International Journal of Behavioral Nutrition and Physical Activity

REVIEW

Open Access

Effects of physical activity on depressive and anxiety symptoms of women in the menopausal transition and menopause: a comprehensive systematic review and metaanalysis of randomized controlled trials

Hongyu Yue^{1†}, Yijiao Yang^{2†}, Fangfang Xie³, Jiahe Cui¹, Yang Li¹, Mengran Si¹, Shanshan Li^{1*} and Fei Yao^{1,3*}

Abstract

Background Depression and anxiety may significantly affect women in the menopausal transition and menopause. In addition to traditional treatment strategies such as hormone therapy, antidepressants, and psychotherapy, physical activity (PA) have been increasingly studied, but there is no consensus about their role in menopausal women with depression and anxiety.

Objective The current study aimed to evaluate the effect of PA on the severity of depressive (DS) and anxiety (AS) symptoms in women during the menopausal transition and menopause.

Methods We searched for relevant published studies in PubMed, Embase, Web of Science, Cochrane Library, and CINAHL prior to 8 April 2024, focusing on randomized controlled trials documenting the effect of physical activity on DS and AS, and assessed study quality using the Newcastle–Ottawa Scale.

Results The data used for meta-analysis were derived from 21 studies (DS, n = 9; AS, n = 1; DS and AS combined, n = 11) involving 2020 participants. The results showed that PA groups demonstrated a statistically significant effect of depressive symptoms versus controls (DS [SMD: -0.66, 95% CI: -0.99 to -0.33; P < 0.001]; AS [SMD: -0.55, 95% CI: -0.82 to -0.27; P < 0.001]). As subgroup analyses demonstrated, physical exercise also reduced depressive symptom of women in menopausal status (SMD =-0.56, 95% CI: -0.96 to -0.17, p = 0.006, $I^2 = 69\%$), postmenopausal status (SMD =-0.94, 95% CI: -1.46 to -0.42, p = 0.0004, $I^2 = 94\%$), and both in menopausal transition and postmenopausal status (SMD =-0.30, 95% CI: -0.49 to -0.12, p = 0.001, $I^2 = 0\%$), while it only reduced anxiety symptom of postmenopausal women (SMD =-0.96, 95% CI: -1.49 to -0.43, p = 0.0004, $I^2 = 89\%$). Low-intensity and moderate-intensity exercise both

[†]Hongyu Yue and Yijiao Yang contributed equally in this work

*Correspondence: Shanshan Li ellie9880@163.com Fei Yao doctoryaofei@163.com

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

produced increasingly benefits over depressive and anxiety symptoms. However, there is no statistically significant effect of exercise intensity on both depressive symptom and anxiety symptom.

Conclusion Physical activities with low to moderate intensity can impart remarkable improvements for managing menopausal women with depression and anxiety.

Keywords Physical activity, Depression, Anxiety, Menopause, Meta-analysis

Introduction

Women undergo a range of physical and psychological changes during menopausal transition, encompassing vasomotor symptoms, mood disturbances, sleep problems, genitourinary problems, and other troubling illnesses that reduce the quality of life [1, 2]. Evidence suggests that women are at high risk of experiencing depression or anxiety during the menopausal transition, attributed to varying endogenous estrogen levels [3-5]. In menopausal women, the likelihood of experiencing anxiety and depression stands at 12.62% and 25.99%, potentially tripling the pre-menopausal levels [6]. Researches indicate that women undergoing menopausal transition are linked to significantly worse quality of life and increased losses in work productivity and healthcare resources [7, 8]. Consequently, there is a vigorous pursuit of scientific and effective strategies to alleviate depressive and anxiety symptoms of women in the Menopausal Transition.

Physical activity (PA) is defined as any bodily movement produced by skeletal muscles that requires expenditure of energy greater than resting levels. Physical activity results in a range of health benefits on health and well being, decreasing the risk for coronary artery disease, hypertension, diabetes mellitus, obesity, and osteoporosisa [9]. Some clinical and epidemiological studies have verified the significant impact of physical activity in treating mental health conditions, especially depression and anxiety [10-12]. Besides, studies consistently noted a significant and beneficial effect of physical activity on mental health in menopausal women [13-15]. A longitudinal observational research indicates a reduced probability of enduring significant depressive symptoms over a decade in women who exercise at moderate intensity regularly [16]. Concerning the mode of exercise, it has been demonstrated that aerobic exercise enhances depression, insomnia among menopausal wome [17]. Six months of aerobic exercise, in contrast to inactive women, aid in reducing common menopausal symptoms such as night sweats, mood fluctuations, and irritability [18].

In the last decade, there has been a noticeable rise in the quantity of published PA intervention trials among menopausal women. The small number of studies contributing to the pooled analyses and degree of heterogeneity among the included studies results in limited information and overall strength of previous review findings about effect of PA on depressive or anxiety among menopausal women. To date, there has been few systematical review of all types of PA on both depressive and anxiety outcomes among menopausal women. This study aimed to systematically review and analyze the overall findings regarding the efficacy of all types of physical activity for alleviating depressive and anxiety symptoms of women during the menopausal transition and explored the differences between varied menopause status and physical activity intensity.

Materials and methods

Literature information sources and search strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [19] was rigorously adhered to in this systematic review and meta-analysis. The study was registered in the international prospective register of systematic reviews (PROSPERO) (ID: CRD42024531437). Two researchers (HYY and FFX) independently searched and reviewed for relevant articles published up to 8 April 2024, which were all cited in five electronic database: PubMed, Embase, Web of Science, Cochrane Library and Cumulative Index of Nursing and Allied Health Literature (CINAHL). Te full search strategy is documented in the Supplementary file 1 and consisted of three modules in the search term: physical activity, menopause and mood disorder.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) Studies presented available original data; (2) Human research; (3) Randomized controlled trials; (4) Articles with populations in perimenopause, menopause, postmenopause, or climacteric depressive (DS) and anxiety (AS) symptoms; (5) Articles with interventions including aerobic, resistance, walking, water exercise, rotational vibration training, tai chi, circuit training, interval, or combined training with reporting parameters such as frequency, intensity, type and time.

The exclusion criteria were as follows: (1) Animal studies; (2) Articles classified as book chapters, conference abstracts, case reports, case series, letters, comments, interviews, and uncontrolled clinical trials; (3) Articles with populations experiencing menopausal symptoms due to other medical conditions, or in premenopause, or with other severe or chronic medical diseases, or psychiatric conditions requiring pharmacologic interventions; (4) Articles with interventions including undefined type of physical activity or any non-exercise interventions combined with physical activity; (5) Articles were unavailable to supply numerical data generated by specified tools or insufficient information for calculation; (6) Articles presented repetitive data.

Data extraction

Two researchers (HYY and FFX) individually extracted data for precision and uniformity. Every study that might qualify underwent an independent assessment for the complete text, considering both inclusion and exclusion standards. To prevent the duplicate data occurred, literature that had been replicated was incorporated just a single time. When the two researchers disagreed, a conclusive agreement was achieved through team discussion and the involvement of a third researcher (JHC). Eligible randomized controlled trials were all selected from original clinical researches and other meta-analyses. Data extracted from the selected articles encompassed: title of the article, author, year, study location, patients' characteristics (sample size, mean age, menopausal stage, BMI, medical treatment), intervention characteristics (exercise protocols, duration, intensity, intervals), outcome variables (the rating scale used to assess DS or AS, the primary endpoint value). We opted to obtain the data from the corresponding authors of studies when the methodology was unclear or when data were provided in a form unsuitable for meta-analysis. If a study reported high, moderate, and low levels of PA, data about the estimates of all levels were collected.

Risk-of-bias assessment

Two researchers (HYY and FFX) assessed the included RCTs for risk of bias using Cochrane risk of bias assessment tool (5.1.0) [20] to assess random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias) and other bias. Disagreements were resolved by consensus discussion or the third researcher (JHC). The degrees of risk of bias for each included article were assessed as "low risk" "unclear" or "high risk". The Review Manager software (RevMan 5.3; Cochrane Collaboration, Oxford, UK) was used to perform the meta-analysis and graphic production. Results are presented in risk of bias tables for each included study.

Data synthesis and statistical analysis

All analyses were performed using RevMan version 5.3 under the guidance of the corresponding author (FY).

The primary outcome was the mean and standard deviation scores of DS and AS in every research. For each comparison of DS and AS, we calculated the standardized mean difference (SMD) and 95% confidence interval (CI). The random effect model was applied for pooling analysis, because it generates a more reliable estimate than the fixed effect analysis in cases of significant heterogeneity [21, 22]. Hedges'g method adjusted for variances caused by incorporating trials that differ in sample sizes. Heterogeneity was considered by the authors when the clinical and methodological characteristics of the studies in question were sufficiently alike for a meta-analysis to produce a significant summary. A heterogeneity test was explored using Cochran's Q (Chi² test) and I^2 statistics. I^2 value indicates the degree of heterogeneity among included studies as a result of variation across studies instead of sampling error. Low, moderate and high heterogeneity were defined using the I2 tests and cutoffs of 25%, 50% and 75%, respectively [23]. Testing for overall effect (Z score) was regarded as significant at p < 0.05.

In the subgroup analysis, all data included in the meta-analysis were divided into subgroups, according to menopause status, physical activity intensity and PA types. Such analyses were used to investigate reasons of heterogeneity and to offer estimates of treatment effects for clinically relevant subgroups of patients. The results revealed the between-study heterogeneity. Forest plots were used to summarize the meta-analyses in the form of SMD, 95% confidence intervals, p-value for test of overall effect, chi-square and I^2 test statistics. A sensitivity analysis was performed on the main results to determine whether review conclusions would have varied had the criteria been limited to studies with minimal bias risk (i.e. studies not deemed at high risk of bias in any domain and reporting acceptable methods of randomization and allocation concealment).

