Type Inference for Complexity Analysis of
Functional Programs

Maxime Lesourd
internship under the supervision of Patrick Baillot

1 Introduction

Complexity analysis is the study of the resources, time or space, required to
run a progran given the size of its inputs. Here we are interested in automated
time analysis for programs in a variant of A-calculus. The goal would be to
have an algorithm which gives human readable bounds for the execution time
of programs written in a functional language. We use here an approach based
on logic and which is transposed as a type system using the Curry-Howard
isomorphism.

This internship builds on the work of Baillot et al.[3] on the d¢T type system
in order to get a type inference algorithm which given a functional program
computes a bound on its execution time.

dlT is a type-based complexity analysis for a call-by-value, higher order cal-
culus with primitive recursion. d¢T also includes primitives for writing and
reading to memory but we will only consider its functional fragment here. The
analysis proceeds in two steps, first we infer bounds on the size of the objects
manipulated by the program and then we use these bounds to compute a bound
on the number steps needed to evaluate the terms on an abstract machine. The
result of this analysis comes as an annotated type giving bounds on the outputs
of the program as a function of the size of its parameters. In [3] this is done
by annotating types with first order terms which are specified by an equational
program. Our work focused on providing an implementation for this analysis
and exploring solutions for finding explicit closed-form bounds on the sizes spec-
ified by the equational programs.

The main contributions are :

A full description of the type inference algorithm for the size analysis in
d¢T for which some details were left out in [3].

e An implementation in OCaml of this algorithm allowing us use an external
solver in order to find upper bounds on the equational programs.

e An analysis of the possibility to automatically compute these upper bounds
using an existing solver for a similar problem : PUBS[I].

e An alternative algorithm to compute closed-form upper bounds tailored
to the equational programs arising from type inference.

2 DLT

2 dIT

We will now describe the fragment of d¢T we will be working with. Since we
mostly focus on the synthesis of upper bounds for equational programs we will
not go over the evaluation rules for the language or the soundness of the type
inference algorithm. These can be found in [3].

2.1 Setting

We consider a simply-typed, call-by-value lambda calculus with booleans, nat-
ural numbers and lists. Given a denumerable set of variables V (denoted by z,
y or z), terms and values are defined as

M,N == V| x| succ(M) | cons(M,N) | MN
V,W == zero | succ(V) | nil | cons(V,W) | tt | ff
| Az.M | iter(V,W) | fold(V,W) | if(V, W)

The language constructs zero, succ(V),nil, cons(V, W), tt,£f will be re-
ferred to as constructors and iter, fold as recursors.

Example 1. We define the following terms which compute respectively the ad-
dition and multiplication of two natural numbers, the sum of a list of natural
numbers and an implementation of addition using higher order iteration:

add := Az.iter(Ay.succ(y),x) mul := A\z.iter(add z, zero)
sum := fold(add, zero) shift := iter(Afz.f (succ x),Af.f)

We start with an affine type system ¢T for the language which will be the
basis of our analysis. It is a variant of system T with linearity constraints on
function types. The types and base types are defined as:

T = B|T-—-T
B == B | N | LB
A wariable context is denoted by I' and is of the form =1 : T1,..., 2, : Th.

A ground variable context is a variable context where the types are base types
and is denoted by ¢I'. Typing judgements are of the form I' = M : T. The
union I' ¥ IV is only defined if the variables present both in I and TV are given
the same base type. The typing rules of £T are similar to those of System T,
we describe a few rules in which linearity plays a role in Figure [Il In the rule
for term application we ensure that higher order variables are not duplicated,
thus we know they will be used at most once. In the rules for the recursors the
ground contexts ensure that no higher order variable is used when defining M
and N.

