professional open source database system
(Postgresql) the required software engineering implementing
the connections, the concurrence of the data retrieval and
updates could be reduced to minimum. This kind of universal
approach can connect working robots world wide and allows
us to build an intelligent community via propagation of the
locally collected knowledge with only moderate efforts.

The proposed architecture integrates the planning and
object replacement mechanisms with a novel approach for
the grounding of planning actions in the execution of the
plan. The approach consists of an action library coding in an
abstract semantic way the most relevant events taking place
during the manipulation of objects. There exists a large cor-
pus of work in action planning and execution [12], [24], [14],
[8]. Two major branches emerge in the execution of actions,
one at the trajectory level [12] and the other at the symbolic

level [9]. Trajectory based approaches [16], [14], [8], [12]
can encode different complicated actions in a great detail,
but it is difficult to use them in a “more cognitive sense”. On
the other hand, high level symbolic representations [4], [17],
[10] allow for generalization and planning of various action
sequences. Alternative methods, such as in [15], describe a
syntactic approach for learning robot imitation by capturing
underlying task structures in the form of probabilistic activity
grammars. These approaches give compact descriptions of
complex tasks, but they do not consider execution-relevant
motion parameter (trajectories, poses, forces) in great detail.
In this work, our action grounding approach is based on
the concept of Semantic Event Chains (SECs) introduced
in [5]. SECs are generic action descriptors that capture the
underlying spatiotemporal structure of continuous actions by
sampling only decisive key temporal points derived from the
spatial interactions between hands and objects in the scene.
The SEC representation is invariant to large variations in
trajectory, velocity, object type, and pose used in the action.

Many times trajectory-level descriptions of actions, object
properties, and high-level goals of the manipulation are
brought together through STRIPS-like planning [9], result-
ing in operational although not very transparent systems.
The approach in [4] attempts to integrate symbolic action
representation and planner with motor skill learner. The
robot learns the goal of the human demonstrated actions by
using the Visuospatial Skill Learning (VSL) method which
produces symbolic predicates. Such predicates are directly
fed to a standard planner to encode skills in a discrete
symbolic form. The proposed framework also considers the
sensorimotor skills, such as the followed trajectory informa-
tion from the observed action. In contrast to the work in [4],
we do not require an additional symbolic planner for the
grounding of actions since SECs provide an observable state
sequence which substitutes the symbolic planner. Unlike our
framework, such approaches are also not evaluated on long
and complex human manipulation actions.

II. PLANNING ARCHITECTURE

Figure 1 shows the general diagram of the architecture.
First, a plan is generated from a prototypical problem def-
inition. Once the plan is generated, the robot checks if all
the required objects are in the scenario. If there are missing
objects, the robot connects to ROAR to find out which of the
existing objects have the same affordances of the missing
ones. If replacements are found, the plan is updated and
executed.

In the following sections we introduce the notation and
the basic components of the architecture. We first introduce
the elements for planning. Then, we present ROAR, the
repository from which the affordances of candidate objects
are extracted. Finally, we introduce the action library used
to ground actions for the actual plan execution.

A. Planning Elements

We assume that there is a finite (or countably infinite) set
of states S and a finite (or countably infinite) set of actions

Fig. 1. General diagram of the planning architecture with object replace-
ment.

A . A state s is described using a set of predicates, {di}, each
of them describing properties of objects or relations between
them. Predicates are logic formulas that map the object space
into true or false values. For instance, a predicate describing
that a cup is on the table could be ontable(cup) and one
indicating that the hand of the robot is empty could simply
be empty(hand). An action a is also described declaratively
and may take arguments representing the objects on which
the action is applied and other parameters for the action.
For example, to instruct the robot to cut a cucumber on a
cutting board with a knife, the action could be coded as
cut(cucumber,kni f e,board). Other possible actions could be
pick place(cup, table,board), to pick and place a cup from
a table to a board, or move(box,room1,room2), to move a
box from room 1 to room 2.

