
Arquitectura Hardware en FPGA
para el Minado de Conjuntos Frecuentes

en Conjuntos de Datos Usando una
Estrategia de Segmentación

Por:

Mauro Martı́n Letras Luna

Tesis sometida como requisito parcial
para obtener el grado de:

MAESTRÍA EN CIENCIAS EN EL ÁREA DE
CIENCIAS COMPUTACIONALES

en el

Instituto Nacional de Astrofı́sica, Óptica y Electrónica

Tonantzintla, Puebla

Dirigida por:

Dr. René Armando Cumplido Parra
Dr. Raudel Hernández León

c©INAOE 2015

Derechos reservados
El autor otorga al INAOE el permiso de

reproducir esta tesis en su totalidad o en partes

HARDWARE ARCHITECTURE FOR FREQUENT

ITEMSET MINING IN STATIC DATASETS USING

A SEGMENTATION STRATEGY

Mauro Martin Letras Luna

Thesis submitted in partial ful�llment of a
M.Sc. degree in Computer Sciences

Advisors

PhD. René Cumplido Parra, National Institute of Astrophysics, Optics and

Electronics, INAOE, México

PhD. Raudel Hernández León, Advanced Technologies Application Center,

CENATAV, Cuba

M.Sc. committee

PhD. José Francisco Martínez Trinidad

PhD. Leopoldo Altamirano Robles

PhD. Miguel Octavio Arias Estrada

Computer Sciences Department

National Institute of Astrophysics, Optics and Electronics

INAOE

Sta. María Tonantzintla, November 2015

Hardware Architecture for Frequent Itemset Mining in Static Datasets using a Segmenta-
tion Strategy

Thesis submitted in partial ful�llment of a M.Sc. degree in Computer Sciences

Copyright c© 2015 INAOE
All rights reserved

Computer Sciences Department
National Institute of Astrophysics, Optics and Electronics
INAOE
Luis Enrique Erro No. 1, Sta. María Tonantzintla
72840, San Andrés Cholula,
México

Telephone: (222) 266.31.00 Ext 8302/8308

Bibliographic information:
Mauro Martin Letras Luna, 2015, Hardware Architecture for Frequent Itemset Mining
in Static Datasets using a Segmentation Strategy, M.Sc. thesis, Computer Sciences
Department, National Institute of Astrophysics, Optics and Electronics, INAOE.

Sta. María Tonantzintla, Puebla, México, November 2015

I am not fully known to myself because

part of what I am is the enigmatic traces of others

Abstract

In recent years there has been a signi�cant increase in the information generated from

distinct domains and the size of datasets overwhelm the human capacity to process

them and obtain valuable information. Because of this, Data Mining has emerged as

a set of techniques and algorithms dedicated to �nding patterns in datasets, and then

these patterns are used to classify or predict the behavior of some phenomena related

to the data. Association Rules Mining is an important branch inside Data Mining,

and it consists in �nding relationships among the data in the form of implication

rules. The problem is usually decomposed into two subproblems. One is to �nd

those itemsets whose occurrences exceed a prede�ned threshold in the database; those

itemsets are called frequent itemsets. The second problem is to generate association

rules from those frequent itemsets.

In this research, Frequent Itemset Mining is explored, because the huge amount

of data in some cases makes di�cult to obtain a response in an acceptable time

according to the application requirements, due to the exhaustive nature of the

problem. There are many algorithms dedicated to searching frequent itemsets, the

most widely used are: Apriori, FP-Growth, and Eclat. They use strategies like

breadth-�rst search and depth-�rst search to go over to the search space. They

have to do a search in datasets, some of them like Apriori, have to access many

times the dataset. FP-Growth reads the dataset twice, but it must keep in memory

large amounts of data. Frequent Itemset Mining is an exhaustive task since the

database must be read many times independently of the way in which the data is

stored (in main memory or hard disk). In the literature, there have been reported

two ways to accelerate Frequent Itemset Mining: the �rst one consists in improv-

ing the existing software algorithms through proposing new heuristics to save time,

and the second one consists in developing hardware architectures dedicated to this task.

The main goal of this research is to design a Hardware Architecture to acceler-

ate the Frequent Itemsets Mining process. A segmentation strategy is proposed

using equivalence classes to guarantee that all the frequent itemsets will be found

independently of the available hardware resources. An implementation in FPGA will

be carried out to validate the proposed architecture and compare it with software

only implementations.

Keywords

FPGA, Hardware Architecture, Data Mining, Frequent Itemsets, Eclat

vi

Resumen

En años recientes ha habido un incremento signi�cativo de la información gener-

ada en distintos dominios y el tamaño de dichos conjuntos de datos sobrepasa la

capacidad humana para procesarlos y obtener información útil. En consecuencia, la

Minería de Datos ha emergido como un conjunto de técnicas y algoritmos dedicados

a encontrar patrones en grandes conjuntos de datos, después estos patrones son

utilizados para clasi�car o predecir algún fenómeno relacionado con los datos. La

Minería de Reglas de Asociación es un área importante dentro de la Minería de Datos

y se divide en: Minería de Conjuntos Frecuentes y Generación de Reglas de Asociación.

En este trabajo de investigación se aborda el problema de la Minería de Conjuntos Fre-

cuentes, porque en algunos casos los algoritmos no generan una respuesta en un tiempo

aceptable de acuerdo a los requerimientos de una aplicación especí�ca. Existen varios

algoritmos reportados en la literatura, entre los cuales se destacan: Apriori, Eclat y

FP-Growth. Estos algoritmos utilizan dos métodos para la exploración del espacio de

búsqueda: (1) primero en profundidad y (2) primero en anchura. Algoritmos como

Apriori tiene que realizar varias lecturas del conjunto de datos. Estrategias basadas en

FP-Growth leen el conjunto de datos sólo en dos ocasiones pero tienen que almacenar

grandes cantidades de información en memoria. La minería de conjuntos frecuentes se

vuelve una tarea exhaustiva debido a que el conjunto de datos tiene que ser leído en

repetidas ocasiones independientemente de donde sea almacenado (en memoria o en

disco duro). En la literatura se han reportado dos maneras para acelerar esta tarea.

La primera consiste en mejorar los algoritmos propuestos mediante nuevas heurísticas

y la segunda consiste en el desarrollo de arquitecturas hardware de propósito especí�co.

El principal objetivo de esta investigación es diseñar una Arquitectura Hard-

ware para acelerar la Minería de Conjuntos Frecuentes. Se propone una estrategia

de segmentación basada en clases de equivalencia que garantiza encontrar todos los

conjuntos frecuentes independientemente de los recursos de hardware disponibles.

Se realiza una implementación en FPGA para validar y comparar a arquitectura

propuesta contra implementaciones en software reportadas en la literatura.

vii

Palabras Clave:

FPGA, Arquitectura Hardware, Minería de Datos, Minería de Conjuntos Frecuentes,

Eclat

viii

Contents

List of Figures xi

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Problem Description . 4

1.2 Research Questions . 4

1.3 Hypothesis . 5

1.4 Main Objective . 5

1.5 Speci�c Objectives . 5

1.6 Contribution . 6

1.7 Summary . 6

1.8 Document Organization . 6

2 Theoretical Framework 9

2.1 Data Mining . 10

2.2 Frequent Itemset Mining . 12

2.3 Data Representation . 15

2.4 Frequent Itemset Mining Algorithms 17

2.4.1 Candidate Generation . 18

2.4.2 Pattern Growth . 21

2.5 Other Algorithms . 24

2.6 Summary . 25

ix

Contents

3 State of the Art 27

3.1 Advantages of Hardware Acceleration for Frequent Itemset Mining . . . 28

3.2 Experimental Platform . 30

3.3 Hardware De�nition Languages and High Level Synthesis Languages . . 34

3.4 Classi�cation of Hardware Architectures 36

3.5 Apriori Based Implementations of Frequent Itemset Mining 39

3.6 FP-Growth Based Implementations of Frequent Itemset Mining 44

3.7 Eclat Based Implementations of Frequent Itemset Mining 46

3.8 Comparison of Related Work . 49

3.9 Summary . 53

4 Architectural Design and Hardware Implementation 55

4.1 Proposed Search Strategy . 56

4.2 Architecture based on the proposed search strategy 59

4.3 Unrolled Architecture based on the proposed search strategy 64

4.4 Dual Core Design and Partition Strategy 65

4.5 Summary . 66

Summary . 67

5 Experimental Results and Performance Evaluation 69

5.1 Evaluation Metrics . 70

5.2 Validation Datasets . 71

5.3 Performance evaluation of the �rst proposed hardware architecture . . 72

5.4 Performance evaluation of the unrolled hardware architecture 76

5.5 Summary . 81

6 Conclusions and Future Work 83

6.1 Future Work . 84

References 87

x

List of Figures

2.1 Steps involved in knowledge discovery in datasets. 11

2.2 Search space represented in a Hasse diagram 14

2.3 Horizontal and vertical transaction ID representation. 16

2.4 Horizontal and vertical binary representation. 16

2.5 Pre�x tree representation. 17

2.6 Segmentation in equivalence classes. 21

2.7 FP-Tree Generation. 22

2.8 FP-Tree structure. 23

3.1 Heterogeneous Architectures. 29

3.2 FPGA logic and its components. 32

3.3 Elements of a Con�gurable Logic Block. 33

3.4 High Level Synthesis transformations from C Language to RTL level. . 35

3.5 Classi�cation of hardware architectures based on the device and algo-

rithm employed. 37

xi

LIST OF FIGURES

3.6 Classi�cation of Algorithms that use a Segmentation Strategy. 38

3.7 Systolic array employed in Apriori hardware implementation. 39

3.8 Apriori Bitmapped CAM architecture. 40

3.9 Systolic array of HAPPI architecture. 42

3.10 FP-Growth Architecture using a Systolic Tree. 44

3.11 Tree Structure used to store an Equivalence Class. 45

3.12 Hardware architecture of Eclat algorithm. 47

3.13 Behaviour of Eclat hardware architecture. 48

4.1 Data representation and operations used by our proposal. 56

4.2 Search strategy proposed for four items. 57

4.3 Hardware architecture that performs the proposed search strategy. . . . 60

4.4 Low level design of the proposed architectural design. 60

4.5 Finite state machines of the proposed search strategy. 61

4.6 Search space for item a. 62

4.7 Hardware architecture that performs an unrolled implementation of the

proposed search strategy. 64

4.8 Dual core hardware architecture proposed. 66

4.9 Partition of the search space using 2 processor elements. 67

5.1 Execution time comparison (Chess). 73

xii

LIST OF FIGURES

5.2 Execution time comparison (T40I3N500k). 73

5.3 Execution time comparison (T40I3N500k). 74

5.4 Execution time comparison (T40I3N500k). 74

5.5 Execution time comparison (T40I3N500k). 75

5.6 Execution time comparison (T40I3N500k). 75

5.7 Execution time comparison (Chess). 77

5.8 Execution time comparison (T40I3N500k). 77

5.9 Execution time comparison (T40I3N500k). 78

5.10 Execution time comparison (T40I3N500k). 78

5.11 Execution time comparison (T40I3N500k). 79

5.12 Execution time comparison (T40I3N500k). 79

xiii

List of Tables

2.1 Example of transactional dataset. 13

2.2 Itemsets and their support and frequency in the dataset. 13

2.3 Transaction dataset example. 14

2.4 Sets involved in Apriori Algorithm. 19

3.1 Frequency of Items in set I. 33

3.2 Comparison of related work, Part1. 51

3.3 Comparison of related work, Part2. 52

4.1 2-itemsets generation. 62

4.2 Operations performed by the architecture 63

5.1 Data sets used to validate the Hardware Architecture. 71

5.2 Hardware resources used by proposed hardware architecture. 76

5.3 Hardware Resources used by the dual core architecture. 76

5.4 Hardware Resources used by the one core of the unrolled architecture. . 80

xv

Abbreviations

Poset: Partial Ordered Set

FPGA: Field Programmable Gate Array

GPU: Graphic Processor Unit

KDD: Knowledge Discovery in Databases

SVM: Support Vector Machine

ECLAT: Equivalence Class Transformation Algorithm

HDL: Hardware Description Language

HLS: High Level Synthesis

LUT: Look Up Table

RTL: Register Transfer Level

DHP: Direct Hashing and Pruning

xvii

1

Introduction

In this chapter, we present the motivation for this research work, the context,

and the importance to investigate the Frequent Itemset Mining. Frequent Itemset

Mining is an elemental part of the Association Rules Mining, and it is a time

demanding process due to the exhaustive search of itemsets in datasets. In this

research, acceleration by hardware is proposed. In the literature, several hardware

architectures have been proposed but most of them have limitations when dealing with

many items and transactions, due to the physical limitations of the hardware platform

used to implement them and memory constraints. The objective of this dissertation is

to design and implement a hardware architecture able to deal with di�erent datasets,

no matter how many transactions or items they have. In the next lines, the hypothesis

and research questions are shown. The main objective, speci�c objectives, and the

contribution are explained in a more detailed form.

Nowadays, information technology is present in every activity that we perform: in

smartphones, personal computers, and even household appliances connected to the

Internet that interchange and generate big amounts of data. It has been reported that

1

1 Introduction

2.5 exabytes of new information are generated per day [38]. This data comes from

bills, medical reports, tax declarations, scienti�c observations, entertainment, social

networks, and others. In the last two years, 90 % of the information in the world

has been generated, and it is expected that this amount will increase because of the

massive proliferation of smartphones and mobile devices [45]. For this reason, it is

necessary to develop better strategies to work with big amounts of data to obtain non-

trivial useful information [47]. Every day, Google alone processes around 24 petabytes

(or 24,000 terabytes) of data [20], and the social network Twitter generates around 90

millions of twits per day in all the world, where each twit might contain 140 characters

[48]. Another example out of internet context is Walmart [38]; this supermarket chain

produces 2.5 petabytes per hour from the transactions generated by their customers.

This amount of data and the diversity of the information exceed the human capacity

to process and obtain rules that describe the relationship among the data. Traditional

methods do not get the expected results in an acceptable time. As consequence, it is

necessary to develop strategies capable of obtaining information not seen at �rst sight

on those big amounts of data [25].

Data Mining solves this problem using automatic or semi-automatic processes to ana-

lyze huge datasets to �nd patterns and then performs classi�cation or prediction tasks

[61]. There are Data Mining algorithms used to determine Association Rules in the

form of implications among the items of the datasets [3]. A crucial step in the Associ-

ation Rules Generation is to count the frequency of items and itemsets to know their

relevance; this process is known as Frequent Itemset Mining. The frequent itemsets

are those set of items that are frequent in the whole dataset; in other words, their

frequency is higher than certain support threshold (henceforth smin) [3].