Example 2. We can derive the following judgements in ¢T:

Fadd: N —-oN —-oN Fmul : N —oN -—-oN
Fsum: L(N) - N F shift :N —<o N —o N

2.2 dIT 2 DLT

Dx:THM:T NWEM:T—T LeEN:T
'FXe.M:T —T' I'yewlo MN : T’
MMM :T—oT o N:T
Ty WATy + iter(M,N): N — T
M{EM:B—-oT—oT Ty N:T
T, W, F fold(M,N): L(B) - T

Figure 1: Linear Typing Rules — Selection

2.2 dIT

The d/T type system allows us to keep track of the size of the objects manipu-
lated by a program. This is done by decorating the types of T with index terms
which give us an upper bound on the size of objects. The notion of size we are
concerned with here is the length of lists and the number of succ constructors
in natural numbers. The index terms are defined as I ::= f(a,...,a) | a where
f is a function symbol of arity n taken from a set ZF and a denotes an index
variable taken from a set ZV. For now we assume that ZF contains symbols for
the constant 0 and the successor written as 1+. We use ¢ to denote sequences
of index variables.

These symbols are interpreted using an equational program A specified as
an orthogonal terminating rewriting system. An equational program defines the
indices in positive position in a type in terms of those in negative position. We
will actually work with a specific class of equational programs described later.

The indezed types and indexed base types are defined as follows:

D,E == U | D—D
U == B | N | LD

We say that a type or index is in positive (resp. negative) position in a type
when it is to the left of an even (resp. odd) number of —o. For example in
(Nt — N'2) —o N3 [and I3 are in positive positions and I is in negative
position.

Definition 1 (Equational Programs). An equational program is an orthogonal,
terminating, term rewriting system which allows us to interpret index functions
as function from n-uples of natural numbers to natural numbers. We denote
equational programs by A. During type inference we will be working with pseudo
programs, denoted by £, in which some symbols are unspecified. Intuitively these
symbols will correspond to those which occur in negative positions on a type. In
order to keep descriptions simple, we will sometimes use index terms such as
natural number constants or 1 + f(¢) instead of giving an equational program.

A completion of a pseudo program £ fully specifies the symbols only appearing
on the right hand side of the rules in &.

Example 3. The type L3(IN?) is the type of lists of length smaller than 3 built
from integers smaller than 2. The type N* — Nb —o N/(@) together with the
program {f(a,0) = a; f(a, b+1) = 1 + f(a,b)} is the type of functions which

2.2 dIT 2 DLT

FED'C D FHEEC E

g

FBLB D ECD —-F
EEIr<J EEIr<J FEDC D
- N C NY H LI(D)C LY(D')

Figure 2: Subtyping Rules

FEDCE EEI+1<J ¢ MmN/
Iz:DF 2 E I F¢ succ(M) : NV
FHEDCE € EC E{a+1/a} HE BE{I/a}C F

M1+ M : D — D{a+1/a} Ty ¢ N : D{0/a}
Ty Wil € iter(M,N) : NI — F

Figure 3: Typing Rules — Selection

take two natural numbers of size at most a and b and return a natural number
smaller than a + b.

Given an equational program A and a function symbol f defined in A we
write [f] 4 for the interpretion of f in A. Given a pseudo program & and indices
I = f(¢) and I' = g(¢') we write =€ I < J if for every completion A of £ we
have [f]a(¢) < [g]a(¢’) for every assignement of the variables in ¢, ¢'.

We can now define a subtyping relation C on indexed types in Figure [2] and
using the notations of /T for typing context we define a typing judgement of the
form I' € M : D. We give a selection of typing rules for d¢T in Figure [3, The
rule for typing variables states that in a context where x : D, x can be used
with any E such that D C E, for example if : N we can use z with type N2,
in this case we lose some information about the size of z. The succ rule states
that the successor increases the size by 1. The rule for the iterator uses a free
variable a in D to keep track of the number of iterations and an intermediary
type E on which we impose a monotonicity constraint.

Definition 2 (Skeleton of a type). The skeleton [D] of a type D is obtained by
erasing all indices of D.

Definition 3 (Primitive types). A type is primitive for a set of index variables
¢ when it is of the form B,N/(®) L/(®)(U) or D; — Dy where U, Dy, Dy are
primitive for ¢.

We use the symbol p to denote polarities in {+,—} and —p to denote the
opposite of a polarity p.