In logic-based planning [11], the planner receives the
description of the initial state, sini, and a goal description,
g, consisting of a set of grounded predicates that should
be observed after plan execution. With these elements, the
planner searches for sequences of actions that would permit
producing changes in sini necessary to obtain the goal g.
This search is carried out using a set of planning operators,
R, each of which codes the expected effects of executing
an action. A planning operator (PO) is specified by the
action to be executed and two additional parts describing
the involved predicates: (1) a precondition part that contains
the predicates changed with the action as well as all the other
non-changeable but causative predicates, i.e. those specifying
the conditions necessary to obtain the coded changes, and
(2) the effect part that contains a description of the changes
in terms of predicates that should be added and deleted in
the resulting state. Some examples of planning operators are
presented in Sec. IV.

B. Repository of Objects and Attributes with Roles (ROAR)

The learning infrastructure of object-action relation and
the replacement of the objects or actions with a suitable one
is built around the ROAR module. That module behaves as
a certain type of object memory where the set of available
or potentially available objects together with the affordances
and related attributes are stored. The ROAR stands for repos-

itory of objects&attributes with roles. The database of prior
knowledge can be created by hand or by prior experience.
It allows objects to be retrieved by their attributes, and the
attributes of novel objects can be inferred.

The ROAR module serves as an active database system,
which not only stores and returns the data items, but, via
machine learning tools, it extends the database with predicted
elements. In this way, it can provide data not observed
earlier by the users connected to the database. This type of
active database might also be called as “Intelligent Relational
Database”. The learning methods working in the background
of the ROAR are introduced by [25] and [23]. The first one
is built around the Homogeneity Analysis, a Singular Vector
Decomposition based method, the second one is a large scale
maximum margin based learner. Both are designed to predict
missing relations from the available data sources.

To explain how the learners can extend the available
knowledge let us consider the relations displayed in Table
II. Assume that an object, the corresponding action and
preposition are given, e.g. (“knife”, “stir”, “with”), but the
score showing that the triadic relation between those three
identities is valid is missing. Based on the complete rows
of the data table, the training examples, a function can
be constructed with the object, action and preposition as
explanatory variables, and the score is taken as the response
variable. After the learners learned that function, the missing
scores can be inferred for a new triplet, (“knife”, “stir”,
“with”). If the confidence is high, greater than a given
threshold, the relation between the items of the new triplet
can be accepted as a valid one, namely one can “stir” “with”
the “knife”. Otherwise that relation is rejected.

The structure of the function expressing the relation be-
tween the different fields is defined by a regression problem.
That regression is built on a generalization of the Support
Vector Machine (SVM), a well known kernel based method.
This generalization has the same type of dual form as the
SVM, therefore similar algorithm can be applied in the
computation. Assuming that each instance of object, feature,
preposition, and score can be represented by feature vectors
of a properly chosen Hilbert space, we set up the following
learning problem:

min(‖W‖2 +∑
i

max(0,1−〈ψ(yi),Wφo(xo
i)⊗φa(xa

i)⊗φp(x
p
i)〉)),

(1)
where ψ(yi) is the representation of the confidence, the target
W is a linear operator to be learned, φo(xo

i), φa(xa
i), φp(x

p
i)

are the feature vectors representing the objects, actions,
and prepositions, respectively, in the available complete in-
stances. Those features are joint via tensor product, ⊗, which
allows to express all possible combinations of the features of
the objects, actions, and prepositions. Finally, the regression
problem is given by a Hinge type loss known from the SVM,
which measures how accurately the linear function of the
joint feature vector estimates the target. The summation in
the second term runs through all available complete relations.
In this regression, the similarity between the respond and

the explanatory variables is expressed by inner product that
allows to apply the kernel trick method and, in this way, the
presented regression problem can capture non-linear relations
as well. Further implementation details can be found in [23].

ROAR can learn from various data sources and can make
reasoning in different ways. While ROAR has the potential
of representing any type of relations, it also supports learning
from and reasoning on (object, action, score) tuples. Figures
2 and 3 show how this intelligent database can learn from
different data sources, e.g. from world wide web resources
connected as remote clients, and how the reasoning capability
of ROAR can be exploited by different modules. First of
all, the relations represented in ROAR can be automatically
bootstrapped by common sense knowledge extracted from
text (action, object, score) tuples. Alternatively, ROAR can
learn object-action relations directly from the domain de-
scriptions used by the planners. Note that, ROAR not only
stores the known action-object relations, but has the ability
to infer the scores of the missing ones. The ROAR can
represent categorical and continuous data as well, and have
the potential capability to make inferences based on features
obtained from perception.

