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How do we make volume rendering solids principled?

translucent

opaque solids

& cERE

» =
P P

" VVVVVVVVVV



Why do we make volume rendering solids principled?

explains and improves prior methods

reference



Outperforms several recent works on a variety of datasets
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deriving free-tlight for opaqgue solids

Markov assumption

inside
o . z.w(l)
first intersection

outside  independent of past ‘ é\ Q—’- - -===m= .- - - - ==

® history
(memoryless like Dory) J |—| t

exponential free-tlight

attenuation coefficient
w - Vou(z)|
v(z)

o(x,w) =

v()

probabilistic vacancy [0, 1]

proof in paper
e Markov assumption allows us to
define transition density in terms of

Kolmogorov equations

e Reversibility and reciprocity

constraints for physically valid free-
tflight distributions give a unique
attenuation coefficient
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ensuring physically valid free-flight distribution

visibility transmittance
|x—y|
T
v 1 if nointersections E[V(:’U’ y)] =1 - /() Pz (t) dt
(.cz;‘,y) B () otherwise

|z —yl|
ElV(wa)=1— |  pf_(t)dt

condition for reciprocal exponential transmittance:

o(z,w) =o(x, —w) Vr R

many prior works violate reciprocity

—Ww

Viz,y) =V(y, ) EV(z,y)] = E|V(y,2)]

visibility is reciprocal transmittance should be reciprocal
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understanding density for opaque solids
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understanding projected area for opaque solids

projected area

o(r,w) = w - n(x)]

direction relative to vacancy projected area

0 m/2 m Own()

deterministic case doesn't | | projected area is

projected area is

i have well defined normals |

large when
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understanding projected area for opaque solids

Directly analogous to

/: distribution of normals microflake model Oopaque solids
i used in microflake models Jakob et al. 2010, Heitz et al. 2015] (ours)

particle density projected area solid density projected area

distribution of normals |Vou(x)|
p(T) - '
D, (m) v()
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. —*-_Lt'L L=
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Where does vacancy v(z) come from?

density projected area

Vo)
o(2)

o(x,w)




parameterizing vacancy with geometric representations
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surface reconstruction
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cloud

w5 [Sellan and Jacobson 2022]




parameterizing vacancy with geometric representations

probabilistic vacancy

S sigmoid
IMpPIICIT
surface - @

[Wang et al. 2021, Yariv et al. 2021]

low = high

stochastic Poisson

f(x), Gaussian Process

Conditional
variance

(———
—
-
™ -~
-
e -
— O —

Conditional

e — e
i
Test point =

[Selldn and Jacobson 2022]

point 0
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¥

0 e 1
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stochastic implicit G(z)  probabilistic vacancy
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stochastic implicit surfaces

stochastic implicit G(z)  probabilistic vacancy

mean sigmoid
implicit
surface —Cb—>
4 )
v(x) = sigmoid(f(x))
low s high ) ’ 0

Each symmetric PDF corresponds to .
a different type of sigmoid Pro babil 18Y of vacancy?

i.e. Gaussian —> Erf
8 - P(G(z) > 0)

Provides common stochastic lens (i.e. outside zero level set)

for prior work.
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density projected area

V@)
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distribution of normals reciprocal?
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Gaussian process

|Vu(z)|| implicit surfaces
o(lx,w) = :
(V) (CC) g2 [Williams et al. 2006]
?J(.’E) =1 — Cdfg(x) (O)
G(x)
implicit distribution reciprocal?
NETTN [Wang et al. 2021] LQgistiC
VoISDF [Yariv etal. 2021] Laplace

Ours Gaussian




density projected area
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reciprocal?