Definition 4 (Positive, Negative symbols). Given a type D primitive for ¢ its
positive and negative symbols, denoted by DT and D~ are defined inductively

2.3 Inference algorithm 2 DLT

as:
Nf(@+ .— {1} N/ (@— .— &
L'@(D)t = {f}uD* LDy =2
(Dl —0 D2)p = D;p U Dg B =9

As an example the type D := N/(@b) o L9(@b)(NMa)) is primitive for
¢ = a,b with skeleton [D] = N — L(N). Its positive symbols are g and h and
its negative symbol is f.

Definition 5 (Specified Symbols). Given a pseudo program £ and a set of
function symbols N we say that a function symbol f is (€, N)-specified if f is
well-defined by & completed with definitions for the symbols in N'. We say that
f is unspecified in £ if there is no rewriting rule for f in £. We say that a type
D is (€,N,p)-specified if the symbols in DP are (€, N U D™P)-specified and the
symbols in D™P are unspecified. We say that a typing judgement T' ¢ M : D is
specified for ¢ when D and the types in T are primitive for ¢ and D is (E,N,+)-
specified and the types in T are (€, N, —)-specified where N is the set of negative
symbols of the judgement.

Example 4. With € := {f() = g()} the type N90 — N0 is (£, @, +) specified.

2.3 Inference algorithm

We present an inference algorithm for d¢T adapted from [3] and [4]. Given an
(T type derivation m with conclusion I' - ¢ : T" we want to produce a d{T type
derivation 7’ with conclusion IV ¢ t : D together with an equational program
£ giving meaning to the indices in positive position in IV and D. We get rid
of subtyping by using a max operator in equational programs, thus we consider
our /T derivations with subtyping constraints replaced by equalities.

Infer(m, ¢) = (D,E,TV)
where 7 has conclusion I' = M : T' with the invariants :
e "€ M : D is derivable and specified for ¢
o I'|CT, [D]=T
Infer is defined by induction on 7 :

ecasem= T T :

D:=a(T.¢) D' = a(T,)
& :=cut(D', D) IM:==x:D
71_/

ecasemr= Lyjz:Thi+FM:T,
' e M:T) — T

(DaryEnr, Tar) := Infer(n’, ¢)

2.3 Inference algorithm 2 DLT

if AD,,x : D, € I'p; then

D : =D, — Dy E=Eu I":=Ty\z:D,
else
(D2, &) := Dummy_ (M, §) D:=Dy — Dum
E=EWEy I":=Tpy
M TN

e case T = FMI—M:TJIVI—OTJ’\} I'vnFN: Ty
PMH'JFNI_MNZTK/I

(Dﬁ\/f —o D}y, En, Tar) := Infer(mpr, @) (Dn,EN,TN) := Infer(nn, @)
D := D}, & = Cut(Dy, DY)
(F/,gg) = Unify((b,FM,FN) E=EyWENBHE WES

e case ™= T nil: L(T)

(Do, &) = Dummy (T,) D := L") (Dy)
£ :=Ew{n(¢) =0} I''=o
M ™

ecasenr= I"FM:T Iy N:L(T)
I't W'y - cons N):L(T)

(M

(Dar, Enr, Tar) := Infer(may, ¢)
)
&)=

(Lf(d’)(DN) En, TN
(D'

= Infer(ny, @)
Max(DM,DN)
F/ _Unlfy(¢7FM7FN)
D :=L/"¥(D)
E=EqWENWEW{f () =1+ f(d)}
Ts b
ecaser= 'y FM:T —T My EN:T
Ly AT Fiter(M,N): N — T

(D' — D" E&,,T,) := Infer(rs, (¢, a,b))
(Dp, Ep,T'y) := Infer(mp, (¢, a))
N™®) .= (N, ¢)
(D, &) := IterCut (Dy, D\, D", n)
(T, &) := Unify(¢, 'y, Tp)
D:=N"% oD,
E=EWEWUE WE

with a; b fresh in ¢.