Results

Study selection and categorization

The systematic review resulted in 2920 records, of which 1245 duplicates were removed and 1605 articles excluded after evaluating abstract and titles. From the remaining 70 articles, we excluded 49 studies due to the following reasons: not eligible design, intervention, or outcomes. In the end, 21 studies were eligible and included in the quantitative analyses. Reasons for excluding studies at each stage of the literature screening are reported in Fig. 1.

Summary of study characteristics

Twenty-one studies were included (DS, n = 9; AS, n = 1; DS and AS combined, n = 11). The included studies comprised a total of 2020 participants and 21 experimental arms (n = 1990 DS [20 arms]; 1411 AS [13 arms]). The

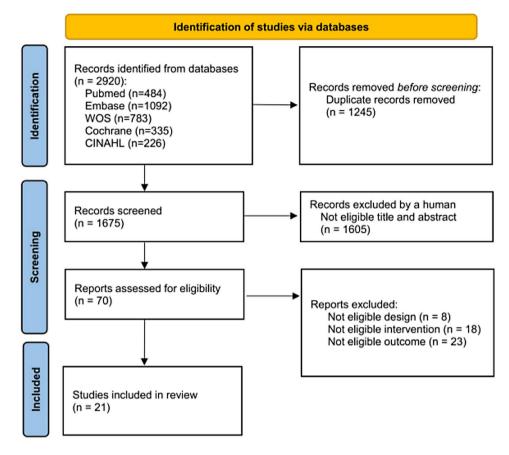


Fig. 1 Flowchart of the selection of the studies

general characteristics of the studies are presented in Tables 1 and 2. Studies were published between 2006 and 2022 and were conducted in Iran [24], Brazil [25], Spain [26–28], France [29], USA [17, 30–33], China [34–38], Japan [39, 40], Finland [41], Korea [42], and Turkey [43]. Sample size for each study ranged from 30 to 236, and 2020 menopausal women aged over 40 years old were recruited for all included studies, including 990 participants in the experimental group and 1030 participants in the control group. According to the modes of menopause, there were postmenopause [24–30, 32, 35, 36, 40, 43], menopause [31, 37, 38, 41, 42], Menopausal transition or postmenopause [33, 39], Late perimenopause or postmenopause [17] and perimenopause [34]. The interventions were all based on physical exercise and ranged in duration from 3 to 52 weeks, with interventions ranging from 70 to 450 min per week. The intensity of PA was based on heart rate max, VO² max, heart rate reserve or estimated metabolic equivalent of task (METs) [44, 45]. Depressive symptoms were assessed with the BDI [24, 25, 29, 31, 35, 43], the BSI [30, 32], the GDS [28, 40], the HADS [26, 27], SCL-95-R [42], the PHQ [17, 33], the Kupperman Scale [37], the WHQ [41] and the SDS [34, 36, 39]. Anxiety symptoms were assessed with the BSI [30, 32], the GAD [17, 33], the BAI [25], the HAMA [38], the HADS [26, 27] the SCL-95-R [42], the WHQ [41], the SAS [36] and the Kupperman Scale [37].

Quality assessment

The quality assessment showed that around 67% of the studies had some concerns or a high risk of bias (Fig. 2). Most high risk of bias found in included studies is inadequate allocation concealment [26, 29, 35, 37], inappropriate method of blinding [24, 29, 34, 35, 39, 41] and incomplete outcome data [24, 25, 27, 34–37, 40, 42] (Fig. 3). Physical activity interventions faced limitations with blinding methods and participant retention affecting attrition and adherence to protocols. Our meta-analyses revealed significant heterogeneity in pooled data, due to inconsistent DS and AS assessments and varying PA intervention.

Summary of study outcomes Depressive outcomes

Twenty existing studies [17, 24–37, 39–43] recruited 1990 menopausal women (975 in the experimental group and 1015 in the control group) to evaluate the effects of depressive scores in menopausal women. A random-effects model was used with SMD due to different evaluation tools. The results showed that PA groups

JS
0
đ
Ę
Ś
é
·:-
ŝ
Ψ
0
Å
Ť
Ö
ğ
H
S
9
Ξ
7
S S
Ĩ
2
ntı
0
Ŭ
σ
ZeC
Ë
9
2
g
-
0
ð
2
.⊆
Φ
Ę
÷
ics o
S
<u> </u>
eris
ē
t
ğ
ar
5
0
ę
÷
Se
σ
â
-
Table 1
ž
at
Ë