General database structure

Predicted data
Provided by the learner

Observed data
Provided by

the external clients
Remote client

Write
And
Read

Only read

Learner

Only read

Write
And
Read

Fig. 2. ROAR as an intelligent database updates the information accumu-
lated in the database. It works in the background, filling up the unknown data
fields and improving the estimations of those ones in which the confidence
is low.

C. Action Library

For the execution phase of our planning framework, we
created a library of actions that encodes the abstract semantic
structure of manipulations. The derived structure allows
robots to execute various chains of human-like manipulation
actions, such as the ones involved in preparing a salad.

In our library, actions are represented in the semantic level
by employing the concept of Semantic Event Chains (SECs)
introduced in [5]. SECs capture the essence of an action by
employing computer vision techniques. Image sequence of an
observed action is first represented by image segments, each
of which corresponds to one object in the scene and is consis-
tently tracked during the action. Each image in the sequence
is then converted into a graph: nodes represent tracked
object segments, and edges indicate the touching relation
between object pairs. By employing an exact graph matching

Object-
object

relations

Action-
Object

relations

Object
features

Training module

Parameter validation

Running on
available DB

Off-line

Validated
parameters

Test module

Relies on validated
Parameters

On-line

Data tables

Learner

Only read

Read and update

Fig. 3. The research intensive training process of the learners can run off-
line in the background, and the test module executes the necessary updates
on-line.

method, the continuous graph sequence is discretized into
main graphs, i.e. “states”, each of which represents a decisive
temporal anchor point in the manipulation. All extracted
main graphs form the core skeleton of the SEC, which is a
matrix where rows are the abstract spatial relations between
object pairs. Fig. 4 pictures the extracted SEC matrix from
a robot execution of a pick place manipulation.

Each anchor point in the SEC indicates a unique and
descriptive scene state, i.e. topological changes in the ma-
nipulation. Hence, we consider each transition from one
SEC column to the next as a movement primitive, such
as approach or grasp. In Fig.4, the necessary primitives
associated with each column of the SEC matrix are shown
for the pick place example. Note that these primitives are
symbolic, but, on the other hand, are fully grounded at the
signal level with uniquely tracked image segments. In the
proposed bootstrapping framework, those symbolic action
primitives are learned from human demonstrations in an
unsupervised manner with the method in [7].

During the learning from human demonstrations, we also
enrich the raw symbolic SEC primitives with additional
object and trajectory information. Each image segment is
classified as manipulator, primary and secondary objects by
considering their exhibited roles in the action as described in
[7]. Manipulator is the main actor that performs the planned
goal in the action, e.g. hand. Primary object, e.g. knife,
is the one that is directly manipulated by the manipulator.
All other objects interacting with the primary object, are
called secondary objects, e.g. cucumber to be cut. We next
identify the classified image segments by employing the
object recognition method in [21]. We additionally capture
the trajectory pattern of the detected manipulator, e.g. human
hand, with the modified Dynamic Movement Primitives
(DMPs, [13]) and attach it to the respective primitive in
the SEC. Fig. 4 shows detected and recognized primary and
secondary objects in the current scene. The trajectory profile
depicted in Fig. 4 is the estimated manipulator movement
from a sample human demonstration. We now segment

Fig. 4. Robot execution of a pick place manipulation. The snapshots of
the performed action together with segmented images are shown on the
top. The symbolic graph sequence is given in the middle. Each graph
corresponds to one column in the SEC matrix given in the middle together
with the corresponding action primitives. The valid symbolic entries in the
SEC matrix are the spatial object relations, i.e. N (Not touching) and T
(Touching). In the bottom, recognized objects in the SEC and the attached
segmented trajectory profile for the robot manipulator are given.

the whole trajectory at the anchor points in the SEC and
feed back to the robot for the sequential execution of each
primitive, e.g. the Put primitive is shown in gray box.