2.3 Inference algorithm 2 DLT

We now define the IterCut, procedure. Let Dy, DL, DT be types such that
[D] = [E] = [F] and f be an index symbol, then

IterCut,(Dy, DL, DT, f) = (€, D,)

IterCut, is defined by induction :

IterCut, (N (®®) Ni(#ab) Nk&b)) — (N9 g)
where € is
{j(¢,a,b+1) =k(p,a+1,b)
J(¢,a,0) = i(,a)
r'(¢,b+1) = k(¢,0,b+1)
r'(¢,0) = i(¢,0)

r(¢) = Joax (¢, b)}

TterCut_ (NU®®) Ni(#ab) Nk) — (N"(4) g)
where £ is
{k(¢,a +1,0) = j(¢,a,b+ 1)
k(¢,0,0) = r(¢)
i(¢,a+1) = j(4,a,0)
i(¢,0) = (9)}

TterCut, (D, — Dj, DL — DY DT — D7, f) = (D, — D.,EUE')
where
IterCut_,(Dy, DL, DT, f) = (€, D,)
TterCut, (D, D', DY, f) = (€', D.)

T

The case for L(D) is similar to N.

The definition of the procedures used in the the previous definitions can
be found in [3] and in the implementation. The intuition behind the defini-
tion of IterCut can be illustrated by the following diagram. The boxes repre-
sent the action of the step and base terms on the size of the data we iterate
on. The parameters a and b can be seen as counters which vary in oppo-
site directions during the iteration. In this example we iterate on the type
(Nt(a,b) N Ns(a,b)) N (Nr(a,b) N Nu(a,b)).

p(a) r(a.b) s(a.b) rla.b) s(a.b) r(a.b) s(a.b) r(a.b) s(a.b)
Base Ste P Ste Ste P Step
qfa) tla,b) ula.b) tla b) ula.b) tla.b) ula.b) tla,b) ula.b)

2.4 The equational program 3 SOLVING THE EQUATIONAL PROGRAM

2.4 The equational program

We now describe a restricted syntax for the equational programs generated by
Infer. This will allow us to translate these equations in order to solve them
using an external solver.

t = 0]|wv| 14w
rou= 0 v | 1+ f(e) | f(D)
| max(f(¢),9(¢)) | vrsn%)g(@

@ (resp. t) denotes a sequence of v (resp. t)

E ={f(¢1,0,¢2) = g(t1); f(¢1,v + 1,¢2) = h(t2)} rer, U{f(P) = T} ser,
Where I; and I, are disjoint subsets of Z.F.

Definition 6 (Alias). We say that f(¢) aliases to r in & if f(¢p) =r isin & or
f(@)=g(¢") is in & and g(¢') aliases to r.

3 Solving the equational program

3.1 PUBS

The PUBS solver was developed by Albert et al.[I] as a backend to a complexity
analysis tool for Java programs. It is a promising candidate to solve equational
programs because it handles multivariate recurrence relations and handles non-
determism, allowing us to easily translate the maxz on the right hand side of
equations. These features are not so common in upper bound synthesis from a
set of equations.

The PUBS solver is able to infer bounds for a system of cost relations. These
are similar to our equations but they can deal with nondetermism.

Definition 7 (Cost Relation System). A cost relation system (CRS) is a set C
of rewriting rules of the form

F@=c+Y v+ fi(d)
i=0 =0

where the terms in t are linear combinations of variables and c is a natural
number.

We provide a partial translation from equational programs to cost relations.
The issue is that we cannot encode equational programs which require a form of
functional composition. This problem arises when translating right hand sides
of the form r<nfa()é) g(¢) for which f(¢) is not a linear combination of negative

v

occurences because in cost relations function symbols can only be applied to
linear combinations of variables. In order to further simplify the implementation
we restrict ourselves to programs in which such an f(¢) aliases to a variable.
This restriction could be lifted but as we will see this would not allow us to
treat a significantly larger set of programs.