Manuchanal Mat Low International Mat Low International Mat Mat Postmenopausal 5- Valing 12w Low intensity No Beck Depension Inven- tory (BD) Postmenopausal 5- Valing 12w Low intensity No Beck Depension Inven- tory (BD) Postmenopausal 6- Valing 2/w 60min Wat-list Beck Depension Inven- tory (BD) Postmenopausal 6- Valing 2/w 60min Wat-list Beck Depension Inven- tory (BD) Postmenopausal 6- Valing 2/w 60min 60-75% 60min Mat-list Beck Depension Inven- tory (BD) Postmenopausal 6- Valing 3/w 60 min 60-75% 60 min 60-75%	Attended to the second	C+11-4	Menone of the	0.00			Time / atomoter.		Measuree	- lame	Month and	- J	Moon + CD
wk wk<	runnon, your	location		y yy Y	ent	tion,		treatment		size		size	
etal. Ian Postmenopausal 5 Making Dow intensity No. Ext Depression invention or (B0) etal. Brazil Postmenopausal 2 Yoga 2/M Omin- No. Ext Depression invention or (B0) etal. Brazil Postmenopausal 2 Yoga 2/M Omin- No. Ext Depression invention or (B0) detal. France Postmenopausal 2 Waking Zo Amin. Ad-75% maximal Making Ext Depression invention or (B0) detal. France Postmenopausal 2 Waking Zo Amin. Ad-75% maximal Making Ext Depression invention or (B0) detal. France Postmenopausal 2 Waking Zo Amin. Ad-75% maximal Making Ext Depression invention or (B0) detal. France Postmenopausal C Opsing Zo Making Zo						wk				active		control	
etelBaziPostmenopausal2-NogaNotherBaritBortenopausal2-NogaBortenopausalan etelBaritPostmenopausal2-MalkingBortMarkingBortenopausalBortenopausalde tai.DSAPostmenopausal2-WalkingAnni-40-75% maximalMarkingBortenopausalde tai.DSAPostmenopausal2-WalkingAnni-75% maximalMarkingBortenopausalde tai.DSAPostmenopausal2-WalkingAnni-75% maximalMarkingBortenopausalde tai.DSAPostmenopausal2-MalkingBortenopausalBortenopausalBortenopausalde tai.DSAMenopausal2-MalkingBortenopausalBortenopausalBortenopausalde tai.DSAMenopausal2-MalkingBortenopausalBortenopausalBortenopausalde tai.DSAMenopausal2-MalkingBortenopausalBortenopausalBortenopausalde tai.DSAMenopausal2-MalkingBortenopausalBortenopausalBortenopausalde tai.DSAMenopausal2-MankingMarkingBortenopausalBortenopausalde tai.DSAMenopausal2-MankingMarkingBortenopausalBortenopausalde tai.DSAMenopausal2-MankingMarkingMarkingBortenopausalde tai.DSAMenopausal2-Menopa	Abedi et al. 2015	Iran	Postmenopausal	50- 75		12w	Low intensity	No intervention	Beck Depression Inven- tory (BDI)	49	13.7±5	48	19.6±4.79
Spain Postmenopausal Sp- Plates Zw Gonin No Hopemation Hopemation </td <td>Afonso et al. 2012</td> <td>Brazil</td> <td>Postmenopausal</td> <td>42– 58</td> <td></td> <td>2/w, 16w</td> <td>60 min</td> <td>Wait-list</td> <td>Beck Depression Inven- tory (BDI)</td> <td>15</td> <td>11.0±1.9</td> <td>15</td> <td>14.8±1.9</td>	Afonso et al. 2012	Brazil	Postmenopausal	42– 58		2/w, 16w	60 min	Wait-list	Beck Depression Inven- tory (BDI)	15	11.0±1.9	15	14.8±1.9
Index Postmenopausal 40- Walking Amminutation Mainutation Beck Depression Invention netal USA Postmenopausal 50- Amminutation	Aibar- Almazán et al. 2017	Spain	Postmenopausal	50- 75		2/w, 12 w	60 min	No intervention	Hospital anxiety and depression scale (HADS)	55	3.98±2.93	52	6.81±3.6
netal USA Postmenopausal 50- Aerobic 5/w Har, 60-75% of VO ² Strething Bird Symptom Inventory fén- Spain 65 exercise 5.2w max, moderate intensity 00 Hospital anxiety and getal DS Qigong 2/w 60 Mining 860 Hospital anxiety and yet al. USA Menopausal 40- Walking 3/w 60 min, 60-75% of the Mai-Hist Beck Depression inventor yet al. USA Menopausal 40- Walking 3/w 60 min, 60-75% of the Mai-Hist Beck Depression inventor al. 2017 China Perimenopausal 40- Subrit of the Mai-Hist Beck Depression inventor al. 2016 Japan Postmenopausal 40- Walking Tony (BD) al. 2016 Japan Menopausal 45- Main, 60% beart rate resolution Eory-18 (BS-18) al. 2016 Japan Menopausal 40- Aerobic 5/w 45 min, 70-85% of maxi. Eory	Bernard et al. 2105	France	Postmenopausal	40- 63		2/w, 6w	40 min, 40–75% maximal heart rate, moderate intensity	Wait-list	Beck Depression Inven- tory (BDI)	61	7.74±0.77	60	10.52±0.78
[6r- Spain Postmenopausal 60- Qigong 2/v. 60 min. No Hospital anxiety and intervention vet.al. USA Menopausal 40- Walking 3/v. 60 min. 60-75% of the heart rate reserve (HRR). Beck Depression Inven- tory (BD) vet.al. USA Menopausal 40- Walking 3/v. 60 min. 60% heart rate reserve (HRR). Beck Depression Inven- moderate intensity tal. China Perimenopausal 40- Kaling 3/v. 60 min. 60% heart rate reserve (HRR). Beck Depression Inven- moderate intensity al. 2017 China Postmenopausal 40- Aerolic 5/w. 60-0 min No Self-rating depressive al. 2016 Japan Postmenopausal 40- Aerolic 5/w. 60-min. 60/w. Self-rating depressive al. 2016 Japan Menopausal 40- Aerolic 5/w. 60-min. 60/w. Self-rating depressive al. 2016 Japan Menopausal 40- Arolic 5/w. 60-min. Nov 9/% (BS)	Bowen et al. 2006	USA	Postmenopausal	50- 65		5/w, 52w	45 min, 60–75% of VO ² max, moderate intensity	Stretching	Brief Symptom Inventory (BSI)	86	94.31 ± 10.4	86	93.45 ± 8.03
y et al. USA Menopausal 40- Walking 3/w. 60 min, 60-75% of the matriate reserve (HRR). Beck Depension Inven- tory (BD) tal. China Perimenopausal 40- Square 5/w. 60-00 min tory (BD) al. 2017 China Perimenopausal 40- Square 5/w. 60-00 min self-rating depression al. 2017 China Postmenopausal 45- Walking 3/w. 60 min, 60% heart rate reserve (HRR). Nov. Self-rating depression al. 2017 China Postmenopausal 45- Walking 3/w. 60 min, 60% heart rate re- Wait-list Beck Depression Inven- mae tal. USA Postmenopausal 45- Aerobic 5/w. 45 min, 70-85% of maxi- Mair-list Beck Depression Inven- al. 2016 Japan Menopausal 45- Aerobic 5/w. 45 min, 70-85% of maxi- Mair-list Mory 21 (BD) al. 2016 Japan Menopausal 45- Serecise 5/w. 45 min Mair-list M	Carcelén- Fraile et al. 2022	Spain	Postmenopausal	60- 70		2/w, 12w	60 min	No intervention	Hospital anxiety and depression scale (HADS)	57	7.70±3.23	60	10.07 ± 3.16
tal. China Perimenopausal 40- Square 5/w. 60-90 min, 60% heart rate re- No Self-rating depressive intensive intervention Self-rating depressive intensive interval al. 2015 Japan Postmenopausal 40- Aerobic 5/w. 45 min, 70-85% of maxi- Wait-list Beck Obspression Inven-tory-21 (BDI) ma et al. USA Postmenopausal 40- Aerobic 5/w. 45 min, 70-85% of maxi- Wait-list Berk Obspression Inven-tory-21 (BDI) ma et al. USA Menopausal 7/w. 10 min Mait-list Mait-li	Elavsky et al. 2007	USA	Menopausal	40- 62		3/w, 16w	60 min, 60–75% of the heart rate reserve (HRR), moderate intensity	Wait-list	Beck Depression Inven- tory (BDI)	63	6.38±4.94	39	8.11±7.64
al. 2017 China Postmenopausal 45- Walking 3/w, 60 min, 60% heart rate re- Wait-list Mait-list Beck Depression Inven- ma et al. USA Postmenopausal 40- Aerobic 5/w, 45 min, 70-85% of maxi- Mait-list Brief Symptom Inven- transition or 75 exercise 52w mal heart rate, moderate intensity Mait-list Bisef Symptom Inven- transition or 73 exercise 52w mal heart rate, moderate intensity Erraing depressive bott and transition or 7. The Stretching 7/w, 10 min Covigorous intensity S1-18) to 3/-8 for transition or 7. The Stretching 7/w, 10 min Covigorous intensity S1-18 (BS1-18) to 3/-8 for transition or 7. The Stretching 7/w, 10 min Covigorous intensity S1-18 (BS1-18) to 3/-8 for transition or 7. The Stretching 6 for transition or 7. The Stretching 6 for transition or 1. 2022 China Postmenopausal 45- Aerobic 4/w 50 min, 64-80% of maxi- No Menopausal 45- Aerobic 4/w 50 min, 64-80% of maxi- No Menopausal 45- Aerobic 1. 2020 transition or 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Gao et al. 2016	China	Perimenopausal	40- 62		5/w, 12w	60–90 min	No intervention	Self-rating depressive scale (SDS)	26	0.15±0.08	24	0.02 ± 0.09
Image and a construction Action is formation Action is forma	Hu et al. 2017		Postmenopausal	45- 60		3/w, 16w	60 min, 60% heart rate re- serve, moderate intensity	Wait-list	Beck Depression Inven- tory-21 (BDI)	40	2.25±1.24	40	3.85 ± 2.14
al 2016 Japan Menopausal 45- Stretching 7/w, 10 min Wait-list Self-rating depressive transition or 55 3 w 3w Scale (SDS) scale (SDS) postmenopausal	lmayama et al 2011		Postmenopausal	40- 75		57w, 52w	45 min, 70–85% of maxi- mal heart rate, moderate- to-vigorous intensity	Wait-list	Brief Symptom Inven- tory-18 (BSI-18)	117	48.1±9.8	87	48.4±9.6
I. 2022 China Postmenopausal >40 Baduanjin 5/w, 45 min Er Xian Self-rating depressive ret al. Finland Menopausal 45- Aerobic 4/w 50 min, 64-80% of maxi- No Scale (5DS) ret al. Menopausal 45- Aerobic 4/w 50 min, 64-80% of maxi- No Menopause-specific qual- on et al. USA Menopausal 12w mal heart rate, moderate intervention ity of life score (WHQ) on et al. USA Menopausal >60 Yoga 2/w 90 min No Patient Health Question- on et al. USA Menopausal >60 min 12w No Patient Health Question- et al. Korea Menopausal 3/w 90 min No Patient Health Question- et al. Korea Menopausal 12w No Patient Health Question- et al. Korea Menopausal 12w Patient Health Question- Intervention et al. Korea Menopausal 12w Mo No Patient Health Question-	Kai et al. 2016		Menopausal transition or postmenopausal	45- 55		7/w, 3w	10 min	Wait-list	Self-rating depressive scale (SDS)	20	35.8±9.3	20	41.6±7.3
o et al. Finland Menopausal 45- Aerobic 4/w, 50 min, 6480% of maxi- No Menopause-specific qual- intervention 65 training 12w mal heart rate, moderate intervention ity of life score (WHQ) on et al. USA Menopausal >60 Yoga 2/w, 90 min No Patient Health Question- intervention on et al. USA Menopausal >60 Yoga 2/w, 90 min No Patient Health Question- intervention No on et al. USA Menopausal 2 2/w, 90 min No Patient Health Question- intervention No Patient Health Question- intervention No et al. Korea Menopausal 3/w, 60 min Usual care Korea Symptom-Check- ist-90-Revision (SCL-95-R) t al. 2020 Turkey Postmenopausal 50- Whole-body 3/w, 20-60 min No Beck depression inven- intervention Nor 65 vibration 24w Menopausal 24w Mo No No No	Li et al. 2022	China	Postmenopausal	>40		5/w, 16w	45 min	Er Xian Decoction	Self-rating depressive scale (SDS)	17	47.06±1.81	15	47.07±2.19
on et al. USA Menopausal >60 Yoga 2/w, 90 min No Patient Health Question- intervention transition or postmenopausal 12w 12w intervention naire-8 (PHQ-8) tail. Korea Menopausal 5/w 60 min Usual care Korea Symptom-Check- list-90-Revision (SCL-95-R) tail. Turkey Postmenopausal 50- Whole-body 3/w, 20-60 min No Beck depression inven- intervention 65 vibration 24w intervention tory (BD)	Luoto et al. 2012	Finland	Menopausal	45– 65		4/w, 12w	50 min, 64-80% of maxi- mal heart rate, moderate intensity	No intervention	Menopause-specific qual- ity of life score (WHQ)	74	0.12±0.2	77	0.22±0.21
et al. Korea Menopausal SaBang-Dol- 3/w, 60 min Usual care Korea Symptom-Check- Gi walking 12w Iist-90-Revision (SCL-95-R) t al. 2020 Turkey Postmenopausal 50- Whole-body 3/w, 20–60 min No Beck depression inven- 65 vibration 24w intervention tory (BDI)	Newton et al. 2014	USA	Menopausal transition or postmenopausal	> 60		2/w, 12w	90 min	No intervention	Patient Health Question- naire-8 (PHQ-8)	66	-0.8±3.55	133	0.1±3.53
Turkey Postmenopausal 50- Whole-body 3/w, 20-60 min No Beck depression inven- 65 vibration 24w intervention tory (BDI)	Noh et al. 2020	Korea	Menopausal			3/w, 12w	60 min	Usual care	Korea Symptom-Check- list-90-Revision (SCL-95-R)	21	43.57±7.02	19	45.84±8.94
	Sen et al. 2020) Turkey	Postmenopausal	50- 65		3/w, 24w	20–60 min	No intervention	Beck depression inven- tory (BDI)	15	9±3.3	18	15.9±6.5

Table 1 (continued)	ntinued)											
Author, year Study locatio	Study location	Menopausal stage Age, Active y treatm	Age, Y	ent	Dura- tion, wk	Dura- Time/Intensity tion, wk	Control treatment	Measures	Sample size active	Mean±SD Sample size control	Sample size control	Mean±SD
Sternfeld et al. USA 2014	USA	Late peri- menopausal or postmenopausal	40– 65	40– Exercise 65 training	3/w, 12w	40–60 min, 50–70% of No Patient Health C heart rate reserve, moder-intervention naire-8 (PHQ-8) ate intensity	No intervention	Patient Health Question- 78 naire-8 (PHQ-8)	78	-0.9±3.38	135	0.1 ± 3.53
Takahashi et Japan al. 2019	Japan	Postmenopausal	45– 55	45- increased 55 physical activities	⊗	>=3METs, moderate to vigorous intensity	No Geriatric De intervention Scale (GDS)	pression	19	2.9±1.7	19	2.9±2.6
Villaverde Gutiérrez et al. 2012	Spain	Postmenopausal		Exercise training	2–3/w, 12w	2–3/w, 50–60 min, 50–85% maxi- No 12w mum heart rate reserve, inte moderate intensity	No Geriat intervention (GDS)	Geriatric Depression Scale 27 (GDS)	27	12.11±2.4	30	15.05±2.6
Zhao et al. 2020	China	Menopausal	50- 70	24 forms taichi	3/w, 48w	60 min, 55–65% maxi- mum heart rate reserve, moderate intensity	No intervention	Kupperman Scale	36	0.8±0.7	38	1.8±0.9

demonstrated a statistically significant effect of depressive symptoms versus controls (SMD: -0.66, 95%CI: -0.99 to -0.33; P < 0.001, I² = 92%; N = 1990; Fig. 4).