Once the SEC representation is augmented with action
descriptive object and trajectory parameters, we employ the
Finite State Machine (FSM) introduced in [1]. The FSM
creates one state for each column of SEC matrix and allows
the robot to transit from one primitive to the next by applying
the embedded trajectory pattern to the primary object in
the plan. The input of FSM is the relation of objects and
its output are the primitives. To detect the spatial relations
in the current scene, the robot uses the combination of
proprioceptive (e.g. position) and exteroceptive (e.g. tactile,
force, and vision) sensors and sends an error signal if the de-
sired primitive, i.e. expected effect in the spatial relations, is
not observed. Consequently, the symbolic action descriptive
features grounded at the continuous signal level give rise to
the reproduction of the proper sequence of planned actions
with robots. A list of possible actions available in the library
is shown in Table I.

III. OBJECT REPLACEMENT AND PLAN
UPDATING

If any of the objects involved in the generated plan is
missing the object replacement and plan updating process
is triggered (see Fig. 1). For each of the missing objects,
the system first extracts, from the POs in which the missing
object is involved, all the predicates coding its affordances.
Then, the system checks which object in the current scenario
has all the same affordances of the missing one. This is done
by extracting all the affordances of the evaluated object from

the ROAR database and checking if these affordances match
those of the missing object. If an object in the scenario has all
the same affordances, then it is used to replace the missing
one. If replacements for all the missing objects are found,
then the plan is updated with the replacements. The described
steps are summarized in Alg. 1.

Algorithm 1 Object Replacement and Plan Updating
Require: Generated plan R

Extract objects Op involved in plan R
Get objects in the scene Os
Identify missing objects Om = Op\Os
if Om 6= /0 then

for i = 1...|Om| do
Extract predicate coding affordances Pm,i for Om,i
from POs in R
for j = 1...|Os| do

Extract predicate coding affordances Ps, j for Os, j
from ROAR (queries)
if Pm,i ⊂Ps, j then

Replace Om,i with Os, j
end if

end for
end for
if All objects in Om have replacements then

replace Om with replacements in R {Plan updating}
else

R← /0 {No plan}
end if

end if

IV. THE SALAD MAKING SCENARIO

As a case of study we use a salad making scenario.
In this scenario, the robot should be able to prepare a
salad with objects originally specified in a recipe and to
find replacements in case some of the original objects are
missing. This scenario was selected since it permits showing
interesting cases of object replacements in human-like tasks.
The task consists of preparing a cucumber salad by first
cutting the cucumber in pieces on a cutting board, dropping
these pieces into a bowl, pouring a salad dressing into the

TABLE I
THE LIST OF ACTIONS IN THE LIBRARY. THE LAST TWO COLUMNS SHOW

SAMPLE OBJECTS APPLICABLE IN THE RESPECTIVE ACTION.

Action Name Primary Obj. Secondary Obj.

1 pick and place cup bucket
2 take-down cup bucket
3 pour bottle bowl
4 put-in cup bucket
5 cut knife zucchini
6 drop board bowl
7 stir spoon bowl
8 push box -
9 poke box -

bowl, and then stirring everything with a spoon. Fig. 5
presents a snapshot of the salad making scenario.

Fig. 5. Snapshot of the salad making scenario.

Before entering into the details of the planning domain and
problem definition we present in Table II part of an object-
action table coding affordances generated in the ROAR with
objects involved in the salad making scenario. The fields
of the table are the object name, the action in which it
is involved, the preposition, indicating the specific function
of the object in that action, and the score, indicating how
probable is that the object can be used for the corresponding
action. In addition, the table contains a field with the name
of the predicate that will be used to code the corresponding
affordance in the planning domain definition. The value null
in the preposition field accounts for the main affordance of
the action, e.g. that the object can be cut, drop, stir, etc.

TABLE II
EXAMPLE OBJECT-ACTION RELATIONS.

