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Abstract 

Background This study aims to investigate the associations between signal‑level physical activity (PA) features 
derived from wrist accelerometry data and cognitive status in older adults, and to evaluate their potential predictive 
value when combined with demographics.

Methods We analyzed PA data from 3,363 older adults (NHATS: n = 747; NHANES: n = 2,616), with each participant 
contributing a complete 3‑day continuous activity sequence. We extracted the most relevant PA features associated 
with cognitive function using feature engineering and recursive feature elimination. Demographic characteristics 
were also incorporated, and multimodal data fusion was achieved through canonical correlation analysis. We then 
developed explainable machine learning models, primarily random forest, optimized with hyperparameters, to pre‑
dict individual cognitive function status.

Results Using recursive feature elimination, we identified the top 20 PA features from each dataset and combined 
them with demographic features for modeling. The models achieved AUCs of 0.84 and 0.80 for NHATS and NHANES. 
Change quantiles and FFT coefficients emerged as the consistently top‑ranked PA features across datasets, ranking 
1st and 2nd respectively in their predictive importance for cognitive function. Models based on the top 10 PA features 
common to both datasets, along with demographic features, achieved AUCs above 0.8.

Conclusions This study identifies novel time‑frequency domain features of physical activity that show robust asso‑
ciations with cognitive status across two independent cohorts. These features, particularly those capturing activity 
variability and rhythmicity, provide complementary information beyond traditional cumulative PA measures. Based 
on these findings, we developed a proof‑of‑concept application that demonstrates the feasibility of translating these 
PA analytics into practical monitoring tools in real‑world settings.
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Background
As the global population ages, the challenge of cogni-
tive impairment is becoming increasingly severe. In the 
United States, cognitive impairment has emerged as a 
major issue affecting the health and quality of life of older 
adults [1]. It not only significantly impacts daily life and 
independent functioning but also places a substantial 
economic burden on families and society [2]. Real-time 
monitoring of cognitive function in the aging popula-
tion and early screening and intervention are crucial for 
improving quality of life, reducing societal burden [3] and 
against the dementia tsunami [4].

However, traditional approaches for assessing cognitive 
status such as neuropsychological tests, neuroimaging, 
and serum or cerebrospinal fluid markers, have inherent 
limitations. These approaches are often time-consuming, 
expensive, and require specialized medical support, lim-
iting their accessibility and practicality [5]. Even brief 
cognitive assessments require healthcare professional 
involvement and cannot be performed frequently due 
to practice effects and the need for standardized testing 
conditions.

PA has been linked to cognitive function through 
multiple epidemiological and intervention studies. A 
large-scale cohort study (n = 2,700) found that older 
adults engaging in ≥ 150  min/week of moderate-to-
vigorous physical activity (MVPA) showed 36% lower 
risk of cognitive decline over a 5-year follow-up period 
[6]. Similarly, data from the English Longitudinal Study 
of Ageing (n = 3,400) revealed that participants main-
taining ≥ 120  min/week of MVPA demonstrated better 
executive function and memory performance compared 
to those who were less active [7]. A meta-analysis of 36 
studies further suggested that even light-intensity activi-
ties, accumulated to ≥ 300  min/week, were associated 
with a 23% reduction in cognitive decline risk [8].

However, these findings primarily rely on subjective PA 
questionnaires or activity logs, which show limited relia-
bility (r = 0.3–0.5) when compared to objective measures 
and are susceptible to recall bias, particularly in older 
populations [9]. For instance, the correlation between 
self-reported and accelerometer-measured MVPA time 
was only 0.4 in adults over 65 years [10].

With advances in wearable technology, accelerome-
ter-based PA monitoring has emerged as an objective 
approach for characterizing physical activity patterns. 
Wrist-worn accelerometers can capture continuous 
activity data at sampling rates of 30–100  Hz, providing 
detailed information about activity intensity, duration, 
and patterns throughout the day [11]. These technologi-
cal capabilities enable us to build a more sophisticated 
bridge connecting accelerometer signals to behavioral 
patterns, and ultimately to cognitive function. Through 

advanced signal processing and pattern recognition 
techniques, we can potentially identify specific PA signa-
tures that may reflect underlying cognitive status, mov-
ing beyond simple activity duration measures to more 
nuanced characterizations of daily functioning.

Recent studies using accelerometer data have primarily 
focused on cumulative indicators (e.g., daily average PA 
and sedentary time) in relation to cognitive status [12]. 
While these studies provide valuable insights, they may 
not fully capture the rich temporal and frequency char-
acteristics inherent in continuous PA data. PA patterns 
contain complex information about variability, rhyth-
micity, and complexity that could potentially reflect dif-
ferent aspects of daily functioning [13]. Furthermore, 
these activity patterns are influenced by multiple factors, 
including demographic characteristics such as race [14] 
and clinical conditions [15], suggesting the need for a 
more comprehensive analytical approach.