Nevertheless, looking for frequent itemsets may become an expensive task in time

due to the big amount of data, sparse datasets, and low smin value. For these rea-

sons, sometimes the implementations of these algorithms cannot return a solution in

an acceptable time. When a big amount of data is mentioned, it refers to datasets

with thousands of di�erent items and millions of transactions. One way to deal with

this problem is improving existing algorithms by reducing execution time and propos-

ing new heuristics to explore the search space or using di�erent data representations.

Another alternative is to use supercomputer or clusters to perform Frequent Itemset

Mining in a concurrent or parallel manner. Although, a speed up execution time of

algorithms is reached, a disadvantage is the power consumption of one supercomputer

2

or cluster.

In recent years, there is a trend to develop specialized hardware architectures to reduce

the execution time because, a hardware implementation of one algorithm is faster than

its software counterpart, and the power consumption of the employed devices is lower

compared to a supercomputer. In literature, there are several hardware architectures

based on FPGA (Field Programmable Gate Arrays) and GPUs (Graphic Processor

Units) used as co-processors to be in charge of speci�c tasks such as counting smin

and, other more sophisticated ones that perform a full implementation of Frequent

Itemset Mining algorithms. They take advantage of the inner parallelism of GPU and

FPGA to accelerate the searching process [39, 51, 54, 55].

This thesis proposes to develop a Hardware Architecture for Frequent Itemsets Mining

based on FPGA to take advantage of inner parallelism, and the main goal is to improve

e�ciency that it will be measured regarding the amount of data processed per unit

area and overall processing time when compared with software-only implementations.

The main contribution is to approach this problem in an incremental way; the idea is

to develop a Hardware Architecture that is not dependent on the problem size (space

of solutions). Most of the reported work in literature has been though for a �xed

problem size, in others words they have a limit on the number of di�erent items that

are processed by the Architecture, limited by the resources of the device employed

and by memory constraints. To achieve this goal, the Hardware Architecture must be

able to segment the problem, then generate partial solutions for each partition, and

�nally combine all the partial solutions to construct a global solution. The architec-

ture is mainly based on equivalence classes where the equivalence relationship is the

pre�x of each frequent itemset. All the equivalence classes may be processed in an

independent way due to the downward closure property [3] of frequent itemsets. In

consequence, parallel processors might be implemented to accelerate the processing of

each equivalent class and increase the performance.

3

1 Introduction

1.1 Problem Description

Frequent Itemset Mining in datasets becomes an expensive computational task due to

the big amount of information that is stored in those datasets. It has been previously

mentioned, that there is an increasing interest in developing new strategies to manage

those datasets, and the trend indicates that those datasets will continue increasing due

to the emerging technologies.

Another issue is how to go over the searching space to generate the frequent itemsets.

Some well-known strategies like Apriori [3] perform Breadth First Search based in a

heuristic to determine frequent itemsets candidates. In this particular case, Apriori

performs several reads from the dataset to perform candidate generation, and this

becomes the most demanding task in the algorithm. Strategies based on a depth-�rst

search like Eclat [68] only need to read the entire dataset twice, but the intermediate

structures to store the frequent itemsets become too large to be practically stored

in memory. Strategies like FP-Growth [29] employ a tree structure in main memory

to store the set of transactions, then the Frequent Itemset Mining is accelerated but

sometimes the tree structure becomes impractical to be stored in memory. Although,

there are many strategies for Frequent Itemset Mining, sometimes the algorithms do

not return a response in an acceptable time due to the number of items or transactions

in datasets, this becomes intractable because in some scenarios a response as early as

possible is required. Another important issue is when the minimum support is low

because, in theory, the number of candidate itemsets is 2n, being n the number of

di�erent items in the dataset. Then the searching space could be, in the worst case,

an exponential search space that includes all the possible frequent itemsets. For these

reasons, it is necessary to develop strategies to speed up Frequent Itemsets Mining and

guarantee that all the Frequent Itemsets will be found.

1.2 Research Questions

In this dissertation, the following questions are planned to be answered:

4

1.3 Hypothesis

1. What is necessary to accelerate the Frequent Itemset Mining and obtain an e�cient

Architectural Design?

2. What are the advantages of using Equivalence Classes as segmentation strategy?

3. What control schemes are required to guarantee that all the frequent itemsets will

be found?

1.3 Hypothesis

The partition of the search space of itemsets into equivalence classes will make possible

to design a Hardware Architecture for Frequent Itemset Mining. Such Architecture

will be able to parallelize Frequent Itemset Mining regardless of how many distinct

items and transactions are present in the dataset.

1.4 Main Objective

Design an FPGA-based Hardware Architecture to accelerate Frequent Itemset Min-

ing in datasets. The architecture must extract frequent itemsets faster that software

only implementations and be able to process partitions of the search space based on

equivalence classes.

1.5 Speci�c Objectives

• Propose a search strategy using equivalence classes to make partitions of the

search space.

• Propose implementations based on standalone processing modules.

5

1 Introduction

• Evaluate the proposed architectures in terms of processing time and used hard-

ware resources.

1.6 Contribution

The �rst contribution of this research work is to propose a search strategy that can

partition the search space of solutions and can deal with memory constraints because

most of the works reported in the literature have been implemented for a �xed problem

size, limited by the resources of the FPGA device employed and memory restrictions.

The second contribution is to speed up the frequent itemset mining problem taking

advantage of the inner parallelism of FPGA device. The proposed architecture must

be faster than the software-only implementations reported in literature.

1.7 Summary

This chapter approached the motivation to develop this research and the context of the

Frequent Itemset Mining task. An important reason to approach this problem is the

big amount of data in data sets and the diversity of those data. The main contribution

of this research is to set forth a Hardware Architecture that can deal with di�erent

datasets regardless of the number of transactions, the number of items or the resources

available from the hardware device employed. In this chapter, it has been exposed the

hypothesis and the speci�c objectives to aim this goal.

1.8 Document Organization

This thesis document is organized as follows. Chapter two describes the theoretical

framework of Frequent Itemset Mining, the basic concepts, and terminology of Frequent

Itemset Mining is disclosed, including a formal de�nition of frequent itemset and the

6

1.8 Document Organization

main algorithms found in the literature. Chapter three includes a revision of the state

of the art and the implementations of Apriori, Eclat and FP-Growth in FPGA and

GPU devices. In the same way, a review of advanced hardware techniques employed

to approach this problem is presented like Systolic Arrays and Content Addressable

Memories. In Chapter four, the details and design of the proposed architecture and the

algorithm employed are shown; also the methodology employed is described in a set of

steps. Chapter �ve includes a description of the employed metrics, the experimental

results and the analysis of results showing the advantages of the proposed architecture.

Finally in chapter six, the conclusions, and future work are presented.

7

2

Theoretical Framework

In this chapter, the basic concepts of Frequent Itemset Mining and the de�nitions

needed to understand the theoretical framework are presented. A brief explanation

of Data Mining and their main applications are shown to stand out the importance

of Pattern Recognition Tasks in real world applications and the bene�ts that they

imply. Then, a formal de�nition of the frequent item and frequent itemset are shown

and concepts like minimum support, frequency and cover are described in a more

detailed form. In the following section, the minimum support value is analyzed and

how this value a�ects the number of frequent itemsets in the search space is explained.

Later, a complete revision of Frequent Itemset Mining Algorithms is presented, and a

classi�cation is shown according to the way that algorithms explore the search space

(breadth-�rst search or depth-�rst search) and, according to it if the algorithm is a

serial one or a parallel one. Finally, a revision of the most important algorithms

presents the bene�ts and disadvantages of each of these algorithms.

9

2 Theoretical Framework

2.1 Data Mining

The information generated in our daily activities continues growing, and there is not

an apparent end. Namely, the capacity of storing devices continues increasing, and

they are becoming more a�ordable. Furthermore, there are a lot of on-line storage

services that make easy to keep all the generated information. In the same way,

devices connected to the internet like laptops, smartphones, tablets, and televisions

record our decisions, our musical preferences, our choices in the supermarket, our

�nancial habits and our academic records. In other words, as individuals, we generate

a lot of information during our entire life. And all the previous examples are just

information generated by personal choices, but the amount generated in business,

commerce and industry is also very signi�cant. We are witnessing the growing

di�erence between data generation and the understanding of it. As the volume of data

increases, inexorably, the proportion of it that people understand decreases alarmingly

[61]. Consequently, it becomes a challenge to the human capacity to deal with

those big amounts of data. For this reason, automatic or semi-automatic algorithms

executed in computers have been proposed to extract non-trivial useful information

(knowledge) from datasets. Data Mining and Knowledge Discovery in Datasets are

branches in Computer Sciences dedicated to �nding non-trivial information from big

amounts of data. There are several de�nitions of Data Mining for example:

Witten et. al. [61] Data mining is de�ned as the process of discovering patterns

in data. The process must be automatic or (more usually) semiautomatic. The

patterns discovered must be meaningful in that they lead to some advantage, usually an

economic one. The data is invariably present in substantial quantities. Data Mining

is about solving problems by analyzing data already present in datasets.

Likewise, Olson and Delen [40], Data mining has been called exploratory data analysis,

among other things. Masses of data generated from cash registers, from scanning,

from topic speci�c datasets throughout the company, are explored, analyzed, reduced,

and reused. Searches are performed on di�erent models proposed for predicting sales,

10

2.1 Data Mining

marketing response, and pro�t. Classical statistical approaches are fundamental to

Data Mining.

In Berry and Lino� [8], Data Mining is the process of discovering meaningful

correlations, patterns, and trends by sifting through large amounts of data stored

in repositories. Data Mining employs pattern recognition technologies, as well as

statistical and mathematical techniques.

All the previous de�nitions agree that Data Mining focuses on extracting knowledge

from big data repositories, based on the premise that we are rich in data but poor in

information. The information could be used to take a decision and to obtain a bene�t

(in most of the cases an economical one). For this reason, a set of algorithms and

automatic or semi-automatic methods are proposed to approach this challenge. Data

Mining is used to take decisions, classify and predict a trend based on the information

discovered. Data Mining is an inner part of Knowledge Discovery in Datasets. The

steps involved in Knowledge Discovery in Datasets are shown in �gure 2.1. The �rst

step consists in understanding the context and the application domain and the prior

information to be conscious of the �nal target of the application.

Figure 2.1: Steps involved in knowledge discovery in datasets

The �rst step also concerns about create a dataset, collecting instances, or selecting

those representative instances or attributes to construct a dataset, on which infor-

mation discovery will be performed. The second step is to perform a pre-processing,

the most common task performed at this stage is to remove the noise, and choose a

strategy to deal with missing values or use a data representation according to the re-

11

2 Theoretical Framework

quirements of the algorithms. The third step is data reduction and projection: �nding

useful features to represent the data depending on the goal of the task with dimen-

sionality reduction or transformation. The fourht step is to carry out a Data Mining

method. For example decision trees, clustering, association rules generation, SVM,

among others. This stage also includes deciding which models and parameters are

the most appropriated. The �fth step consists of interpreting the mined patterns and

taking a decision based on the discovered knowledge, incorporating the knowledge to

another system[24].

Although, Data Mining is an important part of KDD, there are di�erent types of Data

Mining systems according to the context and the speci�c analysis that they perform.

The following section focuses on Frequent Itemset Mining, its applications in the real

world, and the impact that Frequent Itemset Mining have in distinct domains are

discussed.

2.2 Frequent Itemset Mining

Frequent Itemset Mining is a method for Market Basket Analysis, and was introduced

in [2] by Agrawal. In Market Basket Analysis the main goal is �nding patterns in the

shopping behavior of customers; in other words, �nding the set of products that are

frequently bought together. The obtained patterns are used in the Association Rules

Generation. An Association Rule is expressed in the form of implication. For example,

if a customer purchases tires and auto accessories then he probably gets automotive ser-

vice done [3]. Finding frequent itemsets and associations rules is essential for marketing

applications, improving the arrangement of products on shelves and suggesting other

products. The datasets involved in these applications are usually large. Therefore, it

is important to develop fast algorithms for this task due to a large amount of informa-

tion in datasets. The �rst algorithm for Frequent Itemset Mining was formalized by

Agrawal in the 90's [2, 3], and it is used to �nd patterns in datasets. These datasets

are represented by transactions; each transaction is labeled with a unique identi�er.

Frequent Itemset Mining can be de�ned as follows: Formally, let I = {i1, . . . , in} be a
set of items. Let D be a set of transactions, where each transaction T is a set of items

such as T ⊆ I. And let X be an itemset such as X ⊆ I; without loss of generality, we

12

2.2 Frequent Itemset Mining

will assume that all items in each transaction are sorted in lexicographic order. The

support value of the itemset X is the number of transactions over D containing X.

An itemset is called frequent if its support is greater than or equal to a given support

threshold (Smin). For example in table 2.1. If smin = 50 % (0.5*6 = 3 occurrences)

Table 2.1: Example of transactional dataset.

ID Items
1 Milk, Bread
2 Butter, Bread
3 Butter
4 Milk, Bread, Butter
5 Bread
6 Milk, Bread, Butter

Table 2.2: Itemsets and their support and frequency in the dataset.

Itemset Cover Support Frequency
{ } 1,2,3,4,5,6 6 100.00%
{Bread} 1,2,4,5,6 5 83.00%
{Butter} 2,3,4,6 4 66.67%
{Milk} 1,4,6 3 50.00%
{Bread, Milk} 1,4,6 3 50.00%
{Butter, Bread} 2,4,6 3 50.00%
{Butter, Milk} 4,6 2 33.33%
{Bread, Butter, Milk} 4,6 2 33.33%

the Frequent Itemsets are: {Bread}, {Butter}, {Milk}, {Bread, Milk}, and {Bread,

Butter} because they are present at least three times in the dataset. The cardinality of

an itemset de�nes its size, an itemset of size k is called a k− itemset. As consequence,

a brute force approach that traverses all the possible itemsets calculating their support

and removing infrequent itemsets is ine�cient. The number of itemsets and operations

grows exponentially according to the number of di�erent items in the dataset and the

smin value. For example, the catalog of a supermarket is around thousands of di�erent

products. For example, in �gure 2.2 a universe of �ve items is shown, and a lattice

represents the search space of itemsets. Table 2.3 shows the employed transactions in

this example. The Smin = 3, and the gray boxes represent frequent itemsets. The �g-

ure depicts that it is not necessary to traverse all the possible itemsets and that a brute

13

2 Theoretical Framework

Table 2.3: Transaction dataset example.