Anxiety outcomes

Twelve studies [17, 25–27, 30, 32, 33, 36–38, 41, 42] recruited 1411 menopausal women (677 in the experimental group and 734 in the control group) to evaluate the effects of anxiety scores in menopausal women. The results showed that PA groups demonstrated a statistically significant effect of anxiety symptoms versus controls (SMD: -0.55, 95% CI: -0.82 to -0.27; P<0.001, I^2 =83%; N=1411; Fig. 5).

Subgroup analyses

Exercise intensity

Exercise intensity was classified as low intensity [24–26, 33, 38, 39, 42, 43] or moderate intensity [17, 28–32, 35, 37, 40, 41]. Moderate-intensity exercise reduced depressive and anxiety symptoms in comparison to controls (SMD =-0.76, 95% CI: -1.27 to -0.25, p = 0.003, $I^2 = 94\%$; SMD =-0.23, 95% CI: -1.41 to -0.06, p = 0.01, $I^2 = 35\%$; Figs. 6 and 7, respectively). Low-intensity exercise produced similar benefits over depressive and anxiety symptoms (SMD =-0.86, 95% CI: -1.27 to -0.45, p < 0.001, $I^2 = 79\%$; SMD =-0.75, 95% CI: -1.45 to -0.06, p = 0.03, $I^2 = 89\%$; Figs. 6 and 7, respectively). However, there is no statistically significant effect of exercise intensity on both depressive symptom and anxiety symptom (DS: Chi² = 0.09 df = 1, P = 0.77; AS: Chi² = 2.03 df = 1, P = 0.15; Figs. 6 and 7, respectively).

Menopausal state

Menopausal state was classified as menopausal [31, 37, 38, 41, 42], postmenopausal [24-30, 32, 35, 36, 40, 43] and both of them [17, 33, 39]. For depressive symptom, the subgroup analyses showed a statistically significant difference in all three subgroups (Menopausal: SMD = -0.56, 95% CI: -0.96 to -0.17, p = 0.006, $I^2 = 69\%$; Postmenopausal: SMD = -0.94, 95% CI: -1.46 to -0.42, p = 0.0004, $I^2 = 94\%$; Menopausal transition and postmenopausal: SMD =-0.30, 95% CI: -0.49 to -0.12, p = 0.001, $I^2 = 0\%$; Fig. 8). Physical exercise also reduced anxiety symptom in postmenopausal women (SMD =-0.96, 95% CI: -1.49 to -0.43, p = 0.0004, $I^2 = 89\%$; Fig. 9). However, no significant intervention effect on anxiety symptom was found in menopausal women (SMD =-0.26, 95% CI: -0.60 to -0.07, p = 0.12, $I^2 = 43\%$; Fig. 9). The subgroup result showed that there was significant differences on anxiety symptom between menopausal and postmenopausal women (Chi² = 4.71, df = 1, P = 0.03; Fig. 9).

Author, year	Study	Menopausal stage	Age,	Active	Dura-	Author, year Study Menopausal stage Age, Active Dura- Intensity Contr	Control	Measures	Sample	Mean±SD	Sample	Mean±SD
	location			treatment	tion, wk		treatment		size active		size control	
Afonso et al. 2012	Brazil	Postmenopausal	50- 75	Yoga	2/w, 16w	60 min	Wait-list	Beck Anxiety Inventory (BAI)	15	8.8±1.9	15	13.5±1.9
Aibar-Almazán et al. 2017	Spain	Postmenopausal	50- 75	Pilates	2/w, 12 w	60 min	No intervention	Hospital anxiety and depression scale (HADS)	55	4.76±3.73	52	9.37±3.52
Bowen et al. 2006	USA	Postmenopausal	40- 63	Aerobic exercise	5/w, 52w	45 min, 60–75% of VO ² max, moderate intensity	Stretching	Brief Symptom Inventory (BSI)	87	94.36±10.94	86	95.09±8.16
Carcelén-Fraile et al. 2022	Spain	Postmenopausal	50- 65	Qigong	2/w, 12w	60 min	No intervention	Hospital anxiety and depression scale (HADS)	57	5.68±3.53	60	8.83±4.83
Han et al. 2015	China	Menopausal	40- 62	Yoga	14/w, 12w	30 min	Auricular plaster	Hamilton Anxiety Scale (HAMA)	15	14.36±3.85	15	15.19±3.99
lmayama et al. 2011	USA	Postmenopausal	40- 62	Aerobic exercise	5/w, 52w	45 min, 70–85% of maximal heart rate, moderate-to-vigorous intensity	Wait-list	Brief Symptom Inven- tory-18 (BSI-18)	117	43.0±6.9	87	45.3±8.7
Li et al. 2022	China	Postmenopausal	40- 55	Baduanjin	5/w, 16w	45 min	Er Xian Decoction	Self-anxiety scale (SAS)	17	46.65±2.28	15	50.55 ± 2.06
Luoto et al. 2012	Finland	Menopausal	> 60	Aerobic training	4/w, 12w	50 min, 64-80% of maximal heart rate, moderate intensity	No intervention	Menopause-specific quality of life score (WHQ)	74	0.17±0.26	77	0.19±0.22
Newton et al. 2014	USA	Menopausal transition or postmenopause	50– 65	Yoga	2/w, 12w	90 min	No intervention	Generalized Anxiety Disorder-7 (GAD-7)	101	-0.7 ± 3.85	135	-0.1 ±3.26
Noh et al. 2020	Korea	Menopausal	45– 55	SaBang- DolGi walking	3/w, 12w 60 min	60 min	Usual care	Korea Symptom- Checklist-90-Revision (SCL-95-R)	21	48.1±6.56	19	48.47±10.68
Sternfeld et al. 2014	USA	Late peri- menopausal or postmenopausal		Exercise training	3/w, 12w	3/w, 12w 40–60 min, 50–70% of heart rate reserve, moderate intensity	No intervention	Generalized Anxiety Disorder-7 questionnaire (GAD-7)	82	-0.8 ± 3.47	135	-0.1 ±3.26
Zhao et al. 2020) China	Menopausal	50- 70	24 forms taichi	3/w, 48w	60 min, 55–65% maximum heart rate reserve, moderate intensity	No intervention	Kupperman Scale	36	1.8±1.3	38	2.9±1.7

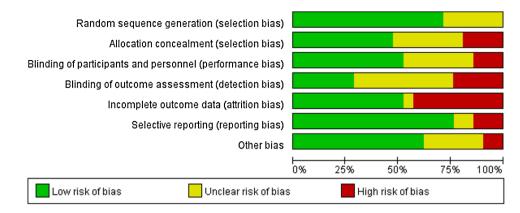


Fig. 2 Risk of bias graph

Sensitivity analyses

Sensitivity analysis after removing studies with included women over 65 years old found a similar result both at depression and anxiety outcomes (SMD =-0.69, 95% CI: -1.28 to -0.10, p = 0.02, $I^2 = 95\%$; SMD = -0.38, 95% CI: -0.66 to -0.09, p = 0.009, $I^2 = 71\%$, respectively) (Supplementary file 2, Figure S7-S8). Subsequently, a second sensitivity analysis after removing trials that included women of the control group receiving non-exercise intervention, such as medication or stretching, found that the effect of reducing depressive and anxiety symptoms still remained significant (SMD =-0.74, 95% CI: -1.10 to -0.38, p < 0.001, I² = 92%; SMD = -0.49, 95% CI: -0.77 to -0.21, p < 0.001, $I^2 = 83\%$, respectively) (Supplementary file 2, Figure S9-S10). Lastly, a third sensitivity analysis evaluated the effect of the assessment tools for measuring depressive and anxiety symptoms. When only including studies using the Beck Depression Inventory (BDI) were considered, the results remained consistent (SMD =-1.51; 95% CI: -2.43, -0.59; p = 0.001; $I^2 = 94\%$) (Supplementary file 2, Figure S11).

Publication bias

The funnel plot served as a tool to assess the presence of publication bias in physical activity for DS and AS. The absence of some small studies in the right-hand section of the plots (outcomes with high statistical significance) for depression and anxiety scores suggested a lack of substantial evidence for small-study effects and implied that publication bias appeared not to be the source of plot asymmetry. The majority of the studies lay within the 95% confidence limits, suggesting that the results seemed be not markedly influenced by high heterogeneity between studies. (Supplementary file 2, Figure S1-S6).

Discussion

This study is the first systematic review and meta-analysis conducted to explore the association between PA and symptoms of depression and anxiety in women during the menopausal transition and menopause. The findings suggest that moderate intensity exercises (aerobic exercise, increased PA, taichi) may lead to improvements in both depressive and anxiety symptoms in women at this stage. Additionally, various low intensity exercises such as stretching, yoga, Pilates and walking were found to lower these symptoms. However, there is a lack of research on the effectiveness of vigorous intensity exercises in reducing these symptoms. In subgroup analyses, a negative correlation between PA and depressive symptoms was observed in three groups: postmenopausal, menopausal individuals and both of them. Nevertheless, PA demonstrated a significant improvement in anxiety levels solely within the postmenopausal cohort. PA such as walking, stretching, and Chinese traditional sports were effective across all three groups. Most studies examined depressive symptoms, with only 12 studies specifically addressing anxiety symptoms. Moreover, all the decrease in anxiety is accompanied by a reduction in depression symptoms.