Analyzing these complex activity patterns presents sev-
eral methodological challenges. First, the high-dimen-
sional nature of accelerometer time series data requires 
sophisticated signal processing and feature extraction 
techniques to identify meaningful patterns. Second, the 
integration of multiple data types (PA patterns, demo-
graphics, and health information) necessitates advanced 
statistical approaches to handle their complex interac-
tions [16]. Additionally, while machine learning meth-
ods can effectively process such complex data, ensuring 
model interpretability remains crucial for clinical appli-
cations [17].

This study aimed to: (1) identify novel time-frequency 
domain features from accelerometer data that show 
consistent associations with cognitive status across two 
independent cohorts of older adults; (2) examine how 
these PA features, when combined with demographic 
and health information, relate to cognitive status; and (3) 
develop interpretable machine learning models to evalu-
ate the potential utility of these features. We extracted 
comprehensive PA features from accelerometer data, 
including temporal patterns, frequency characteristics, 
and nonlinear properties, beyond traditional cumulative 
measures. These features were then analyzed alongside 
demographic and health information using interpretable 
machine learning approaches to understand their rela-
tionships with cognitive status. Based on these analyses, 
we developed a proof-of-concept application to dem-
onstrate how these PA features could be calculated and 
monitored in real-world settings using wearable devices.

Methods
This study analyzed accelerometer data from two large-
scale cohort studies of older adults: the National Health 
and Aging Trends Study (NHATS) and the National 
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Health and Nutrition Examination Survey (NHANES). 
Our analytical framework consisted of three main com-
ponents (Fig.  1): (1) data preprocessing and feature 
extraction from accelerometer signals, (2) development 
and validation of interpretable machine learning models 
incorporating both movement features and demographic 
characteristics, and (3) comprehensive model evaluation 
using multiple statistical approaches. Raw accelerometer 
data were processed to extract time-frequency domain 
features that capture various aspects of movement pat-
terns. We initially derived 777 features describing tem-
poral patterns, frequency characteristics, and nonlinear 
properties of the movement signals. These features were 
then systematically evaluated using recursive feature 
elimination (RFE) to identify the most robust features 
associated with cognitive status. Demographic and health 
information were integrated with the selected movement 
features through Canonical Correlation Analysis (CCA). 
Multiple machine learning models were developed and 
compared, with particular attention to model interpreta-
bility through Shapley Additive Explanations (SHAP) and 
feature-outcome relationships through Restricted Cubic 
Splines (RCS) analysis. All models were independently 
validated in both cohorts to assess generalizability.

Participants
This study utilized data from two national studies in the 
United States: the National Health and Aging Trends 
Study (NHATS) and the National Health and Nutrition 
Examination Survey (NHANES). NHATS, funded by 
the National Institute on Aging (NIA), is a longitudinal 
cohort study that comprehensively assesses changes in 
health status, physical performance, and social environ-
ment among older adults through annual face-to-face 
interviews and examinations [18]. NHANES, conducted 
by the Centers for Disease Control and Prevention, is a 
continuous national health survey that has monitored the 
health and nutritional status of the U.S. population since 
the 1960s through questionnaires, physical examinations, 
and laboratory tests [19].

From the NHATS Round 11 (2021) sample of 3,817 
community-dwelling older adults, 747 participants had 
complete accelerometer and cognitive data for analysis. 

Participants were excluded if they had incomplete cogni-
tive assessments (n = 429) or insufficient accelerometer 
wear time (n = 2,641). From the NHANES 2011–2014 
cycles (n = 9,757), 2,616 participants met the inclusion 
criteria after excluding those with incomplete cogni-
tive data (n = 16,460) or insufficient accelerometer data 
(n = 857). The flow of participant selection is detailed in 
Supplementary Fig. 1.

To ensure data quality and analytical rigor, we estab-
lished strict inclusion criteria. Participants were required 
to have complete 3-day accelerometer recordings (72 
consecutive hours from 00:00 of day 1 to 24:00 of day 
3), with each day containing ≥ 10  h of valid wear time. 
Additionally, participants needed complete data for 
all demographic variables and cognitive assessments. 
After applying these criteria, our final analytical sample 
included 3,363 participants (NHATS: n = 747; NHANES: 
n = 2,616), with each participant contributing exactly 
4,320 min-epoch data points.

Cognitive function
In NHATS, cognitive status was evaluated using a com-
prehensive approach that included three components: (1) 
self- or proxy-reported physician diagnosis of dementia 
or Alzheimer’s disease; (2) the AD8 dementia screening 
interview [20] administered to proxies, with a score of 
≥ 2 indicating possible cognitive impairment; and (3) a 
cognitive test battery assessing memory (immediate and 
delayed word recall), orientation (date, month, year, and 
day of the week), and executive function (clock drawing 
test). Based on established criteria [21], participants were 
classified as having possible cognitive impairment if they 
met any of the following: confirmed physician diagnosis, 
AD8 score ≥ 2, or scores falling below 1.5 standard devia-
tions of the age-adjusted mean in at least two cognitive 
domains for self-respondents.