TID Itemset
1 {a,d,e}
2 {b,c,d}
3 {a,c,e}
4 {a,c,d,e}
5 {a,e}
6 {a,c,d}
7 {b,c}
8 {a,c,d,e}
9 {b,c,e}
10 {a,d,e}

Figure 2.2: Complexity of search space of dataset in table 2.3 represented in a Hasse
diagram, the Smin = 3 and the gray ones represent frequent itemsets

force approach is unnecessary. Agrawal in his article [3] notes certain characteristics

of frequent itemsets and their support that are useful in the generation of frequent

itemsets and it avoids to traverse all the possible itemsets. The downward clousure

says that if an itemset is extended, its support cannot increase [3]. For example, if

14

2.3 Data Representation

the itemset A = {a, b, h}, and its sT (A) = 10, and there is an itemset B = {a, b, h, j}.
In consequence, the value of sT (B) at most will be 10. With the previous property is

inferred that no superset of an infrequent itemset can be frequent. This property is

also called the Apriori Property [3], this property is very helpful, for example, all

the items that are nor frequent could be removed because they never will be a frequent

itemset. As its name suggests, with previous information of the support value of the

items, it is possible to reduce the search space.

2.3 Data Representation

The Frequent Itemset Mining Algorithms could be classi�ed according to the way they

explore the search space. Some explore the search space using a depth-�rst search

while others use breadth-�rst search. According to the employed strategy, there are

four types of representing the datasets like a matrix.

Horizontal Items Vector (HIV): The transactions are organized in a set of rows,

each row stores a transaction identi�er (TID) and a binary vector, where 1 represents

the occurrence of an item and 0 represents the absence of an item in the dataset.

Horizontal Items List (HIL): this representation is similar to HIV the only di�er-

ence is that each row stores a sorted list of item identi�ers (ID), holding only the items

that belong to the transaction.

Vertical ID Vector (VIV): the transactions are represented as a set of columns

associated with the items, each column stores a transaction ID and a binary vector

which represent the presence or absence of an item in each transaction.

Vertical Transaction List (VTL): this representation is similar to VIV, the only

di�erence is that each column stores a sorted list of identi�ers (idList), holding only

the transactions which the item is present.

The main advantage of vertical representation is that a transaction list for a pair of

items could be calculated by intersecting the transaction lists of the individual items.

15

2 Theoretical Framework

1 a, d, e

2 b, c, d

3 a, c, e

4 a, c, d, e

5 a, e

6 a, c, d

7 b, c

8 a, c, d, e

9 b, c, e

10 a, d, e

TID Itemset

(a) Horizontal
list vector

a b c d e

1

3

4

5

6

8

10

2

7

9

2

3

4

6

7

8

9

1

2

4

6

8

10

1

3

4

5

8

9

10

(b) Vertical ID vector

Figure 2.3: Horizontal and vertical transaction ID representation.

a b c d e

1 1 0 0 1 1

2 0 1 1 1 0

3 1 0 1 0 1

4 1 0 1 1 1

5 1 0 0 0 1

6 1 0 1 1 0

7 0 1 1 0 0

8 1 0 1 1 1

9 0 1 1 0 1

10 1 0 0 1 1

(a) Vertical items
vector

1 2 3 4 5 6 7 8 9 10

a 1 0 1 1 1 1 0 1 0 1

b 0 1 0 0 0 0 1 0 1 0

c 0 1 1 1 0 1 1 1 1 0

d 1 1 0 1 0 1 0 1 0 1

e 1 0 1 1 1 0 0 1 1 1

(b) Horizontal items vector

Figure 2.4: Horizontal and vertical binary representation.

A vertical transaction representation exploits the next property:

∀I,∀J, J ⊆ B : KT (I ∪ J) = KT (I) ∩KT (J). (2.1)

For example, for set A = {a, b, c, f} and set B = {a, b, c, f, h}. The cover is KT (A ∪
B) = KT (A) ∩KT (B). So, the KT (A ∪B) = {a, b, c, f}.

There is an alternative and compact representation used by the FP-Growth

algorithm[29].

16

2.4 Frequent Itemset Mining Algorithms

TID Itemset

6 a, c, d

4 a, c, d, e

8 a, c, d, e

3 a, c, e

1 a, d, e

10 a, d, e

5 a, e

7 b, c

2 b, c, d

9 b, c, e

(a) Lexicograph-
ically sorted
dataset

a:7

b:3

c:4

d:2

e:1

d:3

e:1

e:2

c:3

d:1

e:1

e:2

a:7a:7

b:3

c:4

d:2

e:1

d:3

e:1

e:2

c:3

d:1

e:1

e:2

(b) Pre�x tree representation

Figure 2.5: Pre�x tree representation.

The pre�x tree representation is a compressed horizontal representation, and it follows

the principle that equal pre�xes of transactions are merged. For example, in Figure

2.5 b), the itemset A = {a, c, d, e} has a sT (A) = 2, the support value is computed

by following the path from a to e, the last item in the path contains the support

value for the itemset. Then to calculate the value for B = {b, c} the support value is
sT (B) = 3. This representation is most e�ective if the items are sorted in ascending

order according to their support value[12].

2.4 Frequent Itemset Mining Algorithms

According to the data representation and the way that the search space is explored,

di�erent Frequent Itemset Mining algorithms have been proposed in the literature. Two

main methodologies have been proposed to reduce the computational time cost. The

�rst methodology proposes the generation and pruning of candidate frequent itemset

in the search space while the second considers reducing the number of comparisons

required to determine the itemsets support.

17

2 Theoretical Framework

2.4.1 Candidate Generation

Previously, it has been mentioned that the �rst alternative for Frequent Itemset Mining

is a brute-force approach for computing the support for every possible itemset. Given

the set of items B and a partial order with respect to the subset operator, all possi-

ble candidate itemsets can be denoted by a Hasse diagram, as it has been presented

previously in Figure 2.2. The brute force approach compares each candidate itemset

with every transaction t ∈ T to check for containment. An approach like this would

require O(|T | · L · |I|) item comparisons, where the number of non-empty itemsets in

the Hasse diagram is L = 2n − 1.

This type of computation becomes prohibitively expensive and sometimes it is not

necessary to explore all the search space. One way to reduce computational complexity

and reduce operations is reducing the number of candidate itemsets tested for support.

In consequence, algorithms rely on the observation that every candidate itemset of

size k is the union of two candidate itemsets of size (k − 1), this observation is a

consequence of the downward closure. Then, the supersets of an infrequent itemset

must be infrequent. Thus, given a minimum support value, there are itemsets in the

Hasse diagram that they do not need to be explored "if and only if" their support

value is lower than the minimum support value (Smin).

This technique is often referred as support-based pruning and was �rst introduced in

the Apriori algorithm by Agrawal and Srikant [3].

Algorithm 1 shows the pseudo-code for Apriori-based Frequent Itemset Mining. Start-

ing with each item (1-itemsets) as an itemset, the support for each itemset is calculated,

and itemsets that do not meet the minimum support threshold smin are remove.

The next iteration consists in two phases. In the �rst one, the large itemsets Lk−1 found

in the (k-1)th iteration are used to generate the candidate set Ck using the apriori−gen
function. The apriori − gen performs the next operations shown in algorithm 2. For

example, let L3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}, following algorithm

2, the itemsets {1, 2, 3} and {1, 2, 4} generate the candidate C1 = {1, 2, 3, 4}.

18

2.4 Frequent Itemset Mining Algorithms

Table 2.4: Sets involved in Apriori Algorithm.

k-itemset An itemset having k items.
Lk Set of large k-itemsets (those with minimum sup-

port). Each member of this set has two �elds:
i)itemset and ii)support count

Ck Set of candidates k-itemsets (potentially large item-
sets). Each member of this set has two �elds:
i)itemset and ii)support count

C ′k Set of candidates k-itemsets when the TIDs of the
generating transaction are kept associated with the
candidates.

Algorithm 1 Apriori Algorithm.

1: L1 = {Large 1-itemsets};
2: for k = 2 to Fk−1 6= ∅ do
3: Ck = apriori-gen(Lk−1); // New Candidates
4: for all transactions t ∈ D do
5: Ct = subset(Ck,t); // Candidates contained in t
6: for all candidates c ∈ Ct do
7: c.count++;
8: end for
9: end forLk = {c ∈ Ck|c.count ≥ smin}

10: end for
11: return

⋃
k Lk;

The itemsets {1, 3, 4} and {1, 3, 5} generate the candidate C2 = {1, 3, 4, 5}. So, the

candidates generated are C1 and C2, these candidates were generated following the

downward closure but it does not warranty that the candidates are also frequent

itemsets. The second step is the candidate pruning to obtain the frequent itemsets.

In algorithm 3, the candidate pruning is performed. In the previous example, C1 and

C2 were selected as candidates. For C1, the algorithm returns that C1 is a frequent

itemset because all the subsets of size 3 belongs to L3. For C2, the algorithm returns

that C2 is not a frequent itemset because {1, 4, 5} does not belongs to the L3 set.

This process is repeated until no more candidates could be generated. The search

scheme used by Apriori is a breadth-�st one. All the candidates are generated by

19

2 Theoretical Framework

Algorithm 2 Candidate Generation (apriori-gen)

Require: Lk−1
1: Ck = ∅; // Initializes the set of candidates
2: for all f1, f2 t ∈ Lk−1 do
3: if f1 = {i1, ..., ik−1, ik} ∧ f2 = {i1, ..., ik−1, i′k} ∧ ik ≤ i′k then
4: f = f1 ∪ f2 = {i1, ..., ik−1, ik, i′k}; // It explores all the pairs of frequent

itemsets that di�er in only one item and they are in lexicographic order
5: if ∀i ∈ f : f − {i} ∈ Lk−1 then
6: Ck = Ck ∪ f ;
7: end if
8: end if
9: end for

10: Ck = prune(Ck);
11: return ck;

Algorithm 3 Candidate Pruning (prune)

Require: Ck

1: for all itemsetsc ∈ Ck do
2: for all {k − 1} subset s of c do
3: if s 3 Lk−1 then
4: delete c from Ck;
5: end if
6: end for
7: end for

merging itemsets that di�er in only one item. The main advantage of Apriori is the

pruning of infrequent candidates, compared against a brute force scheme, it reduces the

workload, and it performs the search process avoiding segments in the Hasse diagram.

The most remarkable disadvantages of this approach are that it can require a lot of

memory resources to store all the set of candidates, and the support counting consumes

a considerable execution time because the entire dataset must be read to verify the

frequency of an itemset [11].

Since Apriori was proposed, several extensions have been proposed. Hashing Technique

[17, 43], partitioning technique [49], parallel and distributed mining [37, 53], among

others. All of them aimed at reducing the counting support time through reducing the

number of dataset scans.

20

2.4 Frequent Itemset Mining Algorithms

2.4.2 Pattern Growth

Apriori-based algorithms process candidates in a breath-�rst search manner, decom-

posing the itemset lattice(Hasse diagram) into level-wise itemset-size based in the idea

that k-itemsets must be processed before (k + 1) itemsets. Assuming a lexicographic

ordering of itemset, the search space can also be decomposed into pre�x-based and

su�x-based equivalence classes. Figures 2.5 shows equivalence classes for 1-length

itemset pre�xes and 1-length itemset su�xes, respectively. Once frequent 1-itemsets

are discovered, their equivalence classes can be mined independently.

(a) Pre�x Tree (b) Su�x Tree

Figure 2.6: In left, pre�x tree showing pre�x-based equivalence classes in the itemset
lattice. In right, su�x tree showing su�x based equivalence classes in the itemset
lattice.

Patterns are grown by appending appropriate items that follow the parent's last (�rst)

item in a lexicographic order. Zaki [68] was the �rst to suggest pre�x-based equivalence

classes as a means of independent sub-lattice mining in his algorithm, Equivalence

Class Transformation (Eclat). In order to improve candidate support counting, Zaki

transforms the transactions into a vertical database format. Frequent 1-itemsets are

then those with at least dsmin(T)e listed transaction id lists. He uses lattice theory to

prove that if two itemsets C1 and C2 are frequent, so their intersection set C1∩C2 will be

frequent. After creating the vertical database, each equivalence class can be processed

independently, in either breath-�rst or depth-�rst order, by recursive intersections of

candidate itemset, while it still takes advantage of the downward closure property. For

21

2 Theoretical Framework

example, assuming b is infrequent, we can �nd all frequent Items having pre�x a by

intersecting tid − lists of a and c to �nd support for ac, then tid − lists of ac and d

to �nd support for acd, and �nally tid− lists of a and d to �nd support for ad. Note

that the ab− rooted sub-tree is not considered, as b is infrequent and will thus not be

joined with a.

Itemset

a, d, f

a, c, d, e

b, d

b, c, d

b, c

a, b, d

b, d, e

b, c, e, g

c, d, f

a, b, d

(a) Original
Dataset

Frequency

d = 8

b = 7

c = 5

e = 3

f = 2

g = 1

(b) Frequency
of Items

Itemset

d, a

d, c, a, e

d, b

d, b, c

b, c

d, b, a

d, b, e

b, c, e

d, c

d, b, a

(c) Items in
transactions
sorted descen-
dent

Itemset

d, b

d, b, c

d, b, a

d, b, a

d, b, e

d, c

d, c, a, e

d, a

b, c

b, c, e

(d) Transac-
tions sorted
lexicographi-
cally

Figure 2.7: Steps involved in the FP-Tree generation with a smin = 3.

A similar divide-and-conquer approach is employed by Han et al [29] in the FP-growth

algorithm that decomposes the search space based on length−1 su�xes. Additionally,

they reduce database scans during the search using a compressed representation of

the transaction database, via a data structure called an FP-tree. The FP-tree is a

specialization of a pre�x-tree, storing an item at each node, along with the support

count of the itemset denoted by the path from the root to that node, fp-tree combines

horizontal and vertical database representation. All transactions containing a given

item can easily be found by the links between the nodes corresponding to this item.

The generation of the FP-Tree is explained in �gure 2.6. The �rst step consists in

calculating the Frequency of each item, and then according to smin = 3, all the infre-

quent items are removed from the transactions. The second step consists in sorting

the items in transactions in descendent order with respect to their frequency. Then,

22

2.4 Frequent Itemset Mining Algorithms

the transactions are sorted lexicographically in ascending order.

Each database transaction is mapped onto a path in the tree. The FP-Tree is a pre�x

tree with links between the branches that link nodes with the same item and a header

table for the resulting item lists. All the single items could be read directly from the

FP-Tree. Frequent single item sets can be read directly from the FP-tree.

Itemset

d, b

d, b, c

d, b, a

d, b, a

d, b, c

d, c

d, c, a, e

d, a

b, c

b, c, e

(a) Transac-
tions sorted
lexicographi-
cally

a:4b:7 c:5d:8

a:1d:8

b:5

e:3

c:1

a:2

e:1

c:2 e:1

a:1

b:2 c:2 e:1

10

(b) FP-Tree

Figure 2.8: FP-Tree Structure.

Figure 2.8 shows an FP-tree constructed for our example database. Dashed lines

show item-speci�c inter-node pointers in the tree. Since the ordering of items within

a transaction will a�ect the size of the FP-tree, a heuristic attempt to control the

tree size is to insert items into the tree in non-increasing frequency order, ignoring

infrequent items. Once the FP-tree has been generated, no further passes over the

transaction set are necessary. The frequent itemsets can be mined directly from the

FP-tree by exploring the tree from the bottom-up, in a depth-�rst manner.

