Bulletin of Electrical Engineering and Informatics
Zinc batteries are a more sustainable alternative to lithium-ion batteries due to its components ... more Zinc batteries are a more sustainable alternative to lithium-ion batteries due to its components being highly recyclable. With the improvements in the screen printing technology, high quality devices can be printed with at high throughput and precision at a lower cost compared to those manufactured using lithographic techniques. In this paper we describe the fabrication and characterization of printed zinc batteries. Different binder materials such as polyvinyl pyrrolidone (PVP) and polyvinyl butyral (PVB), were used to fabricate the electrodes. The electrodes were first evaluated using three-electrode cyclic voltammetry, x-ray diffraction (XRD), and scanning electron microscopy before being fully assembled and tested using charge-discharge test and two-electrode cyclic voltammetry. The results show that the printed ZnO electrode with PVB as binder performed better than PVP-based ZnO. The XRD data prove that the electro-active materials were successfully transferred to the sample. H...
Bulletin of Electrical Engineering and Informatics
Monitoring the effectiveness of drugs on cancer cells is crucial for chemotherapeutics studies. I... more Monitoring the effectiveness of drugs on cancer cells is crucial for chemotherapeutics studies. In-vitro cell-based biosensors can be used as an alternative for characteristic studies of cells’ response to drugs. Cell-based sensors provide real-time measurements and require smaller sample volumes compared to conventional T-flask measurement methods. This paper presents a biosensor that detects in real-time, impedance variations of human colon cancer, HCT-116 cells when treated with anti-cancer agent, 5-Fluorouracil (5-FU). Two different extracellular matrix (ECM); polyaniline and gelatin were tested and evaluated in terms of attachment quality. Polyaniline was found to provide the best attachment for HCT-116 cells and was used for cytotoxicity studies. Cytokinetic behavior indicated that 5-FU inhibited HCT-116 cells at IC50 of 6.8 µg/mL. Trypan blue exclusion method for testing cell viability was used to validate the impedance measurements, where the cancer cell concentrations were ...
Medical & biological engineering & computing, 2018
Electrical cell-substrate impedance sensing (ECIS) is a powerful technique to monitor real-time c... more Electrical cell-substrate impedance sensing (ECIS) is a powerful technique to monitor real-time cell behavior. In this study, an ECIS biosensor formed using two interdigitated electrode structures (IDEs) was used to monitor cell behavior and its response to toxicants. Three different sensors with varied electrode spacing were first modeled using COMSOL Multiphysics and then fabricated and tested. The silver/silver chloride IDEs were fabricated using a screen-printing technique and incorporated with polydimethylsiloxane (PDMS) cell culture wells. To study the effectiveness of the biosensor, A549 lung carcinoma cells were seeded in the culture wells together with collagen as an extracellular matrix (ECM) to promote cell attachment on electrodes. A549 cells were cultured in the chambers and impedance measurements were taken at 12-h intervals for 120 h. Cell index (CI) for both designs were calculated from the impedance measurement and plotted in comparison with the growth profile of th...
RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics, 2013
ABSTRACT We present the design and analysis result of a low power, low noise, 20 MHz CMOS-MEMS os... more ABSTRACT We present the design and analysis result of a low power, low noise, 20 MHz CMOS-MEMS oscillators. To perform oscillator circuit simulations, the CMOS-MEMS resonator (Clamped-Clamped beam) was modeled using its RLC equivalent circuits. For a MEMS resonator to be able to function as an oscillator it needs to be coupled with supporting amplifier circuits. The MEMS beam resonator has 73dB insertion loss which translates to motional resistance of Rx=3MΩ, capacitance, Cx=4.58aF and inductance, Lx=14.5H respectively. The amplifier design is based on the requirement for oscillation, which is, the loop gain of one and the zero phase shifts. For this work, the pierce circuit topology was chosen due to its simplicity and high frequency stability. Both the amplifier and beam resonators were designed using Silterra's CMOS technology. The design of the amplifier comprises of 6 transistors, which are integrated with the MEMS beam resonator to form an oscillator. The proposed CMOS-MEMS oscillators is capable of generating 20 MHz clocks. The beam resonators require approximately 40VDC and 400mV, VAC to vibrate. The actuation was simulated and measured using Finite modeling software, FEM and Cadence to obtain the desired design parameters. The design of 20MHz oscillator produces output power −1.45dBm by using 1.8V power supply.