NHANES (2011–2014) administered three validated 
cognitive assessments to adults aged 60 and older: the 
Consortium to Establish a Registry for Alzheimer’s Dis-
ease (CERAD) Word Learning Test for immediate and 
delayed recall [22], the Animal Fluency Test (AFT) for 
semantic fluency [23], and the Digit Symbol Substitution 
Test (DSST) for processing speed and executive function 

Fig. 1 Overview of Experimental design. Figure 1. A Data Collection. (A1) Dataset selection: MHATS and NHANES. (A2) Collection of cognitive 
performance measures and demographic/medical history information (A3) Acquisition and preprocessing of PA data. B Construction of Multimodal 
Machine Learning Models. (B1) Extraction of 777 PA features and dimensionality reduction to 20 based on RFE. (B2) Fusion of PA features 
and demographic features based on CCA. (B3) Modeling of fused features using 5 machine learning algorithms and hyperparameter optimization 
based on GridSearchCV. C Model Analysis. (C1) Visual analysis of PA data. (C2) Feature contribution analysis based on SHAP and correlation analysis 
based on RCS (C3) Deployment of models to the cloud. D Development of Mobile System (D1) Mobile phone interface: used for filling in basic 
information and connecting devices. (D2) Smartwatch interface: used for monitoring control and result push notifications

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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[24]. Following established protocols for identifying 
lower cognitive performance in population-based studies 
[25], we defined lower cognitive performance as scoring 
at or below age- and education-adjusted 25th percen-
tile. This approach identifies individuals who may ben-
efit from further cognitive evaluation, though it does not 
constitute a clinical diagnosis.

PA data from wrist accelerometer
Both NHATS and NHANES datasets utilized wrist-worn 
accelerometers to continuously monitor participants’ PA 
levels for multiple days, 24  h a day. In NHATS, partici-
pants wore an Actigraph CentrePoint Insight Watch for 
7 days following their in-home interview, with a sampling 
frequency of 64  Hz. Researchers used the ARCTOOLS 
software package to process the data, summarizing it 
into 1-minute epochs and defining valid days as those 
with more than 1296  min of wear time [26]. Similarly, 
NHANES participants wore an ActiGraph GT3X + accel-
erometer for 7 consecutive days, collecting triaxial accel-
eration data at 80  Hz and ambient light data once per 
second. The raw data were aggregated into minute-level 
data for each participant during post-processing.

Despite differences in accelerometer models, sam-
pling frequencies, and target populations, both studies 
employed consistent PA monitoring protocols, requiring 
participants to wear the devices continuously for mul-
tiple days. This approach allowed for the collection of 
unified minute-level PA intensity sequences, facilitating 
the application of machine learning algorithms to both 
datasets.

Our analysis included 3,363 participants (NHATS: 
n = 747; NHANES: n = 2,616), treating each partici-
pant’s 3-day continuous sequence (4,320  min-epochs) 
as an indivisible unit. For data preprocessing, we per-
formed dimension merging on the triaxial PA data 
from NHANES using the sum of squares operation and 
applied a Butterworth filter to reduce abnormal noise. 
Importantly, we maintained the complete temporal 
sequence for each participant without any segmentation, 
ensuring the preservation of continuous activity patterns. 
This participant-level approach, combined with our strict 
cross-validation strategy that keeps all data from the 
same participant exclusively in either training or testing 
sets, prevents data leakage and enhances the robustness 
of our validation process.

PA pattern analysis from accelerometer data
Traditional analyses of accelerometer data often focus 
on cumulative measures such as total activity counts or 
total time spent in different intensity levels over a day. 
While these cumulative metrics are valuable, they alone 
may not fully capture the dynamic patterns of physical 

activity. For instance, two individuals might have identi-
cal total daily activity counts but achieve them through 
fundamentally different activity patterns [26].

To characterize PA patterns comprehensively at the 
participant level, we analyzed each participant’s complete 
3-day sequence using four complementary approaches: 
statistical, temporal, frequency, and nonlinear. Using sig-
nal processing methods from tsfresh, we extracted 777 
features from each participant’s complete minute-level 
PA sequence, ensuring that all temporal dependencies 
within individual sequences were preserved. These fea-
tures capture different properties of the entire 3-day PA 
sequence and reflect multiple dimensions of individual 
PA behavior. Each feature category describes distinct 
properties of the complete PA sequence from different 
perspectives, representing specific activity patterns that 
may be closely related to cognitive function. The specific 
features in each category are detailed below:

Statistical features describe the basic statistical proper-
ties of PA data and reflect the distribution characteristics 
of PA intensity.