The most remarkable advantage of FP-Growth is that it is often the fastest algorithm

or among the fastest algorithms, compared against candidate generation algorithms.

Due to the use of complex data structure it is more di�cult to implement than other

approaches, and an FP-tree could need more memory than a list or array of transactions

[12]. In recent years, several applications and extensions using FP-Growth algorithm

23

2 Theoretical Framework

have been proposed [15, 34, 52].

2.5 Other Algorithms

There are several algorithms proposed as extensions of the algorithms explained in

previous sections. In the Apriori-based algorithms, there are those based on hashing,

distributed strategies, and those that deal with dynamic datasets [32, 33, 41].

In [33, 41] a distributed strategy to approach Frequent Itemset mining using Apriori

Algorithm is proposed. The Count Distribution Algorithm [33] has a set of nodes

(computer used as a server), where each node holds a subset of items and performs the

candidate generation in a local manner, which are related with the original dataset.

These algorithms use Map Reduce, using the Hadoop tool. The main idea is to make

partitions of the original database among a set of nodes of a cluster. Each cluster

processes independently using an Apriori algorithm. Then the results are collected

to obtain a global result. In [41] is proposed an algorithm for Fast Frequent Itemsets

Mining using Nodesets that is similar to [33]. This algorithm divides the dataset among

a set of nodes using a Map-Reduce Strategy, the main contribution is the fact that the

algorithm is aimed at aproaching dynamic datasets.

There are several Hash implementations of Apriori; for example, in [32] it is proposed

an algorithm where the dataset is stored in a hash table to accelerate the candidate

generation task. Also, there are implementations based on the FP-Growth algorithm;

for example, those based on a fully parallel implementation. For example in [58],

a hierarchical partition is shown, based on a structure called Frequent Pattern List.

The main objective is to avoid re-scanning the entire dataset to check the smin. The

Frequent Pattern List has many desirable characteristics, the most important is the

capacity of creating independent partitions of the dataset, o�ering the possibility of

determining the size of those partitions according to memory requirements. Each

partition then is processed to obtain Frequent Itemsets using the FP-Growth algorithm.

Incrementally Building Frequent Closed Itemset Lattice algorithm [35] proposes a rep-

24

2.6 Summary

resentation of the search space in the form of a lattice as it was done in the Eclat

algorithm. The main di�erence between ECLAT and this algorithm is the fact that

each node in the lattice contains a Closed Frequent Itemset instead of one Frequent

Itemset. When a new transaction is added to the dataset, the lattice is modi�ed

avoiding to reload the entire dataset.

Also, concurrent and parallels Eclat implementations were proposed, under the idea

that each sublattice could be explored in an independent way. For example, in [71],

the MREclat algorithm is shown as an implementation of the Eclat algorithm using a

Map-Reduce architecture.

2.6 Summary

In this chapter, a frequent itemset introduction has been presented. The theory about

Frequent Itemset Mining has been exposed with the intention of creating a context for

this thesis research. The most important algorithms for Frequent Itemset Mining like

Apriori, Eclat and FP-Growth, were presented. There is not a better algorithm for

Frequent Itemset Mining, but a pre�x based strategy like FP-Growth is considered one

of the fastest algorithms. FP-Growth has better performance than Apriori and Eclat,

but its high memory requirement prevents it from being used on large datasets. Single-

threaded performance comparisons show that the FPGrowth is faster than Apriori and

Eclat. However, in certain situations, such as when the frequency threshold is high,

Apriori will outperform FP-Growth [50].

25

3

State of the Art

In this chapter, a review of the state of the art of Hardware Architectures for

Frequent Itemset Mining is presented. Nowadays, there is a growing interest in

designing Hardware Architectures to implement demanding and computationally

expensive algorithms to gain speed up compared to their software counterpart. For

this reason, a section of this chapter is dedicated to explaining the advantages of

hardware acceleration and the challenges involved in this task. Therefore, the next

section presents a classi�cation of Hardware Architectures for Frequent Itemset

according to the device employed (FPGA or GPU) and also on the used search space

exploration approach (Depth First Search or Width First Search). In the next sections,

a review Hardware Architectures of Apriori, FP-Growth and Eclat is presented. This

classi�cation also includes a revision of advanced hardware techniques like Addressable

Memories and Systolic Arrays used for Frequent Itemset Mining.

27

3 State of the Art

3.1 Advantages of Hardware Acceleration for

Frequent Itemset Mining

In recent years, there is a growing interest in accelerating software algorithms using

hardware architectures. The use of existing accelerators, such FPGAs and GPUs, has

demonstrated the ability to speed up a wide range of applications. Examples include

image processing [16, 28, 62], data mining [6, 51, 54] and bioinformatics[5, 31] for FP-

GAs, and linear algebra [57], database operations [14], clustering [36], and simulations

[9, 44] on GPUs. NVIDIA's Compute Uni�ed Device Architecture, or CUDA, and

AMD's Compute Abstraction Layer, or CAL, are new development environments for

programming GPUs without the need to map traditional OpenGL and DirectX APIs

to general purpose operations. On the other hand, FPGA applications are mostly

programmed using hardware description languages such as VHDL and Verilog. Re-

cently there has been a growing trend to use high-level languages such as Vivado HLS,

SystemC and Handel-C, which aim to raise FPGA programming from gate-level to a

high-level, using a modi�ed C syntax with the inherent limitations of the Hardware

Description Languages [18].

According to the application, heterogeneous architectures have been proposed, using

an accelerator (FPGA or GPU) and a CPU. Figure 3.1 shows a GPU with 30 highly

multi-threaded SIMD accelerator cores in combination with a standard multicore CPU.

The GPU has a vastly superior bandwidth and computational performance and is op-

timized for running Single Instruction Multiple Data programs with little or no syn-

chronization. GPU is designed for high-performance graphics, where the throughput

of data is necessary [18]. Finally, �gure 3.1 right shows an FPGA consisting of an

array of logic blocks in combination with a standard multi-core CPU. FPGAs can also

incorporate traditional CPU cores on-chip, making it a heterogeneous chip by itself.

FPGAs can be viewed as user de�ned application speci�c integrated circuits (ASICs)

that are recon�gurable. They o�er fully deterministic performance and are designed

for high throughput.

FPGAs have a set of hardware resources that can be programmed during the develop-

ment stage, but they allow the hardware functionality to be con�gured and recon�g-

28

3.1 Advantages of Hardware Acceleration for Frequent Itemset Mining

Core 0,0 Core 1,0

Core 0,1 Core 1,1

Main Memory GPU Memory

CPU GPU

(a) CPU and GPU combination

Core 0,0 Core 1,0

Core 0,1 Core 1,1

Main Memory

CPU

Local

Memory

FPGA

(b) CPU and FPGA combination

Figure 3.1: Schematic of heterogeneous architectures. In left, CPU in combination
with a GPU is a heterogeneous system. In right, a CPU in combination with an
FPGA is also a heterogeneous system.

ured during the execution stage. Such advantage gives a chance to implement di�erent

applications on the same hardware [18].

On the other hand, the hardware acceleration of algorithms has been recently ex-

plored. In a traditional algorithm implementation, the computer software is written

for serial computation. In consequence, all the algorithms are implemented as a set

of serial instructions. There have been several attempts to implement Data Mining

algorithms in hardware to accelerate them. In [19], one of the �rst attempts to accel-

erate Data Mining is proposed using a Hardware Architecture. The chosen algorithms

were: K-Means, Fuzzy K-Means, and Decision Tree Classi�cation. A study of the

most demanding tasks in the chosen algorithms is performed and, the proposed archi-

tecture implements kernels (one for each algorithm) that will be used as co-processors

to accelerate the computation.

In [21], another hardware implementation of the K-means algorithm is proposed. The

acceleration is used for clustering multi-spectrum images. The main task is to obtain

the most important features from the image without dealing with the whole image

data.

In [46], a parallel implementation of Space Saving Algorithm for Frequent Items Mining

is developed. The proposed implementation uses a Single Instruction Multiple Data

architecture. The used methodology is divided into two steps. The �rst step consists

29

3 State of the Art

in a pre-processing stage to verify that there are no dependencies in the data, the

second step consists in executing Space Saving algorithm. In the experimental report,

they verify that a parallel implementation of the proposed strategy gets a better result

than its serial counterpart.

In all the previous works [19, 21, 46], they have achieved a remarkable acceleration

compared to their software counterpart. Although, certain limitations could be ob-

served like the knowledge of specialized development tools like OpenGL (for GPU) or

Hardware Description Languages (for FPGA). Recently high-level development tools

have been released to the market, for example, CUDA (for GPU) and High-Level Syn-

thesis (for FPGA), that allow acceleration in the development of applications and they

do not require a high level of specialization on GPUs or FPGAs.

3.2 Experimental Platform

The �rst alternative to implementing an algorithm is using a General Purpose Proces-

sor, most of the implementations of Frequent Itemset Algorithms have been done using

a General Purpose Processor [2, 3, 11, 12, 29, 68]. All these previous implementations

have been reporting acceptable results, but some applications require the result as soon

as possible.

Another alternative to implementing an algorithm is using an Application Speci�c

Integrated Circuit. An ASIC is an integrated circuit customized for a particular use.

The implementation of an algorithm in an ASIC implies that the design will be optimal

in time constraints and area. That is a real advantage, but once that the ASIC has been

implemented, the design can not be modi�ed. If there is a modi�cation in the ASIC, all

the entire design must be modi�ed, and all the previous ASIC implementation become

useless.

Another platform is the Graphic Processor Units [42], and the modern GPU is not

only a powerful graphics engine but also a highly parallel programmable processor fea-

turing peak arithmetic and memory bandwidth that substantially outpaces its CPU

30

3.2 Experimental Platform

counterpart. The GPU's rapid increase in both programmability and capability has

spawned a research community that has successfully mapped a broad range of compu-

tationally demanding, complex problems to the GPU. This e�ort in general-purpose

computing on the GPU, also known as GPU computing, has positioned the GPU as

a compelling alternative to traditional microprocessors in high-performance computer

systems [18]. If the memory access increase and parallelism are limited, the use of

GPUs are not recommended, in Frequent Itemsets Mining according to the algorithm

(Apriori or Eclat) are necessary much memory accesses.

An intermediate solution between the ASICs and the General Purpose Processors is the

Recon�gurable Hardware. Field Programmable Gate Arrays (FPGAs) are the most

used platform of Recon�gurable Computing; these devices are composed of hundreds

or thousands of con�gurable logic devices modules. The advantages of using FPGAs

are that they can get a better performance in time compared against a General Purpose

Processor, and they o�er more �exibility than ASICs [18].

In this dissertation, FPGAs are used as an experimental platform because they are

excellent prototyping platforms, and they o�er the �exibility to probe di�erent archi-

tectural designs with the same hardware.

The development board used to implement the previous architectures is the Zedboard.

The Zedboard contains a Zynq 7000 System on Chip. The Zynq 7000 is divided into

the Processing System and Programmable Logic Area. All Zynq devices have the same

basic architecture, and all of them contain, as the basis of the processing system, a dual-

core ARMCortex-A9 processor that is a "hard" processor. The Zynq processing system

contains not just the ARM processor, but a set of associated processing resources

forming an Application Processing Unit (APU), and further peripheral interfaces, cache

memory, memory interfaces and clock generation circuitry. The Processing System

contains a set of external interfaces, SPI, I2C, CAN, UART, GPIO, and USB. The

second principal part of the Zynq 7000 architecture is the Programmable Logic PL

that is based on the Artix R©-7 FPGA fabric. The PL is predominantly composed of

general purpose FPGA logic fabric, which consists of slices and Con�gurable Logic

Blocks (CLBs), and there are also Input/Output Blocks (IOBs) for interfacing.

31

3 State of the Art

Figure 3.2: FPGA logic and its components.

− Con�gurable Logic Block (CLB): CLBs are small, regular groupings of logic

elements that are laid out in a two-dimensional array on the PL, and connected to

other similar resources via programmable interconnects. Each CLB is positioned

next to a switch matrix and contains two logic slices.

− Slice: A sub-unit within the CLB, which contains resources for implementing

combinatorial and sequential logic circuits. Zynq slices are composed of 4 Lookup

Tables, 8 Flip-Flops, and other logic.

− Lookup Table (LUT): A �exible resource capable of implementing a logic

function of up to six inputs; a small Read Only Memory (ROM); a small Random

Access Memory (RAM); or a shift register. LUTs can be combined to form larger

logic functions, memories, or shift registers, as required.

− Flip-�op (FF): A sequential circuit element implementing a 1-bit register, with

reset functionality. One of the FFs can optionally be used to implement a latch.

− Switch Matrix: A switch matrix sits next to each CLB, and provides a �exible

routing facility for making connections between elements within a CLB, and from

32

3.2 Experimental Platform

one CLB to other resources on the PL.

− Carry logic: Arithmetic circuits require intermediate signals to be propagated

between adjacent slices, and this is achieved via carry logic. The carry logic

comprises a chain of routes and multiplexers to link slices in a vertical column.

− Input / Output Blocks (IOBs): IOBs are resources that provide interfacing

between the PL logic resources, and the physical device `pads' used to connect

to external circuitry. Each IOB can handle a 1-bit input or output signal. IOBs

are usually located around the perimeter of the device.

Figure 3.3: Elements of a Con�gurable Logic Block.

Table 3.1: Frequency of Items in set I.

Items Frequency
Device Name Z-7020
Part Number XC7Z020
Programmable Logic Device Artix-7 FPGA
Programmable Logic Cells 85K Logic Cells
Look-Up Tables 53,200
Flip Flops 106,400
Extensible Block RAM 560 KB (140)

In table 3.1, a summary of the Zynq 7020 device is shown.

33

3 State of the Art

3.3 Hardware De�nition Languages and High Level

Synthesis Languages

HDL (Hardware Description Languages) are used to describe the behavior of one hard-

ware architecture, the design, and the electronic devices employed. These languages

are useful to describe an electronic appliance, and they make easy to analyze and sim-

ulate them. The HDL languages might be used in di�erent abstraction levels. The

highest abstraction level is algorithmic also know like behavioral level, in this level the

architecture is described using the algorithmic behavior instead describing the phys-

ical components and the interconnections between them. In the structural level, the

architecture is described as a collection of logic gates and hardware components con-

nected to perform the desired task. HDLs allow simulation using tools like ModelSim,

Active-HDL or Xilinx ISim. These tools are used to test and debug the architecture

without implement it in a physical device. The most common HDLs are VHDL, ABEL,

Verilog, AHDL, Handel-C, and System-C. The most signi�cant advantage of HDLs is

that they use a synthesizer. A synthesizer is a software tool that transforms the HDL

script into a hardware circuit that performs the desired function [18].