Object Action Preposition Predicate Score
cucumber cut null cutObj 1
carrot cut null cutObj 1
banana cut null cutObj 1
knife cut with cutWith 1
cleaver cut with cutWith 1
cucumber drop null dropObj 1
carrot drop null dropObj 1
banana drop null dropObj 1
board drop from dropFrom 1
cucumber pick place null PPObj 1
carrot pick place null PPObj 1
banana pick place null PPObj 1
table pick place from PPFrom 1
board pick place to PPto 1
spoon stir with stirWith 1
knife stir with stirWith 1

For the planning domain definition we consider the name
for the predicates associated to affordances in the ROAR
table, e.g. a predicate coding that cucumber can be cut would
be: cutOb j(cucumber). In addition to the predicates coding
affordances, the domain definition also involves predicates
describing the relations between objects, e.g. cucumber on
the board: on(cucumber,board), and the object status, e.g.
cucumber not cut: !cut(cucumber). The generated predicates
are used to describe the planning problem, i.e. the initial state
and goal, as well as to code the planning operators. Some of
the predicates considered in the initial state in the salad mak-
ing scenario are: on(cucumber, table), !on(cucumber,board),

f ree(hand), PPto(board), !cut(cucumber), cutWith(kni f e),
!in(cucumber,bowl), !stirred(bowl), stirWith(spoon), and
pourOb j(dressing). The goal specification for this task con-
sists of the predicates: cut(cucumber)), in(dressing,bowl)),
in(cucumber,bowl)), and stirred(bowl)), indicating that the
cucumber should be cut, the dressing and the cucumber
should be in the bowl, and the bowl should be stirred,
respectively.

Figure 6 presents a graphical description of the elements
involved in the planning processes, from the domain defini-
tion to the plan generation. In the figure it is also indicated
the role of the ROAR in the domain definition. Note that the
diagram represents the same four modules of the left-hand
side of Fig. 1.

Fig. 6. General diagram of the planning domain and problem definition,
and plan generation.

For plan generation we use the logic-based planner PKS
[19]. Examples of planning operators in PKS notation are
shown in Figure 7. For instance, the PO for the cutting
action considers three affordances in its precondition part:
cutOb j(?ob j), which indicates that the object in the argu-
ment should be cuttable, cutWith(?with), to make sure that
the object in the argument is a cutting tool, and cutOn(?on),
which represents the surface on which the object is cut. If
the object to be cut is correctly placed on this surface, i.e.
if on(?ob j) holds, the object status changes from not cut to
cut after the action execution, i.e. the predicate !cut(?ob j)
changes to cut(?ob j).

V. EXPERIMENTS

We consider three different experiments for evaluating
the performance of the system. First, we let the robot
generate a plan without any missing object, i.e. by placing
in the scenario all the objects considered in the domain and
problem definition. Then, to evaluate the replacement and
plan updating process, we consider two different cases. In the
first case, we extract the cucumber from the scene, i.e. the
main element for the salad that is involved in many actions.
For the cucumber replacement we will use banana that is not
considered in the domain definition. The second case shows
how the architecture is able to infer that the same object can

Fig. 7. Example planning operators in PKS notation for the salad making
scenario. The predicates coding affordances compatible with the ROAR are
marked in red.

be used for two different actions: we extract the spoon from
the scene so the robot is not be able to execute the stirring
action but should figure out that the knife can be actually
used for stirring.

For the first experiment, with no missing objects, we place
on the table a cucumber, a bowl, a cutting board, and a
bottle with dressing in it (see first snapshot of the upper
sequence in Fig. 9). The spoon and the knife are placed
in respective holders to ease their grasping. Having all the
objects considered in the domain and problem definition, the
system is able to generate a plan consisting of the actions:

pick place(cucumber,hand, table,board)

cut(cucumber,kni f e,board)

pour(dressing,hand,bottle,bowl)

drop(cucumber,hand,board,bowl)

stir(bowl,spoon)). (2)

These actions are successfully executed in the KUKA arm
platform using the action library presented in Sec. II-C. The
upper sequence in Fig. 9 presents snapshots of the plan
execution.