Sum and mean
Represent the total amount and average level of PA, indi-
cating an individual’s overall activity level.

Skewness and kurtosis
Describe the asymmetry and tail characteristics of the PA 
intensity distribution. High skewness indicates a distribu-
tion with a long right tail, suggesting that the individual 
tends to engage in more high-intensity PA; high kurto-
sis indicates a heavy-tailed distribution, suggesting that 
extreme-intensity PA is more frequent.

Count below mean
Represents the number of PA instances below the average 
intensity, reflecting the frequency of an individual engag-
ing in low-intensity activities.

Temporal features capture the dynamic change charac-
teristics of PA time series and reflect the organizational 
patterns of PA in the time dimension.

Linear Trend
Represents the linear trend of the PA time series, reflect-
ing the long-term change trend of an individual’s PA 
level.

Change quantiles
Describes the quantile features of the change magni-
tude in the PA time series, reflecting the intensity of an 
individual’s PA fluctuations and further representing the 
diversity of activities.
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Frequency domain features describe the characteristics 
of PA time series in the frequency dimension, reflecting 
the periodicity and rhythmicity of PA.

FFT Coefficient
(Fast Fourier Transform Coefficient): Represents the 
energy distribution of the PA time series across different 
frequency components, reflecting the periodic character-
istics of an individual’s PA.

AR Coefficient
(Autoregressive Coefficient): Describes the autoregres-
sive properties of the PA time series, reflecting the time-
dependence of an individual’s PA behavior.

Nonlinear features capture the complex dynamic prop-
erties of PA time series, reflecting the nonlinearity and 
unpredictability of PA behavior.

Sample entropy
Measures the complexity of the PA time series. Higher 
sample entropy suggests that PA behavior is more ran-
dom and unpredictable, which may be related to cogni-
tive flexibility.

In summary, the typical PA features from the four 
categories describe the multidimensional attributes of 
individual activity behavior from different perspectives, 
represent specific activity patterns, and may be associated 
with cognitive function through various mechanisms.

Demographics and medical information
Cognitive function and activity behavior are influenced 
by various factors, including genetics, environment, and 
lifestyle [27]. In this study, we included demographic and 
disease history variables as covariates due to their acces-
sibility and universality, rather than biochemical or imag-
ing indicators. We selected a consistent set of covariates 
for both the NHATS and NHANES datasets to ensure 
comparability.

Demographic variables included age, gender, race, 
height, weight, body mass index (BMI), education level, 
marital status, and wage income. Disease history incor-
porated prevalent chronic conditions such as heart 
attack, heart disease, stroke, hypertension, diabetes, 
arthritis and lung disease. In addition to this, due to the 
potential relationship between mood and cognitive func-
tioning [28], we included mood status calculated based 
on PHQ9 (NHANES) versus PHQ4 (NHATS), all of 
which have been identified as risk factors for cognitive 
decline and may impair an individual’s ability to engage 
in activities.

Statistical analysis
Our analytical approach aimed to identify PA patterns 
associated with cognitive status and evaluate their poten-
tial predictive value when combined with demographic 
characteristics. The analysis proceeded in four main 
steps:

Firstly, seven hundred and seventy-seven features from 
the PA data were computed based on the tsfresh library. 
Missing values in demographic and disease history vari-
ables were imputed using the Missforest algorithm [29] 
to improve data quality and model performance. PA data 
were visualized using time series plots to illustrate differ-
ences in PA patterns among individuals with varying cog-
nitive levels. The Random Forest-based RFE method was 
used to select the top 20 important features from the 777 
PA features.

Secondly, to fully utilize the inter-correlated informa-
tion between PA features and demographic and disease 
history features, we introduced a feature fusion method 
based on CCA [30]. CCA learns a common subspace 
by maximizing the correlation between features from 
different modalities, achieving fusion between modali-
ties. Given two feature matrices X1 and X2 from differ-
ent modalities, the objective of CCA is to find two linear 
transformations w1 and w1 that maximize the correlation 
between the transformed features:

By solving the above optimization problem, we can 
obtain a pair of Canonical Projection Vectors (CPV), 
denoted as:

We performed CCA fusion on the PA features and 
demographic and disease history features separately, 
obtained a set of CPV, and then fused them with the 
original features to construct a more comprehensive and 
robust feature set. The number of canonical projection 
vectors was determined by the minimum dimensional-
ity principle, which means we selected the minimum 
dimension between the two modalities being fused to 
ensure optimal information preservation while avoiding 
overfitting.