On the other hand, High-Level Synthesis Languages is the current trend in hardware

description languages, this is a consequence because there is a research interest in

accelerating software algorithms using hardware devices. All the software algorithms

use a high-level abstraction, and there was not a direct form to translate this high-

level code into hardware structures, and this guard against the development of theses

architectures because it is needed an expert in High-Level Software Languages and an

expert in Hardware Development. The main purpose of HLS are as follows:

− Algorithmic-based approaches are getting popular due to accelerated design time

and time to market.

− The Industry trend is moving towards hardware acceleration to enhance perfor-

mance and productivity.

∗ CPU-intensive tasks can be o�oaded to a hardware accelerator in FPGA.

34

3.3 Hardware De�nition Languages and High Level Synthesis Languages

∗ Hardware accelerators require a lot of time to understand and design.

− Vivado HLS tool converts algorithmic description written in C-based design �ow

into hardware description (RTL).

∗ Elevates the abstraction level from RTL to algorithms.

− High-level synthesis is essential for maintaining design productivity for large

designs.

For these reasons, HLS has been developed with the intention of accelerating the

production stage.

Figure 3.4: High Level Synthesis transformations from C Language to RTL level.

In �gure 3.4, an example of how HLS perform the transformation from a C program

into an RTL design is shown. The �rst step consists of identifying the operations.

Once that the operations has been identi�ed, the control state machine is generated.

In these tasks, all the conditional and loop statements are mapped into a Finite State

Machine. The last step consists of creating a uni�ed control-data-�ow behavior using

the operations and the Finite State Machine generated in the previous steps.

35

3 State of the Art

3.4 Classi�cation of Hardware Architectures

In literature, there have been proposed several software implementations of Frequent

Itemset Algorithms and extensions [1, 3, 29, 33, 35, 68] but in recent years hardware

architectures have been explored to o�er a solution to the acceleration problem. The

principal technologies employed in Hardware Architectures for Frequent Itemset Min-

ing are GPU and FPGA. In �gure 3.5 a classi�cation of the literature respect to the

hardware platform and the used algorithm is shown.

In the related work, there are implementations of the Apriori algorithm using GPUs

like a viable alternative to accelerate Frequent Itemset Mining due to the parallel

characteristics of GPUs. In [23], two implementations of Apriori have been developed.

The �rst one performs all the processing in the GPU avoiding losing time in the

communication between the GPU and the CPU. In the second, the GPU is used as a

co-processor to perform the support counting. In both designs, the transactions are

represented as binary vectors.

In [6, 7, 56, 60] presented FPGA implementations of Apriori. In the FPGA architec-

tures, authors have explored diverse approaches to implementing custom architectures,

using systolic arrays and content addressable memories. In [39, 54, 55], FPGA architec-

tures based on the FP-Growth algorithm are presented. The most signi�cant challenge

is the data representation in Fp-Tree; for this reason, they propose the implementation

of this structure in hardware. Finally, in [51, 70] hardware architectures of Eclat algo-

rithm are shown. All the hardware implementations achieve a speed up compared with

their software counterpart, but all of them share the same disadvantage, the resources

of the used platform limits the number of di�erent items that could be processed.

In �gure 3.6, a classi�cation on the used partition scheme is shown. According to this

review, three partition schemes are used in the literature: Data Segmentation, Map

Reduce, and Equivalence Classes.

In [33, 41, 59, 71], a partition of the search space using MapReduce is proposed, these

methods allow parallelization of the algorithms using distributed environments and

36

3.4 Classi�cation of Hardware Architectures

Hardware

Architectures for

Frequent Itemset

Mining

FPGA

Apriori

FP-Growth

Eclat

GPU

Apriori

Baker, Z. K., & Prasanna, V. K. (2005, April) [6].

Baker, Z. K., & Prasanna, V. K. (2006, April) [7].

Thoni, D. W., & Strey, A. (2009, August) [56].

Mesa, A. Feregrino-Uribe, C., Cumplido, R.,

& Hernández-Palancar, J. (2010) [39].

Sun, S., Steffen, M., & Zambreno, J. (2008,

December) [54].

Sun, S., & Zambreno, J. (2011) [55].

Zhang, F., Zhang, Y., Jin Z., & Bakos, J. D.

(2013) [69].

Shi, S., Qi, Y., & Wang, Q. (2013, October)

[51].

Fang, W., Lau, K. K., Lu, M., Xiao, X.,

Lam, C. K., Yang, P. Y. & Yang, K.

(2008) [23].

Fang, W., Lu, M., Xiao, X., He, B., &

Luo, Q. (2009, June) [22].

Fron"er

Expansion
Zhang, F., Zhang, Y., & Bakos, J. D.

(2013) [69].

Figure 3.5: Classi�cation of hardware architectures based on the device and algorithm
employed.

distributed data store. Finally, in [30, 50, 51, 70, 70], a segmentation of the search

space is done using Equivalence Classes. The idea is to divide the search space under

the premise that equivalence classes could be de�ned as all itemsets that share the

same pre�x, so, the search space is divided into sub-lattices that could be processed

37

3 State of the Art

Frequent Itemset

Mining

Map Reduce

Equivalence

Classes

Kovács, F.,& Illés, J. (2013) [33].

Otey, M. E., Parthasarathy, S., Wang, C.,

Veloso, A., & Meira, W. (2004) [41].

Wang, L., Feng, L., Zhang, J., & Liao, P. (2014)

[59].

Zhang, Z., Ji, G., & Tang, M. (2013, December)

[71].

Data Set

Segmenta!on

Sun, S., Steffen, M., & Zambreno, J. (2008,

December) [54].

Sun, S., & Zambreno, J. (2011) [55].

Tseng, F. C.(2013) [58].

Zhang, F., Zhang, Y., & Bakos, J. D. (2013) [70].

Schlegel, B., Karnagel, T., Kiefer, T., & Lehner,

W. (2013, June) [50].

Zhang, Z., Ji, G., & Tang, M. (2013, December)

[71].

Shi, S., Qi, Y., & Wang, Q. (2013, November)

[51].

Figure 3.6: Classi�cation of Algorithms that use a Segmentation Strategy.

independently.

38

3.5 Apriori Based Implementations of Frequent Itemset Mining

3.5 Apriori Based Implementations of Frequent

Itemset Mining

There have been several attempts to improve the Frequent Itemset Mining algorithms,

being Apriori the most popular and widely spread algorithm. In the next lines, some

of the most important Apriori implementations are presented. The main task is to

implement the Apriori algorithm in an e�cient manner using the minimum hardware

resources and the minimum execution time.

Set Comparator

Controller

Support Counter

Local

Mem

Item

Buffer

Set Comparator

Controller

Support Counter

Local

Mem

Item

Buffer

Set Comparator

Controller

Support Counter

Local

Mem

Item

Buffer

C

O

N

T

R

O

L

L

E

R

Stall Out

Mode In

Item In

Stall In

Item Out

Figure 3.7: Systolic array employed in Apriori hardware implementation.

In [6], the proposed architecture is a systolic array implementation (Figure 3.7). The

entire architecture is formed of 560 processor elements. Each processor element uses 70

slices so; the complete architecture requires 44000 slices. All the processor elements are

connected in a linear array. A memory to store the candidates, an index counter, and

a comparator (which allows the output of the candidate memory to be compared with

the next item) compound a processor element. The data �ow is one direction, and the

stall data �ow is the opposite direction. The support calculation is performed using two

loops with no dependencies; this characteristic allows high parallelization. The �rst

step consists of loading the processor units with candidates. Candidates enter at one

end of the linear array. After the �rst candidate is stored in the �rst processor element,

the ith candidate is sent along the ith processor element until all the processor elements

in the array are full. All the transactions are sent through the array; one element is sent

one per clock cycle. As each item arrives at a processor element, it is compared with

the current item in the processor element. If the items match, the candidate pointer is

39

3 State of the Art

249

316

395

482

743

787

819

236

804

319

620

529

E

N

C

O

D

E

R

Counter 0 . . .

> >

Counter 15

Bitmap RAM

Data in

Shi!

address

(a) Bitmapped CAM architecture

2

4

9

3

1

6

3

9

5

4

8

2

7

4

3

7

8

7

8

1

9

2

3

6

8

0

4

3

1

9

6

2

0

5

2

9

… …

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1

.

.

.

.

.

.

.

.

.

Output to Counters

One bitmap for

each item

(b) Architectural desing for the
bitmap operation

Figure 3.8: Apriori Bitmapped CAM architecture.

incremented, if the item in the processor element is lexicographically greater than the

incoming item, the counter is not incremented. In the candidate generation stage, the

candidates are injected into the systolic array, and this allows to each candidate set to

be compared against all the candidate sets. The �rst step of this stage is to inject the

new candidates into the array; each new candidate is written into the memory of each

processor element. Next, all the candidates are injected through the linear array, to be

compared to the candidates stored in the processor elements. The last stage consists of

pruning candidates. Once again, all the candidates are injected into the linear array;

the task is to determine the a priori existence of subsets of the new candidates within

the current generation. If the candidate is not a superset of the itemsets of the current

generation, the candidate is not a Frequent Itemset. Otherwise, the candidate is a

Frequent Itemset. The reason to implement a systolic array is to decrease the number

of the connections among processors elements and to ease the control.

Baker and Prasanna in [7], propose an improvement of the work presented in [6]. They

pay special attention to improving the support counting due to this task consumes two

orders of magnitude of time respect to the other tasks involved (candidate generation

and candidate prune). The basic idea is to develop an architecture based on Bitmapped

40

3.5 Apriori Based Implementations of Frequent Itemset Mining

Content Addressable Memories to store a set of candidates and then, perform the

counting support operation. The Content Addressable Memories or CAM are a special

kind of memories used in applications that require high-performance searches. The

di�erence between a CAM and an RAM is that RAMs require an address. Thus, the

memory returns the value stored in that address location; on the other hand, the CAMs

require data and then, they search into the memory and verify if the data is located.

This characteristic eases the counting support, because every time that a counting

support operation is needed, it is only necessary to count the number of times that the

CAM �nds the required data into the memory. The architecture is a heterogeneous

one integrated by a CPU and an FPGA. The CPU runs a software program that can

perform candidate generation and candidate prune. The FPGA performs the counting

support task. All transactions are streamed through the architecture shown in Figure

3.8. Each transaction is input to the CAM. If the incoming item matches any of the

items in the CAM, the CAM produces an address that corresponds to the item that is

stored in the bitmap. If a bit of the RAM output is set, the corresponding candidate

counter increments. This operation is performed until all the transactions have been

processed. Finally, if itemset counter is greater than smin, the Itemset is a frequent

one. The results reported shown a speedup of 24x compared to the Apriori software

implementations of Borgelt [11] and Goethals [27]. In conclusion, multiple iterations

of the architecture are needed to verify all the complete dataset. Then, it is important

to maximize the number of candidates that could be processed in parallel but, the

resources of FPGA are limited, and the performance of the architecture is constrained

by the available resources.

In [60], a hardware architecture called HAsh-based, and PiPelIned HAPPI based on the

Direct Hashing and Pruning DHP algorithm is presented. DHP algorithm is a variation

of Apriori algorithm. Both algorithms generate candidate k+1-itemsets from large k-

itemsets, and large k+1-itemsets are found by counting the occurrences of candidate

k+1-itemsets in the database. The main advantage of DHP algorithm is that it uses

a hashing technique to �lter out unnecessary itemsets for the generation of the next

set of candidate itemsets. The architecture is based on the previous works of Baker

and Prasanna[6, 7], because a systolic array is used, and also a �lter to performs the

pruning caller Trimming Filter and a Hash-table.

41

3 State of the Art

Item

Register

Support

Coun ng

ADD

Comparator

Candidate

Register

Trimming

Vector

Transac on

items

Transac on

items

Trimming

informa on

Trimming

informa on

Cell Cell Cell Cell Cell Cell

Figure 3.9: Systolic array of HAPPI architecture.

The architecture is composed of three modules: Systolic Array (shown in Figure 3.9),

Trimming Filter, and Hash Table Filter. In the �rst step, all the dataset is injected in

the architecture, and all the transactions are compared against the transactions in the

systolic array to obtain the k-itemsets. In the pruning �lter, it is determined when

an itemset is a frequent one. Then, the Hash-table is constructed with all the possible

itemsets of each transaction. The Hash-table is used to prune candidates because

previously all the subsets of each transaction have been stored. The trimming �lter is

fed with the output of the systolic array; then the trimming �lter returns the pruned

transactions. Meanwhile, the Hash Table Filter receives as inputs all the k-itemsets,

then the Hash Table for the next level is created. In the experimental part, the author

reports an acceleration around 47-122x compared against [6].

In [22, 23], an architecture based on GPU is reported. In [22] an architecture called

GPU miner is reported to perform K-means and Apriori algorithms. Speci�cally for the

Apriori algorithm a hybrid architecture is proposed using the GPU as a co-processor

to perform the counting support operation because, it is the most time demanding

operation, and it can generate a bottleneck. Two series of experiments were performed;

the �rst one consisted of comparing software implementations using a frequency of 1%.

42

3.5 Apriori Based Implementations of Frequent Itemset Mining

The results show that the heterogeneous architecture gets better performance with

speed up of 7.5x and 10.4x; the second one consisted of performing experiments over

the T40.I10.D100K dataset varying the frequency value from 0.5% to 0.2%, this case

resulted in speed up of 6.2x to 12.1x.

In [23] two Apriori-based architectures are reported. The �rst one is a full GPU im-

plementation called Pure Bitmap Based Implementation (PBI). PBI avoids the data

transfer between GPU memory and CPU; it also takes advantage of a binary repre-

sentation to perform the intersection of Itemsets; furthermore together with a lookup

table, the bitmap representation also accelerates the support counting, which is a time

demanding component in Apriori. The second architecture is a heterogeneous one; it

is called Trie-Based implementation (TBI), and it uses a tree structure to store item-

sets, this architectures respects the �ow of Apriori algorithm. The trie is incrementally

constructed level by level, growing the trie of depth k, it generates all k+1 itemsets.

The performance evaluation consists in comparing the GPU architectures against their

GPU counterpart. In the TBI case, the results show that the GPU implementation

gets better results for large support values, and if the value is near to zero the GPU

implementations gets better results than CPU. The only algorithm reported that gets

better results than the GPU implementations is FP-Growth.

In [56] an architecture based on systolic arrays to execute Apriori algorithm is proposed.

It is the �rst one to use Block RAMs to store the results instead of external memories

as the previous works reported because capacity in FPGA has grown in recent years.

Authors proposed to implement a systolic array architecture where the data path is

connected in a sequential way to data and a control bus. The main disadvantage is

that this design was only synthesized to approach a problem that �ts the FPGA. They

implement 70 processors elements that can process 1120 candidates in parallel.