3.1 PUBS 3 SOLVING THE EQUATIONAL PROGRAM

For the translation we rely on a primitive CR such that CR(%, f, ¢, r) produces
cost relations encoding f(f) = r, the variables in v are used to produce a result
which is parametrized with regard to the indices in negative position. CR is
defined by case analysis on r:

e case r =1+ g(¢) :

CR(v, f,t,7) := {f(0,1) = 1+ g(v, 0)}

The cases for r = 0, v, f(¥) are straightforward.

e case r = max(g(¢1), h(¢2)):

CR(T}a fs 7?7 T) = {f(@af) = g(@ad)l); f(@af) = h(67¢2)}

e case r = max h(¢'):
v<g(¢) (¢

As explained above we assume that g(¢) aliases to some variable v, then

CR‘(@fv 1?,7“) = {f<7 E) = f/(@,lf_, ’U/)§

We can now define the translation CRS(E, D) of an equational program &
giving meaning to symbols in some indexed type D:

CRS(E,D)=Ccucl’
where
var is an injection from D~ to fresh symbols in V
v := (var(f)) sep-
C' = f(v)= var(f)feD,
C:= U CR(v, f,, 1)
(f(B)=r)e€
In the translation the equations in C’ map indices in negative positions to

PUBS variables and the equations in C are translated from the equational pro-
gram.

Example 5. Here is how we would translate an equational program &£ giving
meanding to symbols in D = N®0 — N?0 — N0 — N90 :

3.2 Evaluating PUBS 3 SOLVING THE EQUATIONAL PROGRAM

£ CRS(E, D)
g() = MaXz<a() f(ﬂ?) a(a7 b, C) =a
flz+1) =1+ f(2) b(a,b,c) =b
f(0) = max(b(), () c(a;b,c) =c

g(avba C) :g/(aabv & CL)

g (a,b,c,x+ 1) =¢'(a,b,c,x)
g'(a,b,c,x) = f(a,b,c,x)
fla,b,c,x+1) =1+ f(a,b,c,x)
fla,b,¢,0) =b()
f(a,b,¢,0) =c()

3.2 Evaluating PUBS

The first attempts at usign PUBS as a backend solver were very promising. We
are able to infer precise bounds for addition using both add and shift terms
and several terms using simple recursion on a higher order type such as N — N.
The first issues arose when we tried to infer bounds for multiplication.

3.2.1 Compositionality problems

A natural implementation of multiplication as iterated addition in £T would
be mul; := Az.iter(iter(Ay.succ y,z),zero) from Example 1 which can be
rewritten as

Az.iter(add x,zero). The resulting equational program does not satisfy the
restriction required for our translation into a CRS because of the following
equations :

r(A,B) := maxXco<s(A,B) (A, B,C)
s(4,0) = 0
s(A,B+1) = r(A+1,B)

Here the bound s(A4, B) does not alias to a negative index. Intuitively, the
issue is that the size of the second argument to add is used to drive the iteration
and its size s(A, B) changes at every step of the outer iteration. In practice
this limitation prevents us from applying a term built from iter to a complex
term or using it as a step function. At this point the question that remains is
whether we can express some interesting functions for which we can produce an
equational program that can be translated to PUBS.

3.2.2 Cover point problems

It is possible to represent multiplication with these restrictions as

muly := Az.iter(A\y.iter(\z.succ z,y) x,zero) which is equivalent to
Az.iter(Ay.add y x, zero) and we can actually produce terms representing any
polynomial function with natural coefficients. Not only is this restriction slightly
less natural, it is actually less efficient. This comes from the fact that the time
complexity for evaluating add z y is the size of y which remains constant in
mul; and increases by the size of = every step in mul,. Trying to solve the CRS

10

3.2 Evaluating PUBS 3 SOLVING THE EQUATIONAL PROGRAM

vl_t_45 r_55
1\ /
ctx_51 r_aux_56
A
zero_62 r_49
\
r_aux_50 unif_merge_61
g
suc_47

Figure 4: Dependency Graph for muls

for muls allowed us to discover a fundamental limitation of the PUBS solver for
our purpose.

We now need to introduce a few notions to talk about the structure of
equational programs in order to understand this limitation.

Definition 8 (Dependency Graph). The dependency graph for an equational
program &£ is the graph which has the indices appearing in € as nodes and an
edge between f and g if the definition of f in € mentions g. We can define a
similar notion for cost relation systems.