The results of our study are consistent with previous systematic review and meta-analyses, indicating that participation in PA may result in decreased depression and anxiety levels in adults, regardless of exercise intensity [46]. Besides, we also found low-intensity exercise may have a larger positive effect on anxiety symptom than moderate-intensity exercise. The result might be attributed to a large proportion of included articles with mindbody exercises in low-intensity subgroup. Mind-body exercise, represented by taichi, gigong, and yoga, has attracted widespread attention in the scientific literature as a way to promote physical and psychological health. A recent systematic review and meta-analysis have shown that mind-body exercises such as Pilates, yoga, tai chi, and qigong have a significant impact on reducing depression and anxiety in perimenopausal and postmenopausal women [47]. Our findings of a 12-week yoga intervention reducing anxiety symptoms align with the conclusions of prior systematic reviews and meta-analyses

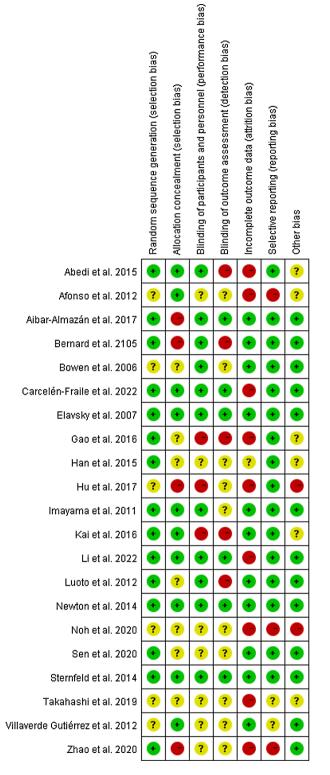


Fig. 3 Risk of bias summary

[48]. While there is a scarcity of meta-analyses of RCTs examining the effects of PA on reducing depression and anxiety in menopausal transition women. Our results are corroborated by previous RCTs demonstrating that PA

reduces levels of anxiety and depressive symptoms [49]. This study found a correlation between low-to-moderate intensity walking and improvement in depressive symptoms among postmenopausal and menopausal women, while there is a lack of empirical research examining the association between walking and symptoms of anxiety. Noteworthy reduction in anxiety and depression was noted in women practicing Yoga. There may be a debate regarding the efficacy of aerobic exercise in improving symptoms. Traditional Chinese sports such as baduanjin, taichi, and qigong have been shown to reduce symptoms of depression and anxiety. Taken together, these findings suggest that various types of PA may alleviate symptoms of depression and anxiety in women experiencing postmenopausal and menopausal transitions.

The precise mechanism by which PA may mitigate symptoms of depression and anxiety remains unclear. Genetic predisposition and environmental factors may both contribute to this mood disorder. Our research, along with that of other scholars, demonstrates that PA can improve mood symptoms by alleviating vasomotor symptoms (VMS) and sleep disturbances [42, 50, 51]. In additional, it is posited that the mood symptoms experienced by women during menopausal stages may be influenced by various disrupting factors such as ovarian failure [52], estrogen withdrawal [53], increased levels of follicle-stimulating hormone [54], heightened neuroticism [55], and alterations in hormonal levels impacting serotonin and GABA signaling [40, 56]. At present, there is a dearth of research on the impact of these factors on the relationship between PA and mood symptoms, necessitating further investigation in subsequent studies.

This study has strengths. Our study employs a rigorous search strategy, categorize the intensity levels of PA, the inclusion of a substantial number of studies, and the use of conservative statistical methods to analyze the results. One of the primary strengths of our systematic review and meta-analysis was its comprehensive investigation of many types of PA on depressive and anxiety symptoms during peri- and post-menopausal periods. Additional strengths of the study included the incorporation of a substantial quantity of RCTs, contributing to the reliability and validity of the findings. This research also has several limitations that should be acknowledged. First, more than half of the studies exhibited a high risk of bias, attributed to the lack of precision in blinding methods and incomplete outcome data. Second, the studies included in the analysis exhibited limitations in terms of their quality. Variation in study quality contributed to the heterogeneity of findings noted in several of the meta-analyses presented in our study. The absence of standardized definitions for menopausal stage, PA assessment tools, scoring criteria for depressive and anxiety symptoms has led to significant heterogeneity in research

	Expe	rimen	tal	C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Abedi et al. 2015	13.7	5	49	19.6	4.79	48	5.2%	-1.20 [-1.63, -0.76]	
Afonso et al. 2012	11	1.9	15	14.8	1.9	15	4.0%	-1.95 [-2.84, -1.06]	
Aibar-Almazán et al. 2017	3.98	2.93	55	6.81	3.6	52	5.3%	-0.86 [-1.26, -0.46]	
Bernard et al. 2105	7.74	0.77	61	10.52	0.78	60	4.9%	-3.56 [-4.14, -2.99]	
Bowen et al. 2006	94.31	10.4	86	93.45	8.03	86	5.4%	0.09 [-0.21, 0.39]	+
Carcelén-Fraile et al. 2022	7.7	3.23	57	10.07	3.16	60	5.3%	-0.74 [-1.11, -0.36]	
Elavsky et al. 2007	6.38	4.94	63	8.11	7.64	39	5.3%	-0.28 [-0.68, 0.12]	
Gao et al. 2016	0.15	0.08	26	0.02	0.09	24	4.7%	1.51 [0.87, 2.14]	
Hu et al. 2017	2.25	1.24	40	3.85	2.14	40	5.1%	-0.91 [-1.37, -0.44]	
Imayama et al. 2011	48.1	9.8	117	48.4	9.6	87	5.5%	-0.03 [-0.31, 0.25]	+
Kai et al. 2016	35.8	9.3	20	41.6	7.3	20	4.7%	-0.68 [-1.32, -0.04]	_ _
Li et al. 2022	47.06	1.81	17	47.07	2.19	15	4.6%	-0.00 [-0.70, 0.69]	
Luoto et al. 2012	0.12	0.2	74	0.22	0.21	77	5.4%	-0.48 [-0.81, -0.16]	
Newton et al. 2014	-0.8	3.55	99	0.1	3.53	133	5.5%	-0.25 [-0.51, 0.01]	
Noh et al. 2020	43.57	7.02	21	45.84	8.94	19	4.7%	-0.28 [-0.90, 0.35]	
Sen et al. 2020	9	3.3	15	15.9	6.5	18	4.4%	-1.27 [-2.03, -0.51]	<u> </u>
Sternfeld et al. 2014	-0.9	3.38	78	0.1	3.53	135	5.5%	-0.29 [-0.57, -0.01]	
Takahashi et al. 2019	2.9	1.7	19	2.9	2.6	19	4.7%	0.00 [-0.64, 0.64]	
Villaverde Gutiérrez et al. 2012	12.11	2.4	27	15.05	2.6	30	4.9%	-1.16 [-1.72, -0.59]	
Zhao et al. 2020	0.8	0.7	36	1.8	0.9	38	5.0%	-1.22 [-1.72, -0.72]	
Total (95% CI)			975			1015	100.0%	-0.66 [-0.99, -0.33]	◆
Heterogeneity: Tau ² = 0.51; Chi ²	= 228.79	9, df = 1	19 (P <	0.0000	1); I ² =	92%		-	
Test for overall effect: Z = 3.88 (F		•							-4 -2 0 2 4
									Favours [experimental] Favours [control]

Fig. 4 Forest plot of the depression scores

	Exp	eriment	al	0	Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Afonso et al. 2012	8.8	1.9	15	13.5	1.9	15	4.7%	-2.41 [-3.38, -1.44]	
Aibar-Almazán et al. 2017	4.76	3.73	55	9.37	3.52	52	8.9%	-1.26 [-1.68, -0.84]	
Bowen et al. 2006	94.36	10.94	87	95.09	8.16	86	9.9%	-0.08 [-0.37, 0.22]	
Carcelén-Fraile et al. 2022	5.68	3.53	57	8.83	4.83	60	9.2%	-0.74 [-1.11, -0.36]	
Han et al. 2015	14.36	3.85	15	15.19	3.99	15	6.3%	-0.21 [-0.92, 0.51]	
lmayama et al. 2011	43	6.9	117	45.3	8.7	87	10.0%	-0.30 [-0.58, -0.02]	-*-
Li et al. 2022	46.65	2.28	17	50.55	2.06	15	5.5%	-1.74 [-2.57, -0.91]	
Luoto et al. 2012	0.17	0.26	74	0.19	0.22	77	9.7%	-0.08 [-0.40, 0.24]	
Newton et al. 2014	-0.7	3.85	101	-0.1	3.26	135	10.2%	-0.17 [-0.43, 0.09]	
Noh et al. 2020	48.1	6.56	21	48.47	10.68	19	7.1%	-0.04 [-0.66, 0.58]	-+-
Sternfeld et al. 2014	-0.8	3.47	82	-0.1	3.26	135	10.0%	-0.21 [-0.48, 0.07]	
Zhao et al. 2020	1.8	1.3	36	2.9	1.7	38	8.4%	-0.72 [-1.19, -0.25]	
Total (95% CI)			677			734	100.0%	-0.55 [-0.82, -0.27]	•
Heterogeneity: Tau ² = 0.18; 0	Chi² = 62	.86, df=	: 11 (P	< 0.000	01); I ^z =	83%			
Test for overall effect: Z = 3.9)1 (P < 0.	0001)							-4 -2 U 2 4
									Favours [exercise] Favours [control]

Fig. 5 Forest plot of the anxiety scores

findings. Other potential sources of heterogeneity may include the type of PA, duration of the intervention, frequency of sessions, ethnicity, level of education, employment status, lifestyle factors, body mass index, economic status, and marital status. Third, the sample size in some available studies was limited, hence, it is advisable to interpret our findings with caution. Fourth, the predominant focus of research outcomes lies in the realm of co-occurring symptoms, specifically VMS and mood disorders. other scholarly investigations predominantly center on mild-to-moderate mood disorders, with a scarcity of reviews addressing severe mood disorders. Finally, most studies do not incorporate a long-term follow-up process post-intervention.