43

3 State of the Art

3.6 FP-Growth Based Implementations of Frequent

Itemset Mining

In the literature, implementations of hardware architectures using the FP-Growth

algorithm could be found in [39, 54, 55]. These hardware architectures emulate the

FP-Tree structure used in FP-Growth.

In [54] a systolic tree structure is proposed to implement a hardware version of FP-

Growth algorithm. A systolic tree is a set of processor elements with the same charac-

teristics and connected to form a tree structure as shown in �gure 3.10. A systolic tree

is an array of pipelined processing elements in a multi-dimensional tree pattern. The

purpose of this structure is to mimic the memory structure used by the FP-Growth

algorithm. The structure of the systolic tree has a depth of W and K children for each

node. Each node in the original FP-tree corresponds to a processor element, resulting in

the total number of processing elements in a tree asKW+KW−1+...+K+1 = KW+1−1
K−1 .

The architecture has three operation modes: write, scan, and count. The systolic tree

is built in write mode; the items are streamed from the root node in the direction set

by the write mode algorithm. The root node is the processor control element, and it

acts as the controller to the rest of the tree. The support count of a candidate itemset

is extracted in both scan and count mode.

TID Itemset

1 b, c, d

2 b, c

3 a, c, d

4 a, c, d

5 a, b, c

6 a, b, c

7 a, b, d

(a) Example
Dataset

Control

b:2

c:2

d:1

a:5

c:2

d:2

b:3

c:2 d:1

1 2

3 4 5 6

7 8 9 10 11 12 13 14

(b) Systolic Tree Architecture

Figure 3.10: FP-Growth Architecture using a Systolic Tree.

44

3.6 FP-Growth Based Implementations of Frequent Itemset Mining

In consequence, two methods of projection of the dataset are proposed: parallel pro-

jection and partition projection. The partition projection uses less memory and I/O

operations but requires that each projection will be mined in a sequential manner.

Meanwhile, in the parallel projection the execution time is reduced by the parallel

nature of this projection but the memory consumption increases alarmingly.

In [39] another hardware architecture to execute FP-Growth algorithm is proposed.

Therefore, in this research, a binary representation is proposed, using a vertical bits

vector. Authors continue with the idea of implementing Frequent Itemset Mining

algorithms using a binary representation and binary logical operations to perform

support counting tasks. They proposed an Equivalence Class segmentation based

on Eclat algorithm but once the segmentation is done, FP-growth algorithm takes the

control to generate frequent itemsets. In this architectural design there is no candidate

generation, instead the full search space is explored until reaching a node for which

the support is zero.

ab

abd

abcd

abe

ac

ace

ad ae

Figure 3.11: Tree Structure used to store an Equivalence Class.

The architecture has three operation modes: Data In, Support Threshold, and Data

Flush. In the Data In mode, the search space is loaded by levels and all sections of the

database are injected. When the entire dataset is injected, the architecture enters in

the Support Threshold mode and the smin value is provided and propagated through

the systolic tree. Once all nodes receive the smin value, all the processor elements

change to Data Flush mode and the results are extracted from the architecture. The

most demanding tasks in the architecture are the propagation of the values in the

systolic array and the extraction of the results from each processor element in the

45

3 State of the Art

Data Flush Mode. The results reported show that the proposed architecture gets

better performance than the hardware implementation reported in [54], speci�cally in

the Chess dataset, the architecture gets a speedup of one order of magnitude. The

results also give evidence that the architecture �ts better for big, and dense datasets.

In [55], an extension of work [54], the authors still use the systolic tree structure. The

main contribution of this research is an algorithm to be used in the datasets projection

generation when the dataset does not �t well in the hardware architecture due to

memory limitations (mainly memory resources). The main advantage of the proposed

dataset projections is that they segment the search space with the intention of reusing

the hardware resources. Two methods for dataset projection are introduced: parallel

projection and partition projection. The partition projection requires less memory,

and I/O operations but, it requires that the dataset must be mined in a sequential

manner, this limits the parallelization of the algorithm. The parallel projection gets

better performance in execution time but, the disadvantage is the excessive memory

consumption.

The performance evaluation was performed against the FP-Growth software imple-

mentation. For the Chess, Accident and Retail datasets the architecture achieves a

better performance using both projections methods. In consequence, the reported re-

sults indicate that the execution time of FP-Growth is directly related to the FP-Tree

structure, and it is not related to the partition method employed.

3.7 Eclat Based Implementations of Frequent

Itemset Mining

The Eclat algorithm is based on depth-�rst search and the exploration of Equivalence

Classes. The �rst step consists of calculating all the Frequent Items, and in a recursive

way the search space is traversed. Recently there has been an interest in developing

hardware architectures for Frequent Itemset Mining using the Eclat algorithm [51, 70].

In Bakos et al. [70], a hardware architecture using Eclat algorithm is shown in Figure

3.12.

46

3.7 Eclat Based Implementations of Frequent Itemset Mining

FIFO A

FIFO B

Bitwise

AND

Popula!on

Count

Off-chip

Memory

Interface

Figure 3.12: Hardware architecture of Eclat algorithm.

They also use a binary representation to save space in memory and perform only logical

operations. They propose a design using two stacks called FIFOA and FIFOB that

take charge of storing Frequent Itemsets. The �rst itemset is read from the FIFOA, and

another from FIFOB and an AND operation is performed to generate the intersection

of the two sets. Then the count support operation is implemented using the population

count module. If the support is higher than smin the frequent itemset is stored in an

external memory or else the data is erased. A control state machine handles the FIFO

and the memory during the recursive search in the search space, and it is implemented

using a stack and a Finite State Machine.

The behavior of the architecture is depicted in �gure 3.13. In the example shown

in �gure 3.13, a is loaded into FIFOB and b is loaded into FIFOA, the result of the

intersection of a and b is stored in FIFOB (itemset ab is stored in FIFOB). Then if the

itemset ab is frequent and valid itemset, ab is kept in FIFOB. In step 2, ab is stored

into FIFOA and FIFOA must store an item lexicographically greater than item b, for

this reason, FIFOA holds item the c. Then, the intersection between itemset ab and

item c is performed; the vector binary resultant abc is stored in FIFOB. The itemset

abc is frequent, and it is a valid itemset, and it is kept in FIFOB. A special case is when

a result itemset is not a frequent one. In step 3 this scenario is depicted, the itemset

acb is stored in FIFOB, FIFOA holds the item d, the result of the binary intersection

is abcd, but abcd is not a frequent itemset. For this reason, the abcd itemset is �ushed

from the FIFOB, and the algorithm continues the execution until no more frequent

itemsets could be generated.

47

3 State of the Art

a

b c d

c d

d

d

(a) Traversing of search space

Step FIFO B FIFO A Result (in FIFO B) Valid Output Flush

1 a b a & b Yes Yes No

2 a & b c a & b & c Yes Yes No

3 a & b & c d a & b & c & d No No Yes

4 a & b d a & b & d No No Yes

5 a c a & c Yes Yes No

6 a & c d a & c & d Yes Yes Yes

7 a d a & d Yes Yes Yes

(b) FIFO control sequence

Figure 3.13: Behaviour of Eclat hardware architecture.

Memory constraints are the natural limitations of Frequent Itemset Mining Archi-

tectures. Memory o� chip is used to approach this limitation because the FPGA

employed device has 2MB of internal memory. For this reason, a coding strategy for

sparse datasets is used, the coding method chosen is the di�erential coding (it only

consists of XOR operations). Besides, a cache memory system (scratchpad memory)

is used to store the coded elements. A rule is proposed, for those transactions that

have at least one zero are deleted. The next step consists in applying the di�erential

code, and if the compressed ratio is higher than a threshold, this transaction is stored

in the cache, in another case the transaction is stored in the o�-chip memory without

codifying. The performance is compared against a software implementation of Eclat

algorithm.

48

3.8 Comparison of Related Work

In [51], authors propose the acceleration of the intersection operation in the Eclat

algorithm. The objective is to compute L1 ∩ L2∩, ...,∩Ln as soon as possible. This

hardware architecture has the next characteristics: the parallel load of items into the

memory modules, binary vectors are sent to a comparator module with the intention of

�nding the common values, and return the common data to the memory modules. In

the same way, a full comparator matrix structure is provided to perform the parallel in-

tersection computation. The experimental results show that the proposed architecture

achieved a speedup of 26.7x on the intersection operation compared against software

implementations of Eclat.

3.8 Comparison of Related Work

In the previous sections, the related work in literature has been reviewed. In table 3.2

and table 3.3, a summarized revision is presented. The main characteristics reported in

both tables are device employed (GPU or FPGA), technology, the datasets employed

in the evaluation of results, the area used in each design, operation frequency, speed

up and the algorithms used for evaluation purposes. The information about operation

frequency and area are available only for FPGA architectures. Most of the reviewed

works are constrained by the resources of the device employed; only [39, 54] have

proposed a segmentation or projection of datasets. For example in [6] the reported

slices are 44000 that represents a 99.7 % of usage of the employed device [64]. In [7]

the resource consumption of the employed device was of 100 %. In [54] the resource

consumption is about 99 % of the employed device [66]. In most of the reported

architectures, the resources consumption is around 90 % to 100 % because they try to

process the maximum possible number of transactions and itemsets. In consequence,

expensive architectures in terms of area are obtained, and in some cases they do not

guarantee that all the frequent itemsets will be mined [6, 7].

The second aspect to consider is the speed up achieved. In the Apriori-based architec-

tures [6, 7, 22, 23, 56] the maximum speed up is 30x. Eclat based architectures [51, 70]

got a maximum speed up of 68x. Apparently, the algorithm that gets better results

49

3 State of the Art

is FP-Growth, but the datasets employed contain few transactions and items. For

example, chess dataset contains 75 items and 3196 transactions. FP-Growth based

architectures implement a tree structure in FPGA and this become unpractical for

big datasets. So FP-Growth based architectures are good enough for small and dense

datasets. On the other hand, Apriori-based Architectures also are limited by the num-

ber of transactions and itemsets that could be processed by the respective architecture.

Eclat based architectures do not get a performance like FP-Growth architectures, but

Eclat architectures can deal with big datasets.

One inconvenient when the previous works are compared is the non-existence of a

framework to evaluate Frequent Itemset Mining architectures, because each work use

di�erent datasets, and each work is compared with di�erent related works. Also,

comparisons against software implementations are sometimes unfair, and it makes

di�cult to do a consensus of the related work.

50

3.8 Comparison of Related Work

T
ab
le
3.
2:

C
om

pa
ri
so
n
of

re
la
te
d
w
or
k,

P
ar
t1
.

W
o
rk

A
lg
o
ri
th
m

D
e
v
ic
e

T
e
ch
n
o
lo
g
y

D
a
ta
se
ts

A
re
a

O
p
e
ra
ti
o
n

F
re
q
u
e
n
cy

S
p
e
e
d

u
p

C
o
m
p
a
ri
so
n

A
g
a
in
st

[6
]

A
pr
io
ri

F
P
G
A

V
ir
te
x

II
P
ro

X
C
2V

P
10
0

w
it
h

-6
sp
ee
d

gr
ad
e

[6
4]

T
40
I1
0D

10
0K

,
T
10
I4
D
10
0K

44
00
0

sl
ic
es

11
2
M
h
z

4x
to

30
x

[1
1,

27
]

[7
]

A
pr
io
ri

F
P
G
A

V
ir
te
x

II
X
C
2V

60
00

w
it
h

-4
sp
ee
d

gr
ad
e
[6
5]

T
40
I1
0D

10
0K

,
T
10
I4
D
10
0K

33
79
2

sl
ic
es

12
0
M
H
z

24
x

[6
],
[1
1,

27
]

[6
0]

D
H
P

F
P
G
A

A
lt
er
a

S
tr
at
ix

1S
40

[4
]

T
5I
12
D
10
0K

,
T
10
I4
D
10
0K

,
T
15
I6
D
10
0K

,
T
20
I8
D
10
0K

-
58
.6

M
H
z

47
x

to
12
2x

[6
]

[2
2]

A
pr
io
ri

G
P
U

G
P
U

N
V
ID
IA

G
T
X
28
0

T
10
.I
4D

10
K
,

T
10
I4
D
10
0K

,
T
40
.I
10
D
10
0K

-
-

7.
5x

to
10
.4

x
[1
1]
,

[2
7]

[5
4]

F
P
-

G
ro
w
th

F
P
G
A

V
ir
te
x-
4

X
C
4V

F
X
14
0

w
it
h

-1
0

sp
ee
d

gr
ad
e
[6
3]

C
h
es
s,

A
cc
id
en
ts

an
d
R
et
ai
l

22
27
2

sl
ic
es

36
0
M
h
z

12
x

to
22
30
×

[2
9]

[2
3]

A
pr
io
ri

G
P
U

G
P
U

N
V
ID
IA

G
T
X
28
0

T
40
I1
0D

10
0K

,
C
h
es
s
an
d
R
et
ai
l

-
-

4x
to

16
x

[1
1]
,

[2
7]

[5
6]

A
pr
io
ri

F
P
G
A

V
ir
te
x

5
X
C
5V

L
X
11
0T

w
it
h

-3
sp
ee
d

gr
ad
e
[6
6]

T
10
.I
4.
D
10
0K

S
lic
es
:

17
22
6

L
U
T
s:

67
68
0/
69
22
115
5
M
H
z

4x
[6
,
7]

51

3 State of the Art

T
ab
le
3.
3:

C
om

pa
ri
so
n
of

re
la
te
d
w
or
k,

P
ar
t2
.