2011 Ieee Regional Symposium on Micro and Nano Electronics, Sep 1, 2011
Abstract Noise or jitter performance is a major concern in the design of phase-locked loop (PLL).... more Abstract Noise or jitter performance is a major concern in the design of phase-locked loop (PLL). Linearity and speed issues are of relevance when receiving data at gigahertz speed. The main function of a PLL circuit is to generate stable higher frequencies (GHz) output from a lower input frequency signal. PLLs are often used in communication technology to implement a variety of functions such as clock recovery, frequency multiplication, and clock synchronization. This paper presents the design and simulation results of PLL with low ...
2010 Symposium on Design Test Integration and Packaging of Mems Moems, 2010
Abstract The growing demand of portable electronic devices has created the demand of long lasting... more Abstract The growing demand of portable electronic devices has created the demand of long lasting recharged source of power. Non-environmental friendly conventional batteries with limited lifetimes are no longer a feasible option. This paper proposes a piezoelectric, vibration based energy harvester. The design and simulation of a MEMS piezoelectric cantilever beam with interdigitated electrodes is described. The micro-energy harvester is formed using a silicon substrate, ZnO piezoelectric layer, Pt electrodes and nickel proof ...
2010 Ieee Asia Pacific Conference on Applied Electromagnetics, 2010
Abstract Surface Acoustic Wave (SAW) resonators are key components in oscillators, frequency synt... more Abstract Surface Acoustic Wave (SAW) resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work proposes a simple feedback control circuit which stabilizes the temperature of the SAW resonator, making it independent of temperature change. The circuit is based on the oven-control method which elevates the temperature ...
Bulletin of Electrical Engineering and Informatics
Zinc batteries are a more sustainable alternative to lithium-ion batteries due to its components ... more Zinc batteries are a more sustainable alternative to lithium-ion batteries due to its components being highly recyclable. With the improvements in the screen printing technology, high quality devices can be printed with at high throughput and precision at a lower cost compared to those manufactured using lithographic techniques. In this paper we describe the fabrication and characterization of printed zinc batteries. Different binder materials such as polyvinyl pyrrolidone (PVP) and polyvinyl butyral (PVB), were used to fabricate the electrodes. The electrodes were first evaluated using three-electrode cyclic voltammetry, x-ray diffraction (XRD), and scanning electron microscopy before being fully assembled and tested using charge-discharge test and two-electrode cyclic voltammetry. The results show that the printed ZnO electrode with PVB as binder performed better than PVP-based ZnO. The XRD data prove that the electro-active materials were successfully transferred to the sample. H...
Bulletin of Electrical Engineering and Informatics
Monitoring the effectiveness of drugs on cancer cells is crucial for chemotherapeutics studies. I... more Monitoring the effectiveness of drugs on cancer cells is crucial for chemotherapeutics studies. In-vitro cell-based biosensors can be used as an alternative for characteristic studies of cells’ response to drugs. Cell-based sensors provide real-time measurements and require smaller sample volumes compared to conventional T-flask measurement methods. This paper presents a biosensor that detects in real-time, impedance variations of human colon cancer, HCT-116 cells when treated with anti-cancer agent, 5-Fluorouracil (5-FU). Two different extracellular matrix (ECM); polyaniline and gelatin were tested and evaluated in terms of attachment quality. Polyaniline was found to provide the best attachment for HCT-116 cells and was used for cytotoxicity studies. Cytokinetic behavior indicated that 5-FU inhibited HCT-116 cells at IC50 of 6.8 µg/mL. Trypan blue exclusion method for testing cell viability was used to validate the impedance measurements, where the cancer cell concentrations were ...