Definition 9 (Strongly Connected Component). In a directed graph G = (E, V)
a strongly connected component is a subset U of E such that for any two nodes
u, v in U there is a path in G from u to v.

Definition 10 (Cover Point). A cover point for a strongly connected component
U is a node p in U such that every cycle in U contains p.

PUBS requires that every strongly connected component in the dependency
graph has at least one cover point. This condition is mentioned in [I] but the
authors argue that it is always satisfied in the cost relations generated from the
imperative programs they study.

In the case of muly we get the dependency graph in Figure [d We can see
that the cycles {vl_t_45 suc_47} and {ctx_51 r_49 r_aux_50} are disjoint
and belong to the same strongly connected component. In this case the PUBS
solver fails to produce an upper bound and gives the following error message :

CRS r_55(4)

* Non Asymptotic Upper Bound: c(failed(cover_point, [scc=1,cr=r_49/3]))

11

3.3 Beyond PUBS 4 IMPLEMENTATION

3.3 Beyond PUBS

Since PUBS does not seem to be able to solve our equational programs even
on simple examples we have tried to find a heuristic tailored to these programs.
The idea is that the dependence graph is a coarse reprensentation of the actual
dependencies arising in equational programs.

This heuristic is not yet fully defined but the intuition can be explained
with the following example equational program &£ which is adapted from the
equational program from muls:

fla,b) = f'(a,b,2())
F(a,b,0) = gla,b)
f'(a,b,c+1) =1+h(a,b,0,d+1)
9(a,0) =0
g(a, b—|—1) =s(a+1,b)
h(a,b,¢,0) = g(a,b)

h(a,b,c,d+1) =1+ h(a,b,c+1,d)

The dependency graph for £ is strongly connected and it has two disjoint
cycles (f, f',g) and (h) thus PUBS is of no help to us. If we were to solve it by
hand we would notice that the dependency from h to g is only present in the
base case. We could replace the last two equations by h(a,b,¢,d) = g(a,b) +d
and from there we could either solve it using PUBS or try to find another similar
pattern which we could simplify.

In order to turn this intuition into a proper algorithm we would need a way
to bound simple recursions of the form f(v,z + 1) = F(9, f(7,2)), f(7,0) =
G(v) for some functions F, say linear or polynomial functions with natural
coefficients. Then we would need to define an ordering on indices taking into
account these weak dependencies arising in the base case of recursions.

The first part could be handled by a computer algebra system for some
classes of functions F'. Unfortunately we were not able to find a way to express
the desired order during this internship. Using this approach by hand we were
able to find tight upper bounds for all the examples presented here and for an
implementation of x +— 2%.

4 Implementation

We provide an implementation of the inference algorithm in OCaml. This im-
plementation was used to output the equational program needed to perform
type inference on several examples and to experiment with the PUBS solver. In
order to save time we provide an embedded domain specific language (EDSL)
instead of a parser, this way we can input terms directly in OCaml.

The inference algorithm is implemented as an OCaml library which provides
the following functionalities :

e An EDSL to input ¢T terms
e Type inference from ¢T to d¢T
e Alias reduction for equational programs

e Translation of equational programs to the PUBS format

12

4 IMPLEMENTATION

The implementation of the type inference algorithm outputs the equational
program in a solver-independent format which can then be translated to the
PUBS format. This approach allows us to output the equational programs
which cannot be translated to the PUBS format and solve them by hand or
use an alternative solver. It also allows us to perform alias reduction which is
needed for the translation and makes equational programs more readable for the
user. The data type used to represent the equations is as close as possible to the
format described is section this way the implementation of the translation
to the PUBS format is very close to the definition of CRS.