W
o
rk

A
lg
o
ri
th
m

D
e
v
ic
e

T
e
ch
n
o
lo
g
y

D
a
ta
se
ts

A
re
a

O
p
e
ra
ti
o
n

F
re
q
u
e
n
cy

S
p
e
e
d

u
p

C
o
m
p
a
ri
so
n

A
g
a
in
st

[3
9]

F
P
-

G
ro
w
th

F
P
G
A

V
ir
te
x-
4

X
C
4V

F
X
14
0

w
it
h

-1
0

sp
ee
d

gr
ad
e
[6
3]

C
h
es
s,

A
cc
id
en
ts

an
d
R
et
ai
l

P
E
:
34
9

F
lip

F
lo
p
s:

31
06
1

L
U
T
s:
12
45
9313

7
M
H
z

10
0x

[5
4]

[6
9]

F
ro
n
ti
er

E
xp
an
-

si
on

G
P
U

G
P
U
T
es
la
S
10
70

G
P
U

se
rv
er

w
it
h

fo
u
r

T
es
la

T
10

P
ro
ce
ss
or
s

T
40
I1
0D

10
0K

,
T
40
I1
0D

50
0K

,
T
40
I1
0D

10
00
K
,

T
40
I1
0D

15
00
K
,

T
10
I5
D
30
00
K
,

T
40
I1
0D

30
00
K

-
-

6x
to

30
x

[1
0,

11
]

[7
0]

E
cl
at

F
P
G
A

G
iD
E
L

P
R
O
C
-

S
ta
r

II
I

P
C
Ie

ad
d
-i
n

ca
rd

w
it
h

fo
u
r
F
P
G
A

S
tr
at
ix

II
I

26
0

co
n
n
ec
te
d

to
th
re
e

in
d
ep
en
-

d
en
t

m
em

or
y

b
lo
ck

[2
6]

T
40
I1
0D

03
N
50
0K

,
T
40
I1
0D

03
N
10
00
K
,

T
60
I2
0D

05
N
50
0K

,
T
90
I2
0D

05
N
50
0K

R
eg
is
te
rs
:

44
14
5/
20
35
20

L
U
T
:3
85
52
/2
03
52
0

B
lo
ck

M
em

-
or
y
B
it
s:

59
39
47
2/
15
04
05
12

D
S
P

B
lo
ck
:

24
/7
68

20
0
M
H
z

4x
to

68
x

[1
1]

[5
1]

E
cl
at

F
P
G
A

V
ir
te
x

L
X
24
0T

w
it
h

-1
sp
ee
d

gr
ad
e,

D
D
R
3

S
D
R
A
M

m
em

or
y

w
it
h
a
b
an
d
w
id
th

of
6.
4G

B
/s

[6
7]

T
40
I1
0D

10
0K

R
eg
is
te
rs
:

31
02

L
U
T
:1
26
02

B
R
A
M
:8
6

27
4.
21
7M

H
z

26
.7
x

[1
1]

52

3.9 Summary

3.9 Summary

In this section, a revision of the state of the art was presented. First, all the advan-

tages of using Hardware acceleration were exposed with the intention of remarking the

importance of this dissertation. Then, a detailed taxonomy of the research trends in

the last years has been presented, including those implementations based on GPUs

and FPGAs. Independently of the used hardware platform, all the implementations

of Frequent Itemset mining have achieved acceptable results. In the literature, the

most recurrent implemented algorithms are Apriori, FP-Growth, and Eclat. All these

implementations have their limitations, but all of them have in common that they are

constrained by the available resources of the employed devices. The intention of this

dissertation is to approach this common drawback of the previous works.

53

4

Architectural Design
and Hardware

Implementation

In this chapter, a detailed explanation of the proposed architectures is presented. In

the �rst section, the proposed strategy to go over the search space is exposed, this

strategy is mainly based on equivalence classes. The most remarkable advantage of

the proposed strategy is that the equivalence classes could be processed independently,

in consequence the Frequent Itemset Mining can be parallelized. It is necessary to

perform a full hardware implementation of the proposed strategy with the intention

of taking advantage of the inherent parallelism of FPGA. Accordingly, two hardware

architectures are presented. The �rst one consists in a full hardware implementation

of the proposed search strategy where each equivalence class is processed in a sequential

manner using 32 bits words. The second one is a parallel version of the proposed

strategy that has the advantage of processing 100 words or 32 bits in parallel. Finally

with the intention of speeding up the proposed architectures, a parallel model using two

processor elements to divide the workload is described.

55

4 Architectural Design and Hardware Implementation

4.1 Proposed Search Strategy

The Equivalence Class Transformation algorithm Eclat was proposed by Zaki[68]. The

main idea is to represent the search space in a lattice as the one shown in Figure 2.2.

With this representation, the search space could be divided into equivalence classes

where the equivalence relationship is the pre�x. Frequent itemsets with the same pre�x

share the same sublattice. In consequence, this representation o�ers the possibility of

exploring the search space in depth-�rst search and breath-�rst search. Eclat traverses

the itemsets in lexicographic order and uses a representation called transactions id list

or tid-list. Each tid-list is a vertical projection of each item, and every row contains

the id of one transaction.

a b c d e

1 1 0 0 1 1

2 0 1 1 1 0

3 1 0 1 0 1

4 1 0 1 1 1

5 1 0 0 0 1

6 1 0 1 1 0

7 0 1 1 0 0

8 1 0 1 1 1

9 0 1 1 0 1

10 1 0 0 1 1

a b c d e

1 1 1 0 1 1

2 0 1 1 1 0

3 1 0 1 0 1

4 1 0 1 1 1

5 1 0 0 0 1

6 1 0 1 1 0

7 1 1 1 0 0

8 1 0 1 1 1

9 0 1 1 0 1

10 1 1 0 1 1

(a) Dataset using verti-
cal binary vectors.

a

1 1

2 0

3 1

4 1

5 1

6 1

7 1

8 1

9 0

10 1

b

1 1

2 1

3 0

4 0

5 0

6 0

7 1

8 0

9 1

10 1

ab

1 1

2 0

3 0

4 0

5 0

6 0

7 1

8 0

9 1

10 0

(b) Intersection and sup-
port counting operations
in binary vectors.

Figure 4.1: Data Representation and operations used by our proposal.

Our proposal consists in a variant of the search strategies proposed in Eclat. The

representation employed in our proposal is the vertical binary vector because the in-

tersection and support counting operation can be implemented as a combinatorial

system. The transactions are coded in 32 bits integers using the compressed array

representation used in [30]. The word size is 32 bits because the memory employed to

store the transactions uses 32 bits words. For example in �gure 4.1, a binary vector

dataset of �ve items is shown. For items a and b, their support values are calculated

56

4.1 Proposed Search Strategy

counting the set bits in the correspondent vectors being Sa = 8 and Sb = 5. The

intersection operation is performed using Boolean AND operations. For example to

get the itemset ab, an AND operation between the binary vector of item a and b is

performed. The result is the binary vector ab shown in �gure 4.1, and Sab = 3.

Our search strategy is a combination of breadth and depth �rst search. This strategy

has the advantage that the search space can be partitioned, in consequence each parti-

tion of the search space can be processed in parallel. For example, �gure 4.2 describes

the behaviour of the proposed strategy. The �rst step consists in taking item a and

generate all the 2-itemsets being ab, ac and ad frequent itemsets. The next step is to

generate all the 3-itemsets. abc is generated intersecting ab and ac. abd is generated

intersecting ab and ad. acd is generated intersecting ac and ad. The �nal step consists

in generate all the 4 itemsets, abcd is generated intersecting abc and abd. In this �rst

stage, all the itemsets with pre�x a or that belong to the equivalence class a are gen-

erated. This process is repeated for all the remaining items.

1 2 3

4 5 6

Figure 4.2: Search strategy proposed for four items.

Algorithms 4 and 5 describe the behaviour of the proposed search strategy. In algo-

rithm 5 the partition of the search space into equivalences classes is performed. In

57

4 Architectural Design and Hardware Implementation

line four, the initial items are sent as a parameter to the function search_strategy.

In line �ve, the processed item is removed from the list of initial items. For example,

to process the equivalence class a the initial items are a, b, c, d and e. Once the

equivalence class a is processed, a it is not necessary anymore and it is removed from

the initial items. For equivalence class b, the initial items are b, c, d and e. Once that

all the equivalence class a is processed, all the itemsets that belong to this class can

be removed from memory because they are not necessary anymore. In consequence,

this search strategy is useful in scenarios where there are memory constraints like in

FPGA design because in memory only will be stored the itemsets that belong to the

current class.

Algorithm 4 Proposal of search strategy for each equivalence class

Require: C1 Initial Items
1: Ci = C1;
2: search_strategy(Ci) :
3: Ci+1 = ∅;
4: for all cj ∈ Ci do
5: for all ck ∈ Ci with k > j do
6: F = cj ∪ ck; T (F) = T (cj) ∩ T (ck)
7: if support(F) ≤ smin then
8: Ci+1 = Ci+1 ∪ F ;
9: end if

10: end for
11: end for
12: if Ci+1! = ∅ then
13: search_strategy(Ci+1);
14: end if
15: return

⋃
Ci; // All the frequent itemsets of this equivalence class

The search strategy described in algorithm 4 performs the itemset mining of each

equivalence class. For example, let C1 = a, b, c, d, e be the initial items. The 2 −
itemsets for class a are, generated being c3 = {ab, ac, ad, ae}. Once that all the 2-

itemset have generated, they are sent as a parameter to the function search_strategy.

For each itemset, the intersection with its next itemset in the list is performed if both

itemsets share the same pre�x. The result of the intersection of ab with ac, ad, ae can

be performed because all of them share the pre�x a and their last item is greater than

b. For this example, all the itemsets are frequent, so C3 = {abc, abd, abe}. The result

58

4.2 Architecture based on the proposed search strategy

Algorithm 5 Search Strategy

Require: C1 Frequent Items
Require: Ci = C1;
1: D = C1; // Set of initial items.
2: result = ∅;
3: for all cj ∈ Ci do
4: result = result ∪ search_strategy(D);
5: D = D − cj;
6: end for
7: return result; // All the frequent itemsets in the dataset

of the intersection of ac with ad, ae is stored in C3 = {abc, abd, abe, acd, ace}. The

result of the intersection of ad with ae is stored in C3 = {abc, abd, abe, acd, ace, ade}.
Once that all the 3-itemsets have been generated they are used as a parameter of

search_strategy function to generate the 4− itemsets. This process is repeated until

no more frequent itemsets can be generated.

4.2 Architecture based on the proposed search

strategy

Our �rst proposal is the implementation of a full hardware implementation of the

proposed search strategy, The behaviour of this architecture is divided into two parts;

the �rst one consists in the generation of the frequent items and the second one consists

in the Frequent Itemset Mining using the proposed search strategy.

Figure 4.3 shows a high-level diagram of the proposed architecture. This architecture

is composed of a general purpose processor, an UART module, an o�-chip memory, a

memory subsystem and the hardware accelerator. The general purpose processor and

the UART module are necessary to create an interface to receive the datasets and send

out the frequent itemsets. The o�-chip memory is the DDR2 of the ZedBoard. The

memory subsystem creates an interface between the o�-chip memory and the hardware

accelerator that contains a memory management unit and a memory arbiter.

59

4 Architectural Design and Hardware Implementation

Standalone
OS

Interrupt

Handler

Software
Control
Program

Hardware

Accelerator
ECLAT

Programmable Logic Module

Memory

Subsystem

MMU

System Bus

Memory UART

Arbiter

ZYNQ AXI CORTEX A

MEMIF

Figure 4.3: Hardware architecture that performs the proposed search strategy.

Block

RAM

Block

RAM

Prefix

Suffix

Coun"ng

Set Bits

Adder(+)
Support

Register

S_min

Register

Comparator

new_itemset

Load

Prefix

Load

Suffix

AXI MASTER

AXI MASTER

Address

Address

a

b

c

Prefix Label

d

Suffix Label

Concatenate

Prefix

Size

Actual Address

Final Address

abcd

AXI MASTER

new_itemset New Itemset Register

New

_itemset

Figure 4.4: Low level design of the proposed architectural design.

Figure 4.4 describes a block diagram of the hardware accelerator. It consists of two

dual block RAM memories called prefix and suffix. The BRAMs have a storage

capacity of 122 Kb, in consequence they can store one million of transactions but

it is not limited only to one million of transactions because the Load Su�x and

60

4.2 Architecture based on the proposed search strategy

Load Pre�x modules can iterate to cover more than one million of transactions. The

outputs of each memory are connected to AND gates that perform the intersection

using 32-bits words. The counting support module receives as inputs two 32-bit words

that are the result of the AND gate. The output of the counting support module is

accumulated in the support register until all the transactions have been covered. And

�nally, a comparator compares the support register value with the Smin register value.

If the current itemset is a frequent itemset, the pre�x label is concatenated with the

su�x label and then the concatenated label is stored in the o�-chip memory with its

corresponding binary vector.

S0

S1

S2

S3

S4

S0: Receive Ini!al Parameters

S1: Read Item

S2: Compare Support Value and

write in FI memory sec!on

S3: Stop condi!on

S4: Indicate comple!on

(a) Items mining state machine.

S0: Generate 2-itemsets

S1: Load Prefix

S2: Load Suffix

S3: Compare support value and

write in FI memory sec#on

S4: Stop condi#on

S5: Indicate comple#on

S1

S2

S3

S4

S5

S0

(b) Itemset mining state machine.

Figure 4.5: Finite state machines of the proposed search strategy.

Figure 4.5 shows two �nite states machines that describe the behavior of the proposed

architecture. The �rst state machine corresponds to the frequent items generation task.

In state S0, the architecture receives the initial direction where the binary vectors are

stored, the number of transactions, the number of items, the label of the actual item,

the direction where the frequent item labels will be stored and the Smin value. In

state S1, the architecture reads the binary vector of the current item and stores it in

the load pre�x BRAM, and then the counting set bits module computes the support

61

4 Architectural Design and Hardware Implementation

value. In state S2, if the item is frequent, its label is stored in the o�-chip memory as

a frequent itemset. State S3 veri�es that all the items have been processed.

Figure 4.6: Search space for item a.

The second state machine describes the behaviour of the Frequent Itemset Mining

stage. In state S0, the 2-itemsets are mined. Table 4.1 describes the operations

involved in state S0. The �rst step consists in receiving a set of initial items, for this

example the initial items are D = a, b, c, d being all the a − prefixed itemsets the

equivalence class to process. The �rst item in the initial items list determines the

equivalence class to process. The second step consists in performing the intersection

and support counting of the 2-itemsets; Pre�x and Su�x BRAMs are used in this task.

The item a is stored in prefix BRAM, and the next items will be stored in suffix

BRAM to perform the intersection and support counting operation. All the frequent

2-itemsets will be stored in the o�-chip memory.

Table 4.1: 2-itemsets generation.

Frequent itemsets in
memory

Pre�x
BRAM

Su�x
BRAM

Frequent

{ } a b Yes
{ab} a c Yes
{ab, ac} a d Yes
{ab, ac, ad} a e Yes

Once that the 2-itemsets have been calculated, the next step corresponds to state S1

and consists in the k-itemsets mining. Table 4.2 describes the operations employed

62

4.2 Architecture based on the proposed search strategy

in this stage using the search space of �gure 4.6. The 2 − itemsets = {ab, ac, ad},
so in state S1 the binary vector of ab is stored in Pre�x BRAM, and in state S2,

then itemset is stored in Su�x BRAM. In state S3, the intersection operation and the

support counting operation indicate that abc is a frequent itemset and in consequence,

abc is written in the o�-chip memory. The itemset ab is not �ushed from the Pre�x

BRAM because there is an itemset that shares the same pre�x. So, ab and ad are

intersected to generate a new itemset. In this case, ab is �ushed from memory because

the next itemset in memory is abc and it is a 3-itemset and they do not share the same

pre�x. The intersection of two itemsets can only be performed, if both of them have

the same cardinality and share the same pre�x. For example, the pre�x of itemset

abc is ab and the pre�x of itemset acd is ac, although they have the same cardinality

they do not share the same pre�x, and they cannot be intercepted to generate a new

itemset. In contrast for itemsets abc and abd, they share the pre�x ab and the same

cardinality, in consequence they can generate the itemset abcd.