In the second experiment we remove the cucumber from
the scenario and place a banana instead (see lower sequence
in Fig. 9). Since many actions of the generated plan (2) in-
volve the cucumber, the system starts the object replacement
and plan updating process (Alg. 1). These actions are:

pick place(cucumber,hand, table,board)

cut(cucumber,kni f e,board)

drop(cucumber,hand,board,bowl)

The predicates coding affordances for the cucumber in the
corresponding POs (see Fig. 7) are: PPOb j, cutOb j, and
dropOb j, indicating that the cucumber can be pick and
placed, cut, and dropped, respectively.

To let the system find a replacement, we place a banana
in the scenario, object that is not considered in the planning

domain definition and have the same affordances of a cucum-
ber in the ROAR database (see Table II). Indeed, the object
replacement process, described in Sec. III, finds out that the
banana can be used as a replacement for the cucumber in the
preparation of a salad. Fig. 8 illustrates this process, showing
the updated plan.

Fig. 8. Example of object replacement and plan updating process, where
a cucumber is replaced by a banana.

This plan was successfully executed as shown in the lower
sequence in Fig. 9.

Finally, in the third experiment we remove the spoon from
the scene. In this case, the system recognizes that the spoon
is missing from the action stir(bowl,spoon)) of plan (2) and
searches for a replacement. The only extracted predicate was
stirWith(spoon) from the PO associated to the stirring action
(see Fig. 7), indicating that the spoon is the tool used for
stirring. Going through all the objects in the scenario, the
only one also having a stirring affordance is the knife (see
Table II), which is used to replace the spoon and update
the plan by replacing the action stir(bowl,spoon) with the
action stir(bowl,kni f e). Fig. 10 shows the execution of the
dropping and stirring actions in this experiment.

Fig. 10. Execution of the dropping and stirring actions. The upper sequence
shows the execution by using a spoon for stirring. The lower sequence shows
a knife used for stirring as a replacement of the spoon.

VI. CONCLUSIONS

We can conclude from this work that providing a robot
with the ability of finding substitutions of objects, using an
intelligent database such as ROAR (see Sec. II-B), extends its
capacity for the autonomous execution of manipulation tasks.
This is particularly useful for service robots performing
simple human-like tasks, like preparing a salad. In such tasks,
plans are usually simple and can be easily inferred from

a prototypical problem definition. However, the probability
that some of the required objects are missing in an arbitrary
scenario might be high, making the object replacement
necessary.

We believe that the capability of autonomously finding
object substitutions together with an efficient method for
grounding planning actions, such as the one using semantic
event chains (see Sec. II-C), can significantly reduce the gap
between the current state of robotic research and the actual
usage of robots in every day human scenarios.

REFERENCES

[1] M. J. Aein, E. E. Aksoy, M. Tamosiunaite, J. Papon, A. Ude, and
F. Wörgötter. Toward a library of manipulation actions based on
semantic object-action relations. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 4555–4562, 2013.

[2] A. Agostini, C. Torras, and F. Wörgötter. Learning weakly correlated
cause–effects for gardening with a cognitive system. Engineering
Applications of Artificial Intelligence, 36:178–194, 2014.

[3] A. Agostini, C. Torras, and F. Wörgötter. Efficient Interactive
Decision-making Framework for Robotic Applications. Artificial Intel-
ligence, 2015. In press. http://dx.doi.org/10.1016/j.artint.2015.04.004.

[4] S. R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Ko-
rmushev, and D. G. Caldwell. Learning symbolic representations of
actions from human demonstrations. In IEEE International Conference
on Robotics and Automation (ICRA), 2015.

[5] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and
F. Wörgötter. Learning the semantics of object-action relations
by observation. The International Journal of Robotics Research,
30(10):1229–1249, 2011.

[6] E. E. Aksoy, M. Tamosiunaite, R. Vuga, A. Ude, C. Geib, M. Steed-
man, and F. Wörgötter. Structural bootstrapping at the sensorimotor
level for the fast acquisition of action knowledge for cognitive robots.
In IEEE Int. Conf. on Development and Learning and Epigenetic
Robotics, 2013.

[7] E. E. Aksoy, M. Tamosiunaite, and F. Wörgötter. Model-free incre-
mental learning of the semantics of manipulation actions. Robotics
and Autonomous Systems (RAS) (In press), 2015.