This review may have multiple implications. First, the results of the study support the notion that various forms of exercise therapy may lead to improvement in depressive and anxiety symptoms during the menopausal transition. Second, the results highlight significant deficiencies in current research and understanding, particularly in regards to potentially advantageous treatments and evaluated outcomes. Specifically, while a majority of existing studies concentrate on low and moderate intensity PA, there is a limited number of studies examining vigorous intensity PA. Furthermore, there is a lack of sufficient research on the effects of severe mood disorders. Additional, there is a lack of uniformity in the methods used to assess depression and anxiety. Third, this review highlights the dearth of data regarding the effects of long-term follow-up in relation to menopausal symptoms. Given the chronic and recurring nature of these symptoms, it is crucial to examine the potential impact of short-term exercise interventions in altering patients' sedentary behaviors and establishing enduring health

	Expe	erimen	tal	C	ontrol		9	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
4.1.1 Low intensity									
Abedi et al. 2015	13.7	5	49	19.6	4.79	48	6.1%	-1.20 [-1.63, -0.76]	- - -
Afonso et al. 2012	11	1.9	15	14.8	1.9	15	4.7%	-1.95 [-2.84, -1.06]	
Aibar-Almazán et al. 2017	3.98	2.93	55	6.81	3.6	52	6.2%	-0.86 [-1.26, -0.46]	
Kai et al. 2016	35.8	9.3	20	41.6	7.3	20	5.5%	-0.68 [-1.32, -0.04]	
Newton et al. 2014	-0.8	3.55	99	0.1	3.53	133	6.5%	-0.25 [-0.51, 0.01]	
Noh et al. 2020	43.57	7.02	21	45.84	8.94	19	5.5%	-0.28 [-0.90, 0.35]	
Sen et al. 2020	9	3.3	15	15.9	6.5	18	5.1%	-1.27 [-2.03, -0.51]	
Subtotal (95% Cl)			274			305	39.5%	-0.86 [-1.27, -0.45]	◆
Heterogeneity: Tau ² = 0.22; Chi ²	= 28.07,	df = 6	(P < 0.	0001); P	²= 79%	6			
Test for overall effect: Z = 4.09 (F	P < 0.000	1)							
4.1.2 Moderate intensity									
Bernard et al. 2105	7.74	0.77	61	10.52	0.78	60	5.7%	-3.56 [-4.14, -2.99]	
Bowen et al. 2006	94.31	10.4	86	93.45	8.03	86	6.4%	0.09 [-0.21, 0.39]	+-
Elavsky et al. 2007	6.38	4.94	63	8.11	7.64	39	6.2%	-0.28 [-0.68, 0.12]	
Hu et al. 2017	2.25	1.24	40	3.85	2.14	40	6.0%	-0.91 [-1.37, -0.44]	
Imayama et al. 2011	48.1	9.8	117	48.4	9.6	87	6.4%	-0.03 [-0.31, 0.25]	-+
Luoto et al. 2012	0.12	0.2	74	0.22	0.21	77	6.3%	-0.48 [-0.81, -0.16]	
Sternfeld et al. 2014	-0.9	3.38	78	0.1	3.53	135	6.4%	-0.29 [-0.57, -0.01]	
Takahashi et al. 2019	2.9	1.7	19	2.9	2.6	19	5.5%	0.00 [-0.64, 0.64]	
Villaverde Gutiérrez et al. 2012	12.11	2.4	27	15.05	2.6	30	5.7%	-1.16 [-1.72, -0.59]	
Zhao et al. 2020	0.8	0.7	36	1.8	0.9	38	5.9%	-1.22 [-1.72, -0.72]	
Subtotal (95% Cl)			601			611	60.5%	-0.76 [-1.27, -0.25]	◆
Heterogeneity: Tau ² = 0.63; Chi ²	= 155.33	3, df = !	9 (P < (0.00001)); l² = 9	14%			
Test for overall effect: Z = 2.92 (F	P = 0.003)							
Total (95% CI)			875			916	100.0%	-0.81 [-1.15, -0.46]	◆
Heterogeneity: Tau ² = 0.47; Chi ²	= 186.53	3. df = 1	16 (P <	0.0000	1); I ^z =	91%			
Test for overall effect: Z = 4.56 (F			.						-4 -2 0 2 4
Test for subaroup differences: C			1 (P =	0.77). I ^z	= 0%				Favours (experimental) Favours (control)

Fig. 6 Subgroup analysis by exercise intensity evaluating depressive symptom

	Expe	eriment	al	(Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
4.2.1 Low intensity									
Afonso et al. 2012	8.8	1.9	15	13.5	1.9	15	5.2%	-2.41 [-3.38, -1.44]	
Aibar-Almazán et al. 2017	4.76	3.73	55	9.37	3.52	52	10.4%	-1.26 [-1.68, -0.84]	
Han et al. 2015	14.36	3.85	15	15.19	3.99	15	7.2%	-0.21 [-0.92, 0.51]	
Newton et al. 2014	-0.7	3.85	101	-0.1	3.26	135	12.1%	-0.17 [-0.43, 0.09]	
Noh et al. 2020	48.1	6.56	21	48.47	10.68	19	8.1%	-0.04 [-0.66, 0.58]	
Subtotal (95% CI)			207			236	43.0%	-0.75 [-1.45, -0.06]	
Heterogeneity: Tau ² = 0.53;	Chi ² = 3	6.72, df	= 4 (P	< 0.000	01); I ² =	89%			
Test for overall effect: $Z = 2$.	13 (P = 0	0.03)							
4.2.2 Moderate intensity									
Bowen et al. 2006	94.36	10.94	87	95.09	8.16	86	11.7%	-0.08 [-0.37, 0.22]	
lmayama et al. 2011	43	6.9	117	45.3	8.7	87	11.9%	-0.30 [-0.58, -0.02]	
Luoto et al. 2012	0.17	0.26	74	0.19	0.22	77	11.5%	-0.08 [-0.40, 0.24]	
Sternfeld et al. 2014	-0.8	3.47	82	-0.1	3.26	135	12.0%	-0.21 [-0.48, 0.07]	
Zhao et al. 2020	1.8	1.3	36	2.9	1.7	38	9.8%	-0.72 [-1.19, -0.25]	
Subtotal (95% CI)			396			423	57.0 %	-0.23 [-0.41, -0.06]	◆
Heterogeneity: Tau ² = 0.01;	Chi ² = 6.	.18, df=	4 (P =	0.19); P	²= 35%				
Test for overall effect: $Z = 2$.	59 (P = 0	0.010)							
Total (95% CI)			603			659	100.0%	-0.44 [-0.72, -0.16]	◆
Heterogeneity: Tau ² = 0.15;	Chi² = 4ì	7.68. df	= 9 (P	< 0.000	01): I ^z =	81%			- <u>t</u> tttttttt
Test for overall effect: Z = 3.		•			11.				-4 -2 0 2 4
Test for subaroup difference			df = 1 (l	P = 0.15	i), l² = 5i	0.7%			Favours [experimental] Favours [control]

Fig. 7 Subgroup analysis by exercise intensity evaluating anxiety symptom

benefits. Further studies should focus on quantifying PA intensity with objective data and uniforming the methods to assess depression and anxiety. Patients should undergo testing for sex hormones to determine the specific stages of menopause. Moreover, it is imperative to investigate the impact of varying intensities and durations of identical physical activities on the different degree of mood disorders. Additionally, we must research how different physical activities impact the same groups of people.

Conclusion

Physical activities with low to moderate intensity might impart remarkable improvements for managing menopausal women with DS and/or AS. While menopausal

		erimen			ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
3.1.2 Menopausal									
Elavsky et al. 2007	6.38	4.94	63	8.11	7.64	39	5.5%	-0.28 [-0.68, 0.12]	
Luoto et al. 2012	0.12	0.2	74	0.22	0.21	77	5.7%	-0.48 [-0.81, -0.16]	
Noh et al. 2020	43.57	7.02	21	45.84	8.94	19	4.9%	-0.28 [-0.90, 0.35]	
Zhao et al. 2020	0.8	0.7	36	1.8	0.9	38	5.3%	-1.22 [-1.72, -0.72]	
Subtotal (95% CI)			194			173	21.5%	-0.56 [-0.96, -0.17]	\bullet
Heterogeneity: Tau ² = 0.11; Chi ² Test for overall effect: Z = 2.77 (F			P = 0.0	2); I² = 6	9%				
3.1.3 Postmenopausal									
Abedi et al. 2015	13.7	5	49	19.6	4.79	48	5.5%	-1.20 [-1.63, -0.76]	
Afonso et al. 2012	11	1.9	15	14.8	1.9	15	4.1%	-1.95 [-2.84, -1.06]	<u> </u>
Aibar-Almazán et al. 2017	3.98	2.93	55	6.81	3.6	52	5.6%	-0.86 [-1.26, -0.46]	
Bernard et al. 2105	7.74	0.77	61	10.52	0.78	60	5.1%	-3.56 [-4.14, -2.99]	
Bowen et al. 2006	94.31	10.4	86	93.45	8.03	86	5.8%	0.09 [-0.21, 0.39]	
Carcelén-Fraile et al. 2022	7.7	3.23	57	10.07	3.16	60	5.6%	-0.74 [-1.11, -0.36]	
Hu et al. 2017	2.25	1.24	40	3.85	2.14	40	5.4%	-0.91 [-1.37, -0.44]	
Imayama et al. 2011	48.1	9.8	117	48.4	9.6	87	5.8%	-0.03 [-0.31, 0.25]	
Li et al. 2022	47.06	1.81	17	47.07	2.19	15	4.7%	-0.00 [-0.70, 0.69]	
Sen et al. 2020	9	3.3	15	15.9	6.5	18	4.5%	-1.27 [-2.03, -0.51]	
Takahashi et al. 2019	2.9	1.7	19	2.9	2.6	19	4.9%	0.00 [-0.64, 0.64]	
Villaverde Gutiérrez et al. 2012	12.11	2.4	27	15.05	2.6	30	5.1%	-1.16 [-1.72, -0.59]	
Subtotal (95% CI)			558			530	62.0%	-0.94 [-1.46, -0.42]	◆
Heterogeneity: Tau² = 0.77; Chi² Test for overall effect: Z = 3.55 (F			11 (P <	0.0000	1); I² =	94%			
3.1.4 Menopausal transition an	d postm	enopa	sual						
Kai et al. 2016	35.8	9.3	20	41.6	7.3	20	4.9%	-0.68 [-1.32, -0.04]	
Newton et al. 2014	-0.8	3.55	99		3.53	133	5.8%	-0.25 [-0.51, 0.01]	
Sternfeld et al. 2014	-0.9	3.38	78	0.1	3.53	135	5.8%	-0.29 [-0.57, -0.01]	
Subtotal (95% CI)			197			288	16.5%	-0.30 [-0.49, -0.12]	◆
Heterogeneity: Tau² = 0.00; Chi² Test for overall effect: Z = 3.24 (F			P = 0.48	8); I² = 0	1%				
Total (95% CI)			949			991	100.0%	-0.76 [-1.08, -0.45]	◆
Heterogeneity: Tau ² = 0.43; Chi ²	= 189.8	9, df = 1	18 (P <	0.0000	1); l² =	91%			-4 -2 0 2
Test for overall effect: Z = 4.73 (F									
Test for subaroup differences: C			2(P = 1)	0.05) 17	= 66 2	%			Favours [experimental] Favours [control]