Thirdly, a comprehensive two-stage modeling approach 
was adopted to ensure robust and generalizable results 
(Supplementary Fig.  2). In the first stage, we randomly 
split participants (with their complete 3-day activity 
sequences) into training (80%) and testing (20%) sets, 
stratified by cognitive status. This participant-level split 
ensures that all data from the same individual remained 

(1)maxw1,w2
=

w
T
1
X1X

T
2
w2

w
T
1
X1X

T
1
w1 w

T
2
X2X

T
2
w2

(2)v1 = X
Tw1

1
, v2 = X

Tw2

2



Page 7 of 15Fan et al. Int J Behav Nutr Phys Act           (2025) 22:11  

in either the training or testing set, preventing any 
potential data leakage. For each dataset (NHATS and 
NHANES), separate models were developed using five 
machine learning algorithms: K-Nearest Neighbors 
(KNN), Random Forest, Support Vector Machine (SVM), 
Decision Tree, and Gradient Boosting Decision Tree 
(GBDT). The models were trained using the top 20 PA 
features identified through RFE. Hyperparameter opti-
mization was performed using GridSearchCV with 5-fold 
cross-validation within the training set (parameters of 
the machine learning algorithm on GridsearchCV are 
shown in Supplementary Table  1). In the second stage, 
to develop more generalizable models, we identified the 
top 10 PA features that showed consistent importance 
across both datasets based on their SHAP values and 
re-trained the models using only these common fea-
tures. This approach ensures that our findings are robust 
across different populations and measurement condi-
tions. Model performance was evaluated on the held-out 
test set using multiple metrics including accuracy, AUC-
ROC, sensitivity, and specificity. The SHAP method was 
used to interpret the ML models, providing an intuitive 
and theoretically supported feature importance measure 

[31]. This interpretability analysis is crucial for clinical 
applications and practical decision-making, enhancing 
the credibility and transparency of the results. SHAP, as 
a core technology for mining PA digital biomarkers, helps 
identify the most predictive and interpretable PA features 
for developing cognitive health monitoring and interven-
tion tools.

Lastly, Univariate analysis using RCS was conducted on 
the top 10 common PA features to investigate their linear 
or nonlinear relationships with cognitive function. Pear-
son correlation coefficients were calculated between PA 
features, demographic features, and disease history fea-
tures, and correlation heatmaps were plotted to assess 
variable correlations. All analyses were conducted using 
Python 3.10. Statistical significance was set at p < 0.05, 
and 95% confidence intervals were reported where 
appropriate.

Results
Participants characteristics
The baseline characteristics of participants in the 
NHATS and NHANES datasets are summarized 
in Table  1.. In the NHATS dataset, the majority of 

Table 1 Demographic characteristics

Characteristics Attributes NHTAS NHANES
HC CI HC CI

Age 60–69 0 0 855 556

70–74 186 14 244 256

75–79 218 30 121 161

80–84 131 28 140 283

85–89 65 20

≥90 40 15

Gender Male 298 43 597 673

Female 342 64 763 583

Race White, non-Hispanic 531 70 797 475

Black, non-Hispanic 43 16 260 797

Others 66 21 303 563

Height 1.67 1.53 1.66 1.65

Weight 79.66 73.42 81.45 78.21

BMI 28.05 27.1 29.49 28.74

Diabetes Yes 141 31 274 341

No 499 76 1086 915

High blood pressure Yes 365 72 807 835

No 274 35 553 419

Stroke Yes 11 8 61 124

No 628 99 1298 1130

Heart attack Yes 11 2 103 125

No 628 104 1257 1131

Education level High school and below 211 59 457 813

Above high school 417 44 903 441
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participants in both the healthy control (HC) and cog-
nitive impairment (CI) groups were aged 70–84 years. 
The gender distribution in the HC group was 46.5% 
male, while in the CI group, 40.2% were male. Non-
Hispanic whites constituted a larger proportion of the 
HC group (79.8%) compared to the CI group (58.8%). 
The HC group had a higher average height (1.67  m) 
and weight (79.66  kg) than the CI group (1.53  m and 
73.42 kg, respectively). The prevalence of diabetes and 
hypertension was lower in the HC group (22% and 57%, 
respectively) than in the CI group (29% and 67.4%, 
respectively).

In the NHANES dataset, the 60–69 years age group 
represented a larger proportion of the HC group (47.7%) 
compared to the CI group (32.9%). The gender distribu-
tion was more balanced in the HC group (43.9% male, 
56.1% female) than in the CI group (53.6% male, 46.4% 
female). Non-Hispanic whites accounted for a higher 
percentage of the HC group (40.9%) than the CI group 
(27.4%). The average height and weight were similar 
between the HC group (1.66 m and 81.45 kg, respectively) 
and the CI group (1.65 m and 78.21 kg, respectively). The 
prevalence of diabetes was comparable between the HC 
group (25.2%) and the CI group (27.1%), while the preva-
lence of hypertension was lower in the HC group (59.4%) 
than in the CI group (69.2%).