[8] S. Calinon, F. Guenter, and A. Billard. On learning, representing,
and generalizing a task in a humanoid robot. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2):286
–298, april 2007.

[9] R. Dillmann, T. Asfour, M. Do, R. Jkel, A. Kasper, P. Azad, A. Ude,
S. Schmidt-Rohr, and M. Lsch. Advances in robot programming
by demonstration. KI - Knstliche Intelligenz, 24:295–303, 2010.
10.1007/s13218-010-0060-0.

[10] S. Ekvall and D. Kragic. Learning task models from multiple human
demonstrations. In Robot and Human Interactive Communication,
2006. ROMAN 2006. The 15th IEEE International Symposium on,
pages 358 –363, sept. 2006.

[11] M. Ghallab, D. Nau, and P. Traverso. Automated Planning Theory
and Practice. Elsevier Science, 2004.

[12] J. A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proc. 2002 IEEE
Int. Conf. Robotics and Automation, pages 1398–1403, 2002.

[13] T. Kulvicius, K. J. Ning, M. Tamosiunaite, and F. Wörgötter. Joining
movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting. IEEE Transactions
on Robotics, 28(1):145–157, 2012.

[14] D. Lee and Y. Nakamura. Stochastic model of imitating a new ob-
served motion based on the acquired motion primitives. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on,
pages 4994 –5000, oct. 2006.

[15] K. Lee, Y. Su, T. Kim, and Y. Demiris. A syntactic approach to robot
imitation learning using probabilistic activity grammars. Robotics and
Autonomous Systems, 61(12):1323–1334, dec 2013.

[16] T. Luksch, M. Gienger, M. Mühlig, and T. Yoshiike. A dynamical
systems approach to adaptive sequencing of movement primitives.
In Proceedings of the 7th German Conference on Robotics (Robotik
2012), 2012.

Fig. 9. Upper sequence: plan execution for preparing a cucumber salad. Lower sequence: plan execution after replacing the cucumber with a banana.

[17] M. Pardowitz, S. Knoop, R. Dillmann, and R.D. Zollner. Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 37(2):322 –332, april 2007.

[18] K. Parsaye, M. Chignell, S. Khoshafian, and H. Wong. Intelli-
gent Databases: Object-oriented, Deductive Hypermedia Technolo-
gies. John Wiley & Sons, Inc., New York, NY, USA, 1989.

[19] R. Petrick and F. Bacchus. A knowledge-based approach to planning
with incomplete information and sensing. In Malik Ghallab, Joachim
Hertzberg, and Paolo Traverso, editors, Proceedings of the Sixth Inter-
national Conference on Artificial Intelligence Planning and Scheduling
(AIPS-2002), pages 212–221. AAAI Press, 2002.

[20] A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S. Koppula.
Robobrain: Large-scale knowledge engine for robots. arXiv, Artificial
Intelligence, Robotics, 2014.

[21] M. Schoeler, S. Stein, J. Papon, A. Abramov, and F. Wörgötter. Fast
self-supervised on-line training for object recognition specifically for
robotic applications. In International Conference on Computer Vision
Theory and Applications VISAPP, January 2014.

[22] M. Spiliopoulou, L. Schmidt-Thieme, and R. Janning, editors. Data
Analysis, Machine Learning and Knowledge Discovery. Springer,
2014. http://link.springer.com/book/10.1007%2F978-3-319-01595-8.

[23] S. Szedmak, E. Ugor, and J.Piater. Knowledge propagation and
relation learning for predicting action effects. In Proceedings of the
IEEE Intl. Conf. on Intelligent Robots and Systems (IROS 2014),
Chicago. 2014.

[24] A. Ude. Trajectory generation from noisy positions of object features
for teaching robot paths. Robotics and Autonomous Systems, 11(2):113
– 127, 1993.

[25] H. Xiong, S. Szedmak, and J. Piater. Homogeneity analysis for object-
action relation reasoning in kitchen scenarios. In 2nd Workshop on
Machine Learning for Interactive Systems, (Workshop at IJCAI), page
3744. 2013.