Fig. 8 Subgroup analysis by different menopausal state evaluating depressive symptom

	Exp	eriment	al	c	Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean			Mean		Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
3.2.1 Menopausal									
Han et al. 2015	14.36	3.85	15	15.19	3.99	15	8.4%	-0.21 [-0.92, 0.51]	
Luoto et al. 2012	0.17	0.26	74	0.19	0.22	77	11.7%	-0.08 [-0.40, 0.24]	
Noh et al. 2020	48.1	6.56	21	48.47	10.68	19	9.2%	-0.04 [-0.66, 0.58]	
Zhao et al. 2020	1.8	1.3	36	2.9	1.7	38	10.5%	-0.72 [-1.19, -0.25]	
Subtotal (95% CI)			146			149	39.9%	-0.26 [-0.60, 0.07]	•
Heterogeneity: Tau ² = 0.05; (Chi ^z = 5.2	27, df = 3	3 (P = 0).15); I ^z ÷	= 43%				
Test for overall effect: Z = 1.5	56 (P = 0.	12)							
3.2.2 Postmenopausal									
Afonso et al. 2012	8.8	1.9	15	13.5	1.9	15	6.6%	-2.41 [-3.38, -1.44]	
Aibar-Almazán et al. 2017	4.76	3.73	55	9.37	3.52	52	11.0%	-1.26 [-1.68, -0.84]	
Bowen et al. 2006	94.36	10.94	87	95.09	8.16	86	11.8%	-0.08 [-0.37, 0.22]	
Carcelén-Fraile et al. 2022	5.68	3.53	57	8.83	4.83	60	11.3%	-0.74 [-1.11, -0.36]	
Imayama et al. 2011	43	6.9	117	45.3	8.7	87	11.9%	-0.30 [-0.58, -0.02]	
Li et al. 2022	46.65	2.28	17	50.55	2.06	15	7.6%	-1.74 [-2.57, -0.91]	
Subtotal (95% Cl)			348			315	60.1 %	-0.96 [-1.49, -0.43]	•
Heterogeneity: Tau ² = 0.37; (•	÷5 (P ≺	0.0000	1); I² = 8	39%			
Test for overall effect: Z = 3.5	53 (P = 0.	0004)							
Total (95% CI)			494			464	100.0%	-0.66 [-1.02, -0.31]	◆
Heterogeneity: Tau ² = 0.25; (Chi² = 57	.43, df=	9 (P <	0.0000	1); I ² = 8	34%			-4 -2 0 2 4
Test for overall effect: Z = 3.6									-4 -2 U 2 4 Favours [experimental] Favours [control]
Test for subaroup difference	s: Chi ² =	4.71. dt	f=1 (P	= 0.03)	. I ² = 78	.8%			Favours (experimental) Favours (control)

Fig. 9 Subgroup analysis by different menopausal state evaluating anxiety symptom

status may be integral to potential clinical gains, the relationship between these variables and treatment responses remains unclear. Considerable heterogeneity among studies underscores the importance of any relative reasons of exploring other metabolic or sociodemographic factors contributing to the differences. The progression of this research and its potential application in our patient care could immensely profit from more extensive and meticulously designed studies.

Abbreviations

AS	Anxiety Symptom
CI	Confidence Interval
CINAHL	Cumulative Index of Nursing and Allied Health Literature
DS	Depressive Symptom
MET	Metabolic Equivalent of Task
PA	Physical Activity
PRISMA	Preferred Reporting Items for Systematic Reviews and
	Meta-Analyses
RCT	Randomized Controlled Trial
SMD	Standardized Mean Difference
VMS	Vasomotor Symptoms

Supplementary Information

The online version contains supplementary material available at https://doi.or g/10.1186/s12966-025-01712-z .

Supplementary Material 1
Supplementary Material 2
Supplementary Material 3

Acknowledgements

We acknowledge support from the Shanghai Sailing Program from Science and Technology Commission of Shanghai Municipality and National Natural Science Foundation of China.

Author contributions

The authors' contributions were the following: HYY conceived the topic. HYY designed the review question, and study with contributions from FFX. HYY and YJY designed the search strategy and performed searches on the bibliographic databases. HYY and JHC screened and reviewed the literature. HYY, YJY, JHC and FFX completed data extraction. MRS and YL conducted the quality assessments of study methods. SSL and FY resolved all disagreements related to the literature review, data extraction, quality assessment and critical review of outcome data. FFX and HYY performed the statistical analyses. HYY and YJY interpreted the results and wrote the manuscript. All authors reviewed and approved the final version of the manuscript and contributed to the scientific review of study results. The authors are responsible for the study design and conception, data collection and analysis, decision to publish and manuscript preparation. FY and SSL supervised the study and had primary responsibility for the final content.

Funding

This study has been partly sponsored by National Natural Science Foundation of China (Grant No. 82305366, 82374610), Shanghai Sailing Program from Science and Technology Commission of Shanghai Municipality (Grant No. 21YF1444600). The funding body is not involved in the conduct of the trial, date collection and statistical processing.

Data availability

The data underlying this article will be shared on reasonable request to the corresponding authors.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ²Shanghai Minhang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China ³School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Received: 13 July 2024 / Accepted: 18 January 2025 Published online: 24 January 2025

References

- 1. Takahashi TA, Johnson KM. Menopause. Med Clin North Am. 2015;99(3):521-.
- Santoro N, Roeca C, Peters BA, Neal-Perry G. The menopause transition: signs, symptoms, and Management options. J Clin Endocrinol Metab. 2021;106(1):1–15.
- Cohen LS, Soares CN, Vitonis AF, Otto MW, Harlow BL. Risk for new onset of depression during the menopausal transition - the Harvard study of moods and cycles. Arch Gen Psychiatry. 2006;63(4):385–90.
- Tang RY, Luo M, Li JY, Peng YJ, Wang YC, Liu B, Liu GF, Wang YP, Lin SQ, Chen R. Symptoms of anxiety and depression among Chinese women transitioning through menopause: findings from a prospective community-based cohort study. Fertil Steril. 2019;112(6):1160–71.
- Tangen T, Mykletun A. Depression and anxiety through the climacteric period: an epidemiological study (HUNT-II). J Psychosom Obstet Gynecol. 2008;29(2):125–31.
- Li RX, Ma M, Xiao XR, Xu Y, Chen XY, Li B. Perimenopausal syndrome and mood disorders in perimenopause: prevalence, severity, relationships, and risk factors. Medicine 2016, 95(32).
- Dibonaventura MD, Wagner JS, Alvir J, Whiteley J. Depression, quality of life, work productivity, resource use, and costs among women experiencing menopause and hot flashes: a cross-sectional study. Prim Care Companion CNS Disord 2012, 14(6).
- Dotlic J, Radovanovic S, Rancic B, Milosevic B, Nicevic S, Kurtagic I, Markovic N, Gazibara T. Mental health aspect of quality of life in the menopausal transition. J Psychosom Obstet Gynecol. 2021;42(1):40–9.
- Rao SS, Singh M, Parkar M, Sugumaran R. Health maintenance for postmenopausal women. Am Fam Physician. 2008;78(5):583–91.
- Saeed SA, Cunningham K, Bloch RM. Depression and anxiety disorders: benefits of Exercise, yoga, and Meditation. Am Fam Physician. 2019;99(10):620–7.
- Philippot A, Dubois V, Lambrechts K, Grogna D, Robert A, Jonckheer U, Chakib W, Beine A, Bleyenheuft Y, De Volder AG. Impact of physical exercise on depression and anxiety in adolescent inpatients: a randomized controlled trial. J Affect Disord. 2022;301:145–53.
- Paluska SA, Schwenk TL. Physical activity and mental health current concepts. Sports Med. 2000;29(3):167–80.
- Mehrnoush V, Darsareh F, Roozbeh N, Ziraeie A. Efficacy of the complementary and alternative therapies for the management of psychological symptoms of menopause: a systematic review of Randomized controlled trials. J Menopausal Med. 2021;27(3):115–31.
- Pettee Gabriel K, Mason JM, Sternfeld B. Recent evidence exploring the associations between physical activity and menopausal symptoms in midlife women: perceived risks and possible health benefits. Womens Midlife Health. 2015;1:1.
- Hulteen RM, Marlatt KL, Allerton TD, Lovre D. Detrimental changes in Health during Menopause: the role of physical activity. Int J Sports Med. 2023;44(06):389–96.