We heavily rely on the OCaml type system when handling ¢T typed terms
and indexed types by representing them as a generalized algebraic data type
indexed by the corresponding ¢T type. We will use a simplified version of the
datatypes used in the implementation in the following examples. Here the type
nat is used as a type marker for N and the OCaml function type -> for —o.
We introduce the datatypes for types and indexed types, the type parameter is
used to record the base type. For example the type N/(¢) —o N9(¢) would be
represented as
IA (IN (index f ¢), IN (index g ¢)) : (nat -> nat) ityp

type nat

type _ typ =
| N : nat typ
| A : ’a typ * ’b typ -> (a -> ’b) typ

type _ ityp =
| IN : index -> nat ityp
| TA : ’a ityp * ’b ityp -> (Pa -> ’b) ityp

Instead of writing a parser for untyped terms we opted for an EDSL to input
(T terms which are typeable by construction. The only part of £T type checking
which is not performed when constructing terms is the linearity constraints,
these are checked during d¢T type inference. Another advantage is that we can
write OCaml functions which can be used as macros to write terms.

type _ term =
| Var : string * ’a typ -> ’a term
| Lam : string * ’a typ * ’b term -> (’a -> ’b) term
| App : (’a -> ’b) term * ’a term -> ’b term
| Zero : nat term
| Suc : nat term -> nat term

|

Iter : (a -> ’a) term * ’a term -> (nat -> ’a -> ’a) term

(* lam : string -> ’a typ -> (’a term -> ’b term) -> (’a -> ’b) term *)
let lam v typ f = Lam (v, typ, £ (Var (v, typ)))

The lam function is used to build terms from OCaml functions. This ensures
that variables are properly scoped and used with the right type. In the following
example we use lam to implement the identity function which can be specialised
to any type. The term resulting from the evaluation of id typ is equivalent to
Lam ("x", typ, Var ("x", typ)).

13

4 IMPLEMENTATION

(x id : ’a tag -> (a -> ’a) term %)
let id typ = lam "x" N (fun x -> x)

The main downside of using an EDSL is that recompilation is needed ev-
erytime the user wants to specify a different term to analyse. During our ex-
perimentation we did not find this to be a problem since compilation time is
very short and by leveraging the OCaml language we were able to quickly write
complex terms including an OCaml function which takes a list of coeficients
describing a polynomial and outputs a term computing the associated polyno-
mial function. A big step interpreter is also provided and was used to test that
complex terms compute the right function.

This representation is useful in order to implement the type inference algo-
rithm as a patently total function. In many of the auxilliary procedures used
in Infer one of the invariant is that several type arguments ought to have the
same skeleton which is used when pattern patching on these arguments. For
example in the following example we do not have to consider the cases for which
the types do not have the same skeleton and the compiler can check that the
pattern matching is exhaustive. The price we have to pay in order to get exhaus-
tiveness checks is that we need to give explicit type signatures for the functions
handling these types because the OCaml compiler cannot infer them.

let rec cut : type a. a ityp —> a ityp -> prog =
fun context typl typ2 ->
match typl, typ2 with
| IN £, IN g -> ... (x equation for (f = g) *)
| IA (t1, t1°), IA (t2, t2’) —->
union (cut t2 t1) (cut t1’ t27)

Example 6. We will now see how to use our implementation and the PUBS
solve7E| to infer the d¢T type for the shift example of Example 1.

The first step is to input the term in the file examples.ml using the helper
functions for /T terms and modify the file main.ml to perform the analysis of
the term shift. In our case we want to output the cost relation system to the
file shift.ces.

(* examples.ml *)
let shift =
iter (lam "f" (arr nat nat) (fun f ->
lam "x" nat (fun x ->
app £ (suc x))))

(id M)

(* main.ml *)
let =

driver “config:{default with pubs = Some "shift.ces"} Examples.shift

We can now compile the program and run the analysis with make; ./main.
The output includes the type nat[n_44()] -> nat[r_45(0)] -> nat[r_46()]

1A linux executable for the PUBS solver is available at http://samir.fdi.ucm.es/
~genaim/tmp/pubs/

14

http://samir.fdi.ucm.es/~genaim/tmp/pubs/
http://samir.fdi.ucm.es/~genaim/tmp/pubs/

5 RELATED WORK

which is inferred for our term and an equational program which gives meaning
to the indices in the indexed type. The file shift.ces contains the translation
of the equational program, we are interested in the first two sets of equations.