Visualization of PA Intensity during 3days
To investigate the relationship between PA and cognitive 
function, we conducted a visual analysis of PA intensity 
on minute and hourly scales in the NHATS and NHANES 
datasets (Supplementary Fig.  3). In the NHATS data-
set, the HC group consistently demonstrated higher PA 
intensity, particularly during active periods, compared 
to the CI group, which exhibited significantly lower PA 
intensity (Supplementary Fig.  3a, 3b). The hourly aver-
age PA intensity revealed that the HC group maintained 
higher PA intensity during active periods (morning and 
afternoon) each day, while the CI group had relatively 
lower and less fluctuating PA levels (Supplementary 
Fig. 3b).

In the NHANES dataset, although the HC group still 
exhibited higher PA intensity than the CI group, the dif-
ference between the two groups was less pronounced 
compared to the NHATS dataset (Supplementary Fig. 3c, 
3d). The hourly average PA intensity indicated that the 
HC group had higher PA intensity during active periods 
compared to the CI group, but the overall trends were 
more similar (Supplementary Fig.  3d). Across all time 
periods, the HC group consistently demonstrated higher 
PA intensity than the CI group, with this difference being 
more evident in the NHATS dataset.

Recursive feature elimination and preliminary modeling 
analysis
RFE was performed on the 777 candidate features in the 
NHATS and NHANES datasets to identify the PA fea-
tures most strongly associated with cognitive function. 
The top 20 features from each dataset were selected for 
subsequent machine learning modeling (Supplementary 
Tables 2 and Supplementary Table 3).

To assess the impact of independent PA features and 
demographic features on predictive performance, we 
constructed feature subsets using demographic features 
alone, PA features alone, and canonical correlation vec-
tors fused from both. Five machine learning models were 
trained and evaluated on each subset. In the NHATS 
dataset, the highest AUCs were 0.69 for the demographic 
and disease history model (Fig. 2a), 0.82 for the PA model 
(Fig. 2b), and 0.81 for the fused model (Fig. 2c). Similarly, 
in the NHANES dataset, the highest AUCs were 0.79 for 
the demographic model (Fig.  2d), 0.76 for the PA-only 
model (Fig. 2e), and 0.80 for the fused model (Fig. 2f ).

SHAP values were used to interpret the influence of 
demographic features on cognitive function prediction 
(Fig. 2g and i). In the NHATS dataset, income, age, and 
education level were the most important features, with 
income and education level positively correlated and 
age negatively correlated with cognitive function. In the 
NHANES dataset, education level, age, and race were the 
most important features, with education level positively 
correlated and age negatively correlated with cognitive 
function. The race feature suggested differences in cog-
nitive function among racial groups. Income, education 
level, and age were the most important shared features 
across both datasets.

For PA features, the most important features in the 
NHATS dataset included Change quantiles, FFT coef-
ficient abs, FFT coefficient real, Cwt coefficients, and 
FFT coefficient imag (Fig. 2h). In the NHANES dataset, 
the most important PA features included Change quan-
tiles mean, Ratio beyond r, FFT coefficient imag, Quan-
tile, and Cwt peaks n (Fig. 2j). Features from the Change 
quantiles, FFT coefficient, and CWT categories con-
sistently ranked highly in both datasets, with Change 
quantiles ranking first in both independent PA features 
models.

RCS and correlation analysis of PA Feature
After removing collinearity, the top 10 PA features jointly 
ranked by the post-hoc models (Supplementary Table 4) 
were selected for RCS analysis. Results indicate that 
higher change quantiles (when the parameter is True) 
are associated with a lower risk of CI in both datasets 
(NHATS: p < 0.001, NHANES: p < 0.001) (Fig.  3a and k), 
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Fig. 2 Preliminary Modeling Analysis and Interpretable Analysis of 20 PA Characteristic Modalities and Demographic and Disease History Modalities 
Based on RFE Screening
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Fig. 3 Feature correlation analysis based on RCS and Pearson correlation. (a‑j) RCS curve analysis of the common 10 PA features in the NHATS 
dataset. (k‑t) RCS curve analysis of the common 10 PA features in the NHANE dataset. (u) Heat map of Pearson correlations between demographic 
disease history variables and 10 PA characteristics in NHATS. (v) Heat map of Pearson correlations between demographic disease history variables 
and 10 PA characteristics in NHANES
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while no significant relationship exists when the param-
eter is False (Fig. 3b and i).

FFT coefficients exhibit similar trends in NHATS 
(Fig. 3c and d) and NHANES (Fig. 3m and n) when the 
parameter is imag or real. CI risk is higher at interme-
diate FFT coefficient values and decreases at extreme 
values. FFT coefficients show significant nonlinear rela-
tionships in NHATS (FFT_imag: p = 0.02; FFT_real: 
p = 0.01) and similar trends in NHANES (FFT_imag: 
p < 0.001; FFT_real: p = 0.023). When the parameter is 
abs, higher FFT coefficients are associated with a lower 
CI risk (NHATS: p < 0.001, NHANES: p = 0.017) (Fig. 4e 
and o). Higher AR coefficients are associated with cogni-
tive impairment (NHATS: p < 0.001, NHANES: p < 0.001) 
(Fig. 3i and s).