Medical & biological engineering & computing, 2018
Electrical cell-substrate impedance sensing (ECIS) is a powerful technique to monitor real-time c... more Electrical cell-substrate impedance sensing (ECIS) is a powerful technique to monitor real-time cell behavior. In this study, an ECIS biosensor formed using two interdigitated electrode structures (IDEs) was used to monitor cell behavior and its response to toxicants. Three different sensors with varied electrode spacing were first modeled using COMSOL Multiphysics and then fabricated and tested. The silver/silver chloride IDEs were fabricated using a screen-printing technique and incorporated with polydimethylsiloxane (PDMS) cell culture wells. To study the effectiveness of the biosensor, A549 lung carcinoma cells were seeded in the culture wells together with collagen as an extracellular matrix (ECM) to promote cell attachment on electrodes. A549 cells were cultured in the chambers and impedance measurements were taken at 12-h intervals for 120 h. Cell index (CI) for both designs were calculated from the impedance measurement and plotted in comparison with the growth profile of th...
RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics, 2013
ABSTRACT We present the design and analysis result of a low power, low noise, 20 MHz CMOS-MEMS os... more ABSTRACT We present the design and analysis result of a low power, low noise, 20 MHz CMOS-MEMS oscillators. To perform oscillator circuit simulations, the CMOS-MEMS resonator (Clamped-Clamped beam) was modeled using its RLC equivalent circuits. For a MEMS resonator to be able to function as an oscillator it needs to be coupled with supporting amplifier circuits. The MEMS beam resonator has 73dB insertion loss which translates to motional resistance of Rx=3MΩ, capacitance, Cx=4.58aF and inductance, Lx=14.5H respectively. The amplifier design is based on the requirement for oscillation, which is, the loop gain of one and the zero phase shifts. For this work, the pierce circuit topology was chosen due to its simplicity and high frequency stability. Both the amplifier and beam resonators were designed using Silterra's CMOS technology. The design of the amplifier comprises of 6 transistors, which are integrated with the MEMS beam resonator to form an oscillator. The proposed CMOS-MEMS oscillators is capable of generating 20 MHz clocks. The beam resonators require approximately 40VDC and 400mV, VAC to vibrate. The actuation was simulated and measured using Finite modeling software, FEM and Cadence to obtain the desired design parameters. The design of 20MHz oscillator produces output power −1.45dBm by using 1.8V power supply.
2011 Ieee Regional Symposium on Micro and Nano Electronics, Sep 1, 2011
Abstract Noise or jitter performance is a major concern in the design of phase-locked loop (PLL).... more Abstract Noise or jitter performance is a major concern in the design of phase-locked loop (PLL). Linearity and speed issues are of relevance when receiving data at gigahertz speed. The main function of a PLL circuit is to generate stable higher frequencies (GHz) output from a lower input frequency signal. PLLs are often used in communication technology to implement a variety of functions such as clock recovery, frequency multiplication, and clock synchronization. This paper presents the design and simulation results of PLL with low ...
2010 Symposium on Design Test Integration and Packaging of Mems Moems, 2010
Abstract The growing demand of portable electronic devices has created the demand of long lasting... more Abstract The growing demand of portable electronic devices has created the demand of long lasting recharged source of power. Non-environmental friendly conventional batteries with limited lifetimes are no longer a feasible option. This paper proposes a piezoelectric, vibration based energy harvester. The design and simulation of a MEMS piezoelectric cantilever beam with interdigitated electrodes is described. The micro-energy harvester is formed using a silicon substrate, ZnO piezoelectric layer, Pt electrodes and nickel proof ...
2010 Ieee Asia Pacific Conference on Applied Electromagnetics, 2010
Abstract Surface Acoustic Wave (SAW) resonators are key components in oscillators, frequency synt... more Abstract Surface Acoustic Wave (SAW) resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work proposes a simple feedback control circuit which stabilizes the temperature of the SAW resonator, making it independent of temperature change. The circuit is based on the oven-control method which elevates the temperature ...
Uploads
Papers by Anis Nurashikin Nordin