% shift.ces
% Entries

entry(’r_46°(4,B): [1).
% Equations

eq(’n_44’ (A,B) ,nat (), [1,[1).
eq(’r_45’ (A,B) ,nat(B), [1,[1).

Under the entries header we can find the positive indices, in this case *r_46° (A,B) : [].
The first set of equations after the equations header relates PUBS variables and
indices in negative position, for example n_44 is referred to as A in the equations.
We can now call the PUBS solver using pubs_static -file shift.ces -entry "’r_46°(A,B):[1"
to get a bound on r_46().

CRS r_46(A,B)

* Non Asymptotic Upper Bound: l+nat(A-1)+nat(B)

We have to substitute the variables A and B for the indices they refer to to
get the final bound which is 1+n_44()+n_45().

5 Related work

There are several approaches to time complexity analysis for higher order func-
tional programs. This work tries to improve on an approach which involves
reducing the problem of inferring time or size bounds on functional programs to
solving recurrence relations. Most of the time these recurrence relations as in
Danner et al.[5] or Dal Lago and Gaboardi [7] are the end result of the analysis.
The main limitation is that the obtained recurrences are not always guaranteed
to be terminating and the user still has to find a way to infer an upper bound
on the recurrence.

Another approach is to restrict the analysis to a restricted class of upper
bounds. Resource Aware ML[6] can infer polynomial size and space bounds for
higher order functional programs. We were not able to produce a comparison
between our approach and RAML during this internship but given an adequate
solver our approach should allow us to infer non polynomial bounds.

The literature concerning complexity of imperative programs is vast and uses
different approaches to infer explicit bounds. A similar approach to the one we
used here is used in the COSTA analyser[2] to produce size and time bounds
for Java programs. The PUBS solver was developed as a backend for COSTA.

15

REFERENCES

6 Perspectives

We have seen that the PUBS solver is not suited for solving our equational
programs and on way we believe that we gained some insight on a method which
would allow us to exploit their structure to infer upper bounds for a wider range
of programs. We still have to properly define our tentative heuristic and find a
class of recurrences for which we could use an existing tool or devise our own.

We have implemented the inference algorithm for d¢T in a way which allows
us to use a tool of our choice to bound the equational program. We could try
to find another existing method for bounding the equational programs and see
how well it fares on our examples to compare it to the heuristic. Once we find a
reliable way to bound the equational programs, the implementation should be
extended to produce the time bounds as described in [3].

Acknowledgments

I would like to thank Patrick Baillot and Ugo Dal Lago for their advice and
suggestions during this internship.

References

[1] Elvira Albert, Puri Arenas, Samir Genaim, and Germén Puebla. Closed-
Form Upper Bounds in Static Cost Analysis. Journal of Automated Reason-
ing, 46(2):161-203, 2011.

[2] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano
Zanardini. COSTA: Design and Implementation of a Cost and Termination
Analyzer for Java Bytecode. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, Formal Methods for Compo-
nents and Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24-26, 2007, Revised Lectures, volume 5382 of
Lecture Notes in Computer Science, pages 113-132. Springer, 2008.

[3] Patrick Baillot, Gilles Barthe, and Ugo Dal Lago. Implicit Computational
Complexity of Subrecursive Definitions and Applications to Cryptographic
Proofs (Long version). Research report, ENS Lyon, September 2015.

[4] Ugo Dal lago and Barbara Petit. The geometry of types. SIGPLAN Not.,
48(1):167-178, January 2013.

[6] Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. Denotational
cost semantics for functional languages with inductive types. CoRR,
abs/1506.01949, 2015.

[6] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource Aware ML.
In 24rd International Conference on Computer Aided Verification (CAV’12),
volume 7358 of Lecture Notes in Computer Science, pages 781-786. Springer,
2012.

[7] Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative
completeness. Logical Methods in Computer Science, 8(4), 2011.

16

	Introduction
	dlT
	Setting
	dlT
	Inference algorithm
	The equational program

	Solving the equational program
	PUBS
	Evaluating PUBS
	Compositionality problems
	Cover point problems

	Beyond PUBS

	Implementation
	Related work
	Perspectives