- Dugan SA, Bromberger JT, Segawa E, Avery E, Sternfeld B. Association between Physical Activity and depressive symptoms: midlife women in SWAN. Med Sci Sports Exerc. 2015;47(2):335–42.
- Sternfeld B, Guthrie KA, Ensrud KE, LaCroix AZ, Larson JC, Dunn AL, Anderson GL, Seguin RA, Carpenter JS, Newton KM, et al. Efficacy of exercise for menopausal symptoms: a randomized controlled trial. Menopause. 2014;21(4):330–8.
- Moilanen JM, Mikkola TS, Raitanen JA, Heinonen RH, Tomas El, Nygård CH, Luoto RM. Effect of aerobic training on menopausal symptoms-a randomized controlled trial. Menopause-the J North Am Menopause Soc. 2012;19(6):691–6.
- Page MJ, Moher D. Evaluations of the uptake and impact of the Preferred reporting items for systematic reviews and Meta-analyses (PRISMA) Statement and extensions: a scoping review. Syst Reviews 2017, 6.
- Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, Thomas J. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10(10):Ed000142.
- Martínez-Domínguez SJ, Lajusticia H, Chedraui P, Pérez-López FR. The effect of programmed exercise over anxiety symptoms in midlife and older women: a meta-analysis of randomized controlled trials. Climacteric. 2018;21(2):123–31.
- 22. Dong Y, Zhang X, Zhao R, Cao L, Kuang X, Yao J. The effects of mind-body exercise on anxiety and depression in older adults: a systematic review and network meta-analysis. Front Psychiatry. 2024;15:1305295.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.
- Abedi P, Nikkhah P, Najar S. Effect of pedometer-based walking on depression, anxiety and insomnia among postmenopausal women. Climacteric. 2015;18(6):841–5.
- Afonso RF, Hachul H, Kozasa EH, Oliveira DD, Goto V, Rodrigues D, Tufik S, Leite JR. Yoga decreases insomnia in postmenopausal women: a randomized clinical trial. Menopause-the J North Am Menopause Soc. 2012;19(2):186–93.
- Aibar-Almazán A, Hita-Contreras F, Cruz-Díaz D, de la Torre-Cruz M, Jiménez-García JD, Martínez-Amat A. Effects of Pilates training on sleep quality, anxiety, depression and fatigue in postmenopausal women: a randomized controlled trial. Maturitas. 2019;124:62–7.
- Carcelén-Fraile MDC, Aibar-Almazán A, Martínez-Amat A, Jiménez-García JD, Brandão-Loureiro V, García-Garro PA, Fábrega-Cuadros R, Rivas-Campo Y, Hita-Contreras F. Qigong for mental health and sleep quality in postmenopausal women: a randomized controlled trial. Med (Baltim). 2022;101(39):e30897.
- Villaverde Gutiérrez C, Torres Luque G, Ábalos Medina GM, Argente del Castillo MJ, Guisado IM, Guisado Barrilao R, Ramírez Rodrigo J. Influence of exercise on mood in postmenopausal women. J Clin Nurs. 2012;21(7–8):923–8.
- Bernard P, Ninot G, Bernard PL, Picot MC, Jaussent A, Tallon G, Blain H. Effects of a six-month walking intervention on depression in inactive postmenopausal women: a randomized controlled trial. Aging Ment Health. 2015;19(6):485–92.
- Bowen DJ, Fesinmeyer MD, Yasui Y, Tworoger S, Ulrich CM, Irwin ML, Rudolph RE, LaCroix KL, Schwartz RR, McTiernan A. Randomized trial of exercise in sedentary middle aged women: effects on quality of life. Int J Behav Nutr Phys Activity. 2006;3:34.
- Elavsky S, McAuley E. Physical activity and mental health outcomes during menopause: a randomized controlled trial. Ann Behav Med. 2007;33(2):132–42.
- 32. Imayama I, Alfano CM, Kong A, Foster-Schubert KE, Bain CE, Xiao LR, Duggan C, Wang CY, Campbell KL, Blackburn GL et al. Dietary weight loss and exercise interventions effects on quality of life in overweight/obese postmenopausal women: a randomized controlled trial. Int J Behav Nutr Phys Activity 2011, 8.
- Newton KM, Reed SD, Guthrie KA, Sherman KJ, Booth-LaForce C, Caan B, Sternfeld B, Carpenter JS, Learman LA, Freeman EW, et al. Efficacy of yoga for vasomotor symptoms: a randomized controlled trial. Menopause-the J North Am Menopause Soc. 2014;21(4):339–46.
- Gao L, Zhang L, Qi H, Petridis L. Middle-aged female depression in Perimenopausal Period and Square Dance intervention. Psychiatr Danub. 2016;28(4):372–8.
- Hu L, Zhu L, Lyu J, Zhu W, Xu Y, Yang L. Benefits of walking on menopausal symptoms and Mental Health outcomes among Chinese postmenopausal women. Int J Gerontol. 2017;11(3):166–70.
- Li KQ, Yu HL, Lin XJ, Su YY, Gao LF, Song MJ, Fan HY, Krokosz D, Yang HX, Lipowski M. The Effects of Er Xian Decoction Combined with Baduanjin Exercise

on Bone Mineral Density, Lower Limb Balance Function, and Mental Health in Women with Postmenopausal Osteoporosis: A Randomized Controlled Trial. *Evid Based Complement Alternat Med* 2022, 2022.

- 37. Zhao J. Effects of Tai Chi Chuan on the changes of bone mineral density of perimenopausal women. Chin J Tissue Eng Res. 2020;24(2):176–80.
- Han Y, Duan F, Xu R, Wang Y, Zhang H. Functional exercise in combination with auricular plaster therapy is more conducive to rehabilitation of menopausal women patients with anxiety disorder. Int J Clin Exp Med. 2015;8(11):21173–9.
- Kai Y, Nagamatsu T, Kitabatake Y, Sensui H. Effects of stretching on menopausal and depressive symptoms in middle-aged women: a randomized controlled trial. Menopause. 2016;23(8):827–32.
- Takahashi M, Lim PJ, Tsubosaka M, Kim HK, Miyashita M, Suzuki K, Tan EL, Shibata S. Effects of increased daily physical activity on mental health and depression biomarkers in postmenopausal women. J Phys Ther Sci. 2019;31(4):408–13.
- Luoto R, Moilanen J, Heinonen R, Mikkola T, Raitanen J, Tomas E, Ojala K, Mansikkamäki K, Nygård CH. Effect of aerobic training on hot flushes and quality of life-a randomized controlled trial. Ann Med. 2012;44(6):616–26.
- Noh E, Kim J, Kim M, Yi E. Effectiveness of sabang-dolgi walking exercise program on physical and mental health of menopausal women. Int J Environ Res Public Health. 2020;17(18):1–19.
- Sen El, Esmaeilzadeh S, Eskiyurt N. Effects of whole-body vibration and high impact exercises on the bone metabolism and functional mobility in postmenopausal women. J Bone Min Metab. 2020;38(3):392–404.
- Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett DR Jr., Schmitz KH, Emplaincourt PO, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504.
- 45. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.
- Singh B, Olds T, Curtis R, Dumuid D, Virgara R, Watson A, Szeto K, O'Connor E, Ferguson T, Eglitis E et al. Effectiveness of physical activity interventions for improving depression, anxiety and distress: an overview of systematic reviews. Br J Sports Med 2023, 57(18).
- Xu H, Liu J, Li PS, Liang YJ. Effects of mind-body exercise on perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause-the J North Am Menopause Soc. 2024;31(5):457–67.
- Cramer H, Lauche R, Anheyer D, Pilkington K, de Manincor M, Dobos G, Ward L. Yoga for anxiety: a systematic review and meta-analysis of randomized controlled trials. Depress Anxiety. 2018;35(9):830–43.
- Elavsky S, Molenaar PCM, Gold CH, Williams NI, Aronson KR. Daily physical activity and menopausal hot flashes: applying a novel withinperson approach to demonstrate individual differences. Maturitas. 2012;71(3):287–93.
- Terauchi M, Hiramitsu S, Akiyoshi M, Owa Y, Kato K, Obayashi S, Matsushima E, Kubota T. Associations between anxiety, depression and insomnia in periand post-menopausal women. Maturitas. 2012;72(1):61–5.
- Alblooshi S, Taylor M, Gill N. Does menopause elevate the risk for developing depression and anxiety? Results from a systematic review. Australas Psychiatry. 2023;31(2):165–73.
- Ates S, Aydin S, Ozcan P, Bakar RZ, Cetin C. Sleep, depression, anxiety and fatigue in women with premature ovarian insufficiency. J Psychosom Obstet Gynecol. 2022;43(4):482–7.
- Hedges VL, Heaton EC, Amaral C, Benedetto LE, Bodie CL, D'Antonio BI, Portillo DRD, Lee RH, Levine MT, O'Sullivan EC, et al. Estrogen Withdrawal Increases Postpartum Anxiety via Oxytocin plasticity in the Paraventricular Hypothalamus and dorsal Raphe Nucleus. Biol Psychiatry. 2021;89(9):929–38.
- Freeman EW. Associations of depression with the transition to menopause. Menopause-the J North Am Menopause Soc. 2010;17(4):823–7.

- Chou CH, Ko HC, Wu JYW, Chang FM, Tung YY. Effect of previous diagnoses of depression, menopause status, vasomotor symptoms, and neuroticism on depressive symptoms among climacteric women: a 30-month follow-up. Taiwan J Obstet Gynecol. 2015;54(4):385–9.
- 56. Herson M, Kulkarni J. Hormonal agents for the Treatment of Depression Associated with the menopause. Drugs Aging. 2022;39(8):607–18.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.