NGUS [Wang et al. 2021]

VoISDF [Yariv et al. 2021]
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density projected area

V@)
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v(x) =1 — cdf ) (0)

G(:):) D, (m)

o(x,w)

NGUS [Wang et al. 2021]

VoISDF [Yariv et al. 2021]
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understand the design space for the attenuation coefficient

e \We specitically compare only the
e \We run all experiments using

e \We consider only for transmittance estimation



consistently improves surface reconstruction
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several ablations to design our attenuation coefficient

Table 8. Chamfer distances on the DTU dataset when using differ-
ent implicit function distributions W for the density ol

Table 9. Chamfer distances on the DTU dataset when using differ-

ent distributions of normals D for the projected area o=

Gaussian D delta delta  mixture mixture SGGX
model (ReLU) (const.) (var.) (var.)

W model logistic Laplace

24
37
40
35
63
65
69
83
97
105
106
110
114
118
122

2.73
3.56
1.94
1.77
1.86
2.67
1.73
1.85
1.82
1.90
1.09
1.98
1.29
1.39
2.11

1.92
3.65
2.32
1.65
1.76
2.60
1.58
1.94
2.13
2.04
0.98
1.92
1.43
1.54
1.89

1.99
3.08
2.28
1.64
1.76
2.45
1.31
1.69
1.83
1.74
0.98
1.76
0.96
1.67
1.59

1.98
1.86

1.96
1.92

1.78
1.74

24
37
40
35
63
65
69
83
97
105
106
110
114
118
122

3.57
4.02
1.99
1.71
2.04
2.37
1.70
2.33
2.38
3.17
1.07
1.90
1.16
1.37
1.83

2.73
3.56
1.94
1.77
1.86
2.67
1.73
1.85
1.82
1.90
1.09
1.98
1.29
1.39

2.43
4.16
1.94
1.85
1.85
2.19
1.57
1.79
2.25
1.85
0.99
1.89
1.37
1.75
1.73

2.16
3.40
1.76
1.43
1.60
1.97
1.54
1.55
1.91
1.53
1.32
1.59
1.26
1.31
1.85

2.10
3.32
1.83
1.64
1.80
2.34
1.43
1.49
2.20
1.82
0.89
1.79
1.15
1.35
1.95

mean
median

2.17
1.99

1.97
1.85

1.75
1.59

1.81
1.80




several ablations to design our attenuation coefficient

has 10% lower Chamfer distance than logistic (NeuS) and 9%
lower than Laplace (VolSDF)

has 19% lower Chamfer distance than delta w/ RelLU
(Neu$S)

has a 8% lower Chamfer distance than non-reciprocal delta
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learned fields
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surface

v(x)

mean implicit vacancy density
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learned fields

reconstructed f(ZE') U(ZE‘) Jv(x)]] CV(ZE)

surface v()

mean implicit vacancy density inear mixture param

linear mixture distribution of normals

Dy (m) = a2}, 0y (m) + (1~ a(z)) 5

boundary
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free-tlight distribution
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e Transmittance est. has influence on performance
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transmittance estimation

color / radiance

free-tlight distribution
A . o(z,w) Lz, w)

* Transmittance est. has influence on performance

* Most methods still use NeRF style quadrature

® Density and appearance
models should share a
distribution of normals

e Explore design space for
e Graphics offers unbiased tracking-based alternatives attenuation coefticients

e Some preliminary results in
supplement where we
extend the attenuation in
Ref-NeRF with a Phong
NDF

reference ours Ref-NeRF
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transmittance estimation

color / radiance

free-tlight distribution
A . o(z,w) Lz, w)

* Transmittance est. has influence on performance

* Most methods still use NeRF style quadrature

® Density and appearance
models should share a
distribution of normals

e Explore design space for
e Graphics offers unbiased tracking-based alternatives attenuation coefticients

e Some preliminary results in
supplement where we
extend the attenuation in
Ref-NeRF with a Phong
NDF

reference ours Ref-NeRF

G- . — ‘ﬂ‘
SPSR

points vacancy rendering

e 3DGS starting to be used for surface reconstruction
e Our method supports point based representations

e Missing probabilistically meaningful + differentiable

vacancy for point cloud (some insights from Sellan and
Jacobson [2022])




Thank you!

reference ours VolSDF NETR

project: imaging.cs.cmu.edu/volumetric_opaque_solids

code: github.com/cmu-ci-lab/volumetric_opaque_solids

project page