Regarding cumulative and statistical indicators, as the 
sum of PA intensity increases, CI risk decreases (NHATS: 
p < 0.001, NHANES: p < 0.001) (Fig.  3f and p). A signifi-
cant nonlinear relationship exists between strike below 
mean values and CI risk, with increased risk and esti-
mation uncertainty at higher values. This relationship 
is more significant in the NHATS dataset (p < 0.001), 
with dramatic changes at lower values and a significant 
increase in risk at higher values (Fig. 3j and t). The count 
below mean variable in NHATS has an overall signifi-
cance of 0.012, but the nonlinear relationship is not sig-
nificant (p = 0.130) (Fig.  3g). As the count below mean 
value increases, CI risk significantly increases, espe-
cially at higher values. This result is not significant in 
NHANES. Correlation analysis of the included features 
in both datasets (Fig. 3u and v) reveals that change quan-
tiles and sum have strong positive correlations with AR 
coefficients and negative correlations with count below 
mean and age.

Comprehensive Model Performance and subgroup analysis
Feature from demographics, PA, and CPV were inte-
grated and modeled using five ML algorithms in both 
datasets. In the NHATS dataset, the random forest-based 
ML model achieved the highest AUC of 0.84 after com-
bining data from the three modalities (Fig.  4a), while 
in the NHANES dataset, the GBDT-based ML model 
achieved the highest AUC of 0.80 (Fig. 4b).

To validate the predictive ability of the 10 selected 
common PA features, final modeling was performed 
using these features with the random forest model. The 
results showed an AUC of 0.82 in the NHATS dataset 
(Fig. 4c) and 0.80 in the NHANES dataset (Fig. 4d). The 
random forest model achieved the highest accuracy in 
both datasets, with the highest accuracy reaching 87.33% 
in NHATS (Fig. 4e and f ).

A stratified analysis was conducted to assess the com-
prehensive model’s performance in mutually exclusive 

subgroups based on gender, age, and BMI. The model’s 
predictive performance was better in females than in 
males, particularly in NHATS (females: AUC = 0.92; 
males: AUC = 0.76) (Supplementary Fig.  4a, 4b). In the 
age-stratified analysis, the model performed better in 
the older adult group (age ≥ 80 years, AUC = 0.86) com-
pared to the non-older adult group (AUC = 0.83) in the 
NHATS dataset. Conversely, in the NHANES dataset, 
the model’s performance was significantly better in the 
non-older adult group (AUC = 0.81) than in the older 
adult group (AUC = 0.67) (Supplementary Fig.  4c, 4d). 
In the BMI-stratified analysis, the model’s performance 
was better in the low BMI group (AUC = 0.84) than in 
the high BMI group (AUC = 0.68) in the NHATS data-
set. However, in the NHANES dataset, the model’s per-
formance was comparable between the high and low 
BMI groups (AUC = 0.75) (Supplementary Fig. 4e, 4f ). To 
demonstrate the practical application of these findings, 
we developed a proof-of-concept system that implements 
these movement pattern analyses using wearable accel-
erometer data. Technical details and system architecture 
design of this implementation are provided in Supple-
mentary File 1.

In subgroup analyses, we further explored the inter-
actions between PA features and demographic charac-
teristics. The interaction plots revealed distinct patterns 
between Change quantiles, FFT coefficients and demo-
graphic variables across datasets. In NHATS, higher 
Change quantiles values were associated with lower cog-
nitive impairment probability across all demographic 
subgroups, with steeper slopes in females, older adults 
(≥ 80 years), and the high BMI group (≥ 28). Similarly, 
in NHANES, while maintaining the negative associa-
tion trend, the interaction effects were more pronounced 
in males, younger adults (< 80 years), and the low BMI 
group (< 28) (Supplementary Figs. 5, 6).

Discussion
This study demonstrated that PA patterns derived from 
wearable accelerometer data may serve as objective 
markers of cognitive status in older adults. By analyzing 
continuous activity data collected in natural settings, we 
identified several features that showed consistent asso-
ciations with cognitive status across two independent 
cohorts. When combined with demographic information, 
these movement patterns provided meaningful insights 
into cognitive status, potentially offering a complemen-
tary approach to traditional cognitive assessments.

An advantage of PA pattern monitoring is its ability 
to provide continuous, objective data without learning 
effects or the need for repeated clinical visits. Tradi-
tional cognitive screening tools like MMSE, while well-
validated, are limited by their point-in-time nature and 
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Fig. 4 Model performance of CCA fusion‑based secondary analysis of common PA features and demographics
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susceptibility to practice effects when administered fre-
quently. They also require trained personnel and stand-
ardized testing conditions, making regular monitoring 
challenging. In contrast, accelerometer-based PA pattern 
analysis can be conducted unobtrusively in natural set-
tings over extended periods, potentially enabling earlier 
detection of subtle changes in daily functioning that may 
signal cognitive decline.

