Ideal dressing materials for complex and large asymmetric burns should have the dual properties o... more Ideal dressing materials for complex and large asymmetric burns should have the dual properties of anti-bacterial and regenerative with advanced applicability of direct deposit on the wound at the patient bedside. In this study, core-shell nanofibers (polycaprolactone; PCL and polyethylene oxide; PEO) with different percent of silver sulfadiazine (SSD) loading (2-10 %) were prepared by the airbrushing method using a custom build device. Results indicate a sustained release profile of silver sulfadiazine (SSD) up to 28 days and concentration-dependent anti-bacterial activity. The morphology and proliferation of human dermal fibroblast (HDF) cells and human dental follicle stem cells (HDFSC) on the silver sulfadiazine loaded nanofibers confirm the biocompatibility of airbrushed nanofibers. Moreover, upregulation of extracellular matrix (ECM) proteins (Col I, Col III, and elastin) support the differentiation and regenerative properties of silver sulfadiazine nanofiber mats. This was further confirmed by the complete recovery of rabbit burn wound models within 7 days of silver sulfadiazine loaded nanofiber dressing. Histopathology data show silver sulfadiazine loaded core-shell nanofibers' anti-inflammatory and proliferative activity without any adverse response on the tissue. Overall data display that the airbrushed silver sulfadiazine-loaded core-shell nanofibers are effective dressing material with the possibility of direct fiber deposition on the wound to cover, heal, and regenerate large asymmetric burn wounds.
Functional tissue regeneration using synthetic biomaterials requires proliferation and heterotypi... more Functional tissue regeneration using synthetic biomaterials requires proliferation and heterotypic differentiation of stem/progenitor cells within a specialized heterogeneous (biophysical–biochemical) microenvironment. The current techniques have limitations to develop synthetic hydrogels, mimicking native extracellular matrix porosity along with heterogeneous microenvironmental cues of matrix mechanics, degradability, microstructure and cell–cell interactions. Here, we have developed a microenvironment modulating system to fabricate in situ porous hydrogel matrix with two or more distinct tailored microenvironmental niches within microbeads and the hydrogel matrix for multicellular tissue regeneration. Electrosprayed pectin-gelatin blended microbeads and crosslinked alginate hydrogel system help to tailor microenvironmental niches of encapsulated cells where two different cells are surrounded by a specific microenvironment. The effect of different microenvironmental parameters associated with the microbead/hydrogel matrix was evaluated using human umbilical-cord mesenchymal stem cells (hUCMSCs). The osteogenic differentiation of hUCMSCs in the hydrogel matrix was evaluated for bone tissue regeneration. This will be the first report on microenvironment modulating microbead-hydrogel system to encapsulate two/more types of cells in a hydrogel, where each cell is surrounded with distinct niches for heterogeneous tissue regeneration.
Gelatin nanofibers have gained significant attention for different biomedical applications, as th... more Gelatin nanofibers have gained significant attention for different biomedical applications, as they provide a suitable environment for cell attachment, growth, and proliferation compared to the oth...
Co-eradication of cancer stem cells (CSCs) along with cancer cells have emerged as an immediate n... more Co-eradication of cancer stem cells (CSCs) along with cancer cells have emerged as an immediate necessity to combat the rapid progression, therapeutic resistance, and relapse of cancer. Curcumin (C...
An amendment to this paper has been published and can be accessed via a link at the top of the pa... more An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Ideal dressing materials for complex and large asymmetric burns should have the dual properties o... more Ideal dressing materials for complex and large asymmetric burns should have the dual properties of anti-bacterial and regenerative with advanced applicability of direct deposit on the wound at the patient bedside. In this study, core-shell nanofibers (polycaprolactone; PCL and polyethylene oxide; PEO) with different percent of silver sulfadiazine (SSD) loading (2-10 %) were prepared by the airbrushing method using a custom build device. Results indicate a sustained release profile of silver sulfadiazine (SSD) up to 28 days and concentration-dependent anti-bacterial activity. The morphology and proliferation of human dermal fibroblast (HDF) cells and human dental follicle stem cells (HDFSC) on the silver sulfadiazine loaded nanofibers confirm the biocompatibility of airbrushed nanofibers. Moreover, upregulation of extracellular matrix (ECM) proteins (Col I, Col III, and elastin) support the differentiation and regenerative properties of silver sulfadiazine nanofiber mats. This was further confirmed by the complete recovery of rabbit burn wound models within 7 days of silver sulfadiazine loaded nanofiber dressing. Histopathology data show silver sulfadiazine loaded core-shell nanofibers' anti-inflammatory and proliferative activity without any adverse response on the tissue. Overall data display that the airbrushed silver sulfadiazine-loaded core-shell nanofibers are effective dressing material with the possibility of direct fiber deposition on the wound to cover, heal, and regenerate large asymmetric burn wounds.
Functional tissue regeneration using synthetic biomaterials requires proliferation and heterotypi... more Functional tissue regeneration using synthetic biomaterials requires proliferation and heterotypic differentiation of stem/progenitor cells within a specialized heterogeneous (biophysical–biochemical) microenvironment. The current techniques have limitations to develop synthetic hydrogels, mimicking native extracellular matrix porosity along with heterogeneous microenvironmental cues of matrix mechanics, degradability, microstructure and cell–cell interactions. Here, we have developed a microenvironment modulating system to fabricate in situ porous hydrogel matrix with two or more distinct tailored microenvironmental niches within microbeads and the hydrogel matrix for multicellular tissue regeneration. Electrosprayed pectin-gelatin blended microbeads and crosslinked alginate hydrogel system help to tailor microenvironmental niches of encapsulated cells where two different cells are surrounded by a specific microenvironment. The effect of different microenvironmental parameters associated with the microbead/hydrogel matrix was evaluated using human umbilical-cord mesenchymal stem cells (hUCMSCs). The osteogenic differentiation of hUCMSCs in the hydrogel matrix was evaluated for bone tissue regeneration. This will be the first report on microenvironment modulating microbead-hydrogel system to encapsulate two/more types of cells in a hydrogel, where each cell is surrounded with distinct niches for heterogeneous tissue regeneration.
Gelatin nanofibers have gained significant attention for different biomedical applications, as th... more Gelatin nanofibers have gained significant attention for different biomedical applications, as they provide a suitable environment for cell attachment, growth, and proliferation compared to the oth...
Co-eradication of cancer stem cells (CSCs) along with cancer cells have emerged as an immediate n... more Co-eradication of cancer stem cells (CSCs) along with cancer cells have emerged as an immediate necessity to combat the rapid progression, therapeutic resistance, and relapse of cancer. Curcumin (C...
An amendment to this paper has been published and can be accessed via a link at the top of the pa... more An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Uploads
Papers by Jyotsnendu Giri