A key finding is that frequency-domain, time-domain, 
and nonlinear PA features play a crucial role in charac-
terizing and predicting cognitive function, with higher 
importance than traditional PA indicators. Two features 
emerged as particularly significant: Change quantiles and 
FFT coefficients. Change quantiles measure the mag-
nitude of activity intensity transitions over the 3-day 
period, with higher values indicating more frequent 
transitions between different activity intensities (e.g., 
from sitting to walking). FFT coefficients capture the 
rhythmicity of these activity changes, with higher values 
reflecting more regular activity patterns throughout the 
day.

Individuals with better cognitive function typically 
demonstrated more dynamic activity patterns, charac-
terized by larger activity intensity transitions (higher 
Change quantiles) and more regular activity rhythms 
(stronger FFT coefficients). These patterns suggest better 
capacity for activity planning, execution, and adaptation 
- cognitive processes fundamental to executive func-
tion. In contrast, those with cognitive impairment often 
showed more monotonous activity patterns with fewer 
intensity variations and less regular rhythms.

Another major innovation of this study is the intro-
duction of a CCA-based multimodal data modeling 
framework alongside mainstream machine learning 
algorithms. CCA reveals complex association patterns 
among multiple variable sets by mapping them into a 
shared latent space, enabling effective cross-modal data 
fusion and prediction [34]. The collaborative modeling of 
PA features and demographic factors achieved superior 
performance compared to other algorithms across three 
independent datasets, highlighting the value of cross-
modal data integration in improving the accuracy and 
robustness of cognitive assessment.

This study explored and validated the potential of 
movement patterns as digital markers of cognitive sta-
tus using large-scale, multi-center real-world data and 
advanced analytical methods. Our approach offers sev-
eral notable strengths. First, we utilized two independ-
ent, nationally representative datasets, allowing for 
robust validation of our findings. Second, our analysis 
of continuous accelerometer data provided objective, 
real-world measurements of daily functioning, avoid-
ing recall bias inherent in self-reported measures. Third, 

the consistency of key movement patterns across differ-
ent cohorts suggests these markers may be generalizable 
across diverse populations.

Nevertheless, several limitations should be noted. 
First, while our findings suggest promising associations 
between movement patterns and cognitive status, these 
relationships were observed at specific time points and 
may not fully capture seasonal or longer-term variations 
in activity patterns. Second, the cognitive assessment 
methods differed between cohorts - while NHATS used 
a comprehensive assessment including physician diag-
nosis and validated screening tools, NHANES relied on 
cognitive performance tests with quartile-based cutoffs. 
Although this quartile-based approach has been used in 
previous studies, it may not accurately identify clinically 
significant cognitive impairment and could potentially 
misclassify individuals near the cutoff points. Third, nei-
ther dataset included biomarker data (e.g., cerebrospinal 
fluid markers, neuroimaging) that are increasingly rec-
ognized as important indicators for confirming cognitive 
impairment diagnosis. Furthermore, our sample may not 
be fully representative of the broader older adult popu-
lation, particularly regarding racial and ethnic diversity, 
socioeconomic status, and geographical distribution. 
Fourth, while our use of minute-level features offered 
practical advantages for clinical applications - including 
alignment with natural activity cycles and reduced com-
putational complexity for real-time monitoring - this 
approach has inherent limitations. Compared to raw 
accelerometer data (typically 30–100  Hz), minute-level 
aggregation may lose some fine-grained movement char-
acteristics that could be relevant for specific motor func-
tion assessments. Additionally, the effectiveness of this 
approach heavily relies on appropriate feature engineer-
ing methods and understanding of temporal patterns. 
However, considering the practical requirements of cog-
nitive assessment in older adults and the need for scalable 
monitoring solutions, we believe minute-level features 
strike a reasonable balance between feasibility and effec-
tiveness, particularly for capturing function impairment 
movement patterns in daily life settings [35–37].

Conclusions
This study identified consistent associations between 
specific movement patterns from wearable accelerom-
eter data and cognitive status across two independent 
cohorts of older adults. Features capturing movement 
variability and rhythmicity, particularly change quin-
tiles, provided meaningful information beyond tradi-
tional physical activity measures. When combined with 
demographic characteristics, these movement patterns 
demonstrated potential utility for cognitive monitoring 
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in natural settings. The proof-of-concept application 
developed from these findings demonstrates the fea-
sibility of translating movement pattern analysis into 
practical monitoring tools, offering a complementary 
approach to traditional cognitive assessments that pro-
vides continuous, objective data without the burden of 
repeated clinical testing.
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