Table 4.2: Operations performed by the architecture

Frequent itemsets in
memory

Pre�x
BRAM

Su�x
BRAM

Result
in Su�x
BRAM

Frequent Output Flush
pre�x
BRAM

{ab, ac, ad} ab ac abc Yes Yes No
{ab, ac, ad, abc} ab ad abd Yes Yes Yes
{ab, ac, ad, abc, abd} ac ad acd No Yes Yes
{ab, ac, ad, abc, abd} ad - - No No Yes
{ab, ac, ad, abc, abd} abc abd abcd No No Yes

The previous steps are executed until no more itemsets can be generated, for the

example in table 4.2 the a− prefixed frequent itemsets are {ab, ac, ad, abc, abd}. The
second �nite state machine is executed for all the frequent items in a serial form

processing independently each item.

63

4 Architectural Design and Hardware Implementation

4.3 Unrolled Architecture based on the proposed

search strategy

In this section, an improvement over the previous architecture is shown. The previ-

ous architecture performs the intersection and support counting operations iteratively

using 32-bits words because the BRAM memories perform I/O operations using two

words of 32-bits. The I/O operations over the BRAMs represents the critical path

in the previous architecture. For example, if the dataset has 3200 transactions,it is

necessary 100 words of 32-bits, in consequence the previous architecture needs 50 clock

cycles to store the pre�x in the pre�x BRAM and 50 clock cycles to store the su�x

in the su�x BRAM and also 50 clock cycles are required for the intersection opera-

tion. For each intersection and support counting operation, the architecture requires

150 clock cycles. Accordingly, an unrolled architecture is proposed to improve the

execution time. Figure 4.7 describes the unrolled hardware architecture proposed.

Prefix

Register

Bank

Suffix

Register

Bank

.

.

.

Coun"ng

Set Bits
Adder(+)

Support

Register

S_min

Register

Comparator

new_itemset

Load

Prefix

Load

Suffix

AXI MASTER

AXI MASTER

Address

Address

a

b

c

Prefix Label

d

Suffix Label

Concatenate

Prefix

Size

Actual Address

Final Address

abcd

AXI MASTER

new_itemset New Itemset Register

new_itemset

Figure 4.7: Hardware architecture that performs an unrolled implementation of the
proposed search strategy.

64

4.4 Dual Core Design and Partition Strategy

The �rst change to improve the performance of the architecture is to replace the

BRAMs memories with register banks. Although the register banks must be imple-

mented using resources of the programmable logical area of the FPGA (slices and

LUTs), they can perform parallel reads and writes on all their locations, in conse-

quence, reads and writes of n words in parallel can be performed. For this architec-

tural design register banks of 100 words of 32 bits have been implemented. The second

change is to unroll the cycle that performs the intersection and support counting of

each word of 32-bits stored in the BRAMs in the previous architecture. It is necesary

100 AND gates connected to the output of each register in the register banks like in

�gure 4.7, and the output of each AND gate is connected to the support counting

module that is implemented using look-up tables to obtain the number of set bits in

each word of 32-bits. Finally the sum of each word that contains the number of set

bits is done, and the value obtained is compared with the value stored in the Smin

register. The advantage of unrolling the architecture is that the number of clock cycles

employed is reduced, The intersection and support counting operation is performed

using three clock cycles. In consequence, the number of clock cycles employed in the

intersection of two itemsets is reduced from 150 clock cycles (employed in the previous

architecture) to 103 clock cycles. The gain reported is a consequence of the usage

of more hardware resources �ip-�ops and multiplexers used in the register banks and

their interconnections with the AND gates. In comparison, the unrolled architecture

has better speed up but it consumes more hardware resources.

4.4 Dual Core Design and Partition Strategy

With the intention to get a speed up, a dual-core architecture is proposed for each of our

proposals. Figure 4.8 shows a high-level representation. In the logical programmable

area, two hardware accelerators are implemented with the intention of distributing the

workload between the two of them.

Previously it has mentioned that the proposed search strategy has the advantage of

splitting the search space into disjoint sets or classes. This can be used in a high

level of parallelism because each core can process an equivalence class independently.

65

4 Architectural Design and Hardware Implementation

Hardware

Accelerator
ECLAT

Programmable Logic Module

Hardware

Accelerator
ECLAT

Standalone
OS

Interrupt

Handler

Software
Control
Program

Memory

Subsystem

MMU

System Bus

Memory UART

Arbiter

ZYNQ AXI CORTEX A

MEMIF

Figure 4.8: Dual core hardware architecture proposed

Figure 4.9 describes the partition of the search space for four items. The �rst processor

element receives the set of items D = {a, b, c, d} and it processes the equivalence class

a. The result of the Frequent Itemset Mining is stored in its memory section, and the

frequent itemsets are a, ab, ac, ad, abc, abd, acd, abcd. Meanwhile, the second processor

element receives the sets of items D = {b, c, d} and it process the equivalence classes

b, c and, d. The resultant frequent itemsets are {b, bc, bd, bcd, c, cd, e}. The dual core
architecture obtains a parallelism to process independent equivalence classes, and this

impacts directly on the performance of the proposed search strategy. The number of

cores can be incremented as much as the FPGA employed permits it.

66

4.5 Summary

a

b

c

d

a

ab

ac

ad

abc

abd

acd

abcd

b

c

d

b

bc

bd

bcd

c

cd

d

0x00200000 0x05000000

Figure 4.9: Partition of the search space using 2 processor elements.

4.5 Summary

In this chapter, the search strategy used for the implementation of two architectures

was presented. The advantage of the search strategy is the ability to divide the search-

ing space into sub-lattices that can be processed independently regardless the dataset

size. The division into equivalence classes also has the save memory advantage com-

pared with other strategies like FP-growth. The hardware architectures proposed

perform a full hardware implementation of the proposed strategy, and the main issue

is to accelerate the intersection and support counting operations because these tasks

are the most used in the proposed search strategy.

67

5

Experimental Results
and Performance

Evaluation

In this chapter, all the details involved in the experimental test and the evalua-

tion of the results are exposed. The �rst section includes a revision of the metrics used

for the evaluation: area and runtime, and how these metrics can be used as indicators

of the performance of one hardware design. Then, a review of the data sets and their

characteristics and how to generate them is shown and how certain characteristics

impact directly in the performance of the algorithms. Finally, an analysis of the results

achieved by the two developed hardware architectures is performed making comparisons

among these architectures and the most representative software implementations

reported in literature.

69

5 Experimental Results and Performance Evaluation

5.1 Evaluation Metrics

The most common metrics used to evaluate Hardware Architectures are the Through-

put and the Area. In combinatorial designs, the complexity in time is determined by

the maximum frequency operation that is determined by the maximum delay in the

combinatorial route. In sequential designs, the complexity in time is calculated by

clock cycles required by the entire architecture.

The area indicates the hardware resources that a design uses. Unfortunately, there are

not a standard metric to measure how many resources an FPGA design uses. After

implementing an architectural design in an FPGA device, the synthesis, place, and

route tools report about the hardware resources used from the FPGA. Some of the

most important resources are number of slices, number of �ip �ops, number of 4 or 6

inputs look up tables LUTs, number of clocks, block RAM, multipliers, among others.

A Hardware Architecture might be reported regarding LUTs or number of slices. A fair

comparison could be to compare all the resources available in the FPGA. A hardware

design that uses the dedicated integrated blocks of an FPGA uses fewer resources

from the programmable logic section, and this implies a minor use of hardware area

compared against design that does not use the dedicated blocks, and these blocks are

implemented in the programmable logic section. It is observed that the same HDL

code synthesized for di�erent FPGAs of the same family get di�erent measurements of

area. This gap increases when the same hypothetical design is implemented in FPGA

of di�erent vendors. In some cases, when there is a need to classify FPGA designs some

characteristics might be ignored. According to the application, some designs report

only timing constraints because they report the execution speed of the architecture.

A fair area comparison could be performed only if FPGA of the same characteristics

are employed.

70

5.2 Validation Datasets

5.2 Validation Datasets

In the literature diverse datasets have been used to test the functionality of the software

algorithms and hardware architectures. In [3], an algorithm is proposed to generate

synthetic datasets over a large range of characteristics. These synthetic transactions

imitate the characteristics of transactions in the retailing environment. This model

follows the premise that people in the real world have the intention to buy sets of

items together. For example, people can buy beer, chips, soda, and pencils, but another

person can buy chips and soda, another person could buy pencils and chips, and all

these sub-items of the same transaction still could be frequent.

Table 5.1: Data sets used to validate the Hardware Architecture.

Dataset Size(MB) Binary
Dataset
Size (MB)

Average
Length
Transac-
tion

Number
of Trans-
actions

Number
of Items

Chess 0.330 0.013 37 3196 75
T40I10D100K 14.6 4.32 10 100k 1000
T40I3N500k 68 11.9 40 500k 299
T40I3N1000k 136 24.1 40 1000k 300
T60I5N500k 106 18.9 60 500k 500
T90I5N499k 160 22.901 90 499k 500

The characteristics employed to generate the datasets are: number of transactions

|D|, average size of transactions |T |, average size of the maximal potentially large

itemsets |I|, number of potentially large itemsets |L| and, number of items |N |. All

these characteristics are used to generate synthetic datasets. For this dissertation,

three values for |T |: 40, 60 and 90 have been chosen. The values for |I| are 3,5 and

10. Table 5.1 summarizes the dataset parameter settings, and also an estimated of the

size in MB of the datasets. The proposed strategy is evaluated using a dense dataset

(chess) and sparse datasets because it is necessary to evaluate the performance of the

architecture with dataset of di�erent characteristics.

71

5 Experimental Results and Performance Evaluation

5.3 Performance evaluation of the �rst proposed

hardware architecture

The hardware architecture is evaluated using area and execution time metrics. The

area evaluation is performed using the hardware report usage that provides Vivado

HLS synthesizer. The execution of the architecture has been compared to the execu-

tion time of Apriori, Eclat and FP-Growth software implementations [11, 12] because

these are optimized implementations of such algorithms. The previous implementa-

tions can be found on the personal website of Christian Borgelt [13]. The software

implementations have been tested on a PC with an Intel i3-3217U processor at 1.8

GHz and 8 GB DDR2 RAM memory with Windows 7 ultimate. The execution time

considers the input and output operations and the CPU time for all the algorithms

and the hardware architectures. In the performance test, all the datasets described in

previous sections are used, a dense dataset (chess) and sparse datasets with a di�er-

ent number of items and transactions have been employed to evaluate the hardware

architecture and compare it with the software algorithms.

From �gure 5.1 to 5.6, the hardware architecture and the dual core hardware architec-

ture are faster than most of the software algorithms, although FP-growth gets a better

execution time for the T40I10D100K dataset. Figure 5.1 shows the performance of the

three software implementations and the hardware architectures for the chess dataset.

The maximum speedup achieved by the architecture proposed is 112x and 210x for

the dual core architecture, this comparison is unfair because Apriori gets bad results

when it deals with dense datasets. For chess dataset, Fp-growth was the algorithm

that obtained better results compared with the proposed architecture the maximum

speedup obtained is 2.9x and 5.8x for the dual core architecture.

The better performance reported for the hardware architectures is when they have to

deal with sparse datasets (Figures 5.2, 5.3, 5.5, 5.6). For algorithms like Fp-Growth, the

tree structures employed consume much memory, in some cases the algorithm consumes

all the available memory (Figures 5.3, 5.5, 5.6). The proposed architecture only needs

to store the set of current itemsets k−itemsets and the generated k+1−itemsets, and

the number of itemsets stored in the memory is reduced because the search strategy

72

5.3 Performance evaluation of the �rst proposed hardware architecture

0.20.30.40.50.60.70.80.91
10

−2

10
−1

10
0

10
1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Figure 5.1: Execution time comparison (Chess).

0.0450.050.0550.060.0650.070.0750.080.0850.090.095

10
1

10
2

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Figure 5.2: Execution time comparison (T40I3N500k).

does not generate all the k−itemsets, it only generates the k−itemsets that belong to

the current equivalence class. Figure 5.4 shows that Fp-growth has better performance

than the proposed architecture because all the transactions in the dataset share the

same items, this favours to Fp-Growth in the construction of the tree structures.

The experiments show that the proposed architecture has good performance for sparse

and dense datasets obtaining a speedup of 2.5x for the proposed search architecture

and 6x for the dual core architecture compare with the best software implementations

(it depends on the dataset).

73

5 Experimental Results and Performance Evaluation

0.040.050.060.070.080.090.1
10

1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Figure 5.3: Execution time comparison (T40I3N1000k).

00.010.020.030.040.050.060.070.080.090.1
10

−1

10
0

10
1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Figure 5.4: Execution time comparison (T40I10D100K).

Table 5.2 and 5.3 show the area reports for both architectures. The operation frequency

reported for both is 114 Mhz. The elements reported are BRAMs, DSP48E, Flip Flops

and LUTs. For the �rst architecture (Table 5.2), 46 % of the BRAMs are used because

they are necessary to store the pre�x and su�x, and they have to store one million

of bits. The usage of Flip-Flops (3 %) and LUTs (9 %) is minimum because the

architecture only needs a few registers to store Smin value and the control signals, this

is the most compact design obtained.

For the second architecture (table 5.3), although there has been an increment in the

74

5.3 Performance evaluation of the �rst proposed hardware architecture

0.050.0550.060.0650.070.0750.080.0850.090.095

10
1

10
2

10
3

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Figure 5.5: Execution time comparison (T60I5N500k).

00.10.20.30.40.50.60.7
10

0

10
1

10
2

10
3

10
4

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Figure 5.6: Execution time comparison (T90I5N499k).

resources employed, the architecture is still a compact one. The only resource that

has increased considerately is the BRAMs because the number of stored bits is two

million. Intuitively, an advantage of the compact design is that the number of cores

that can be attached to the architecture can grow, and the workload can be divided

among other processor elements to speed up the execution time.

Compactness is the main advantage of the proposed hardware architecture. Although,

it is a compact design, both versions accelerate the Frequent Itemset Mining problem.

The main reason is that the architectures sacri�ce speed to obtain a compact design.

75

5 Experimental Results and Performance Evaluation

Table 5.2: Hardware resources used by proposed hardware architecture.

Name BRAM DSP48E FF LUT
Expression - - 0 2618
Memory 129 - 0 0
Multiplexer - - - 1943
Registers - - 3475 -
Shift Memory - - 0 164
Total 129 20 3475 4725
Available 280 220 106400 53200
Utilization (%) 46 9 3 9

Table 5.3: Hardware Resources used by the dual core architecture.

Name BRAM DSP48E FF LUT
Expression - - 0 3806
Memory 258 - 0 0
Multiplexer - - - 2891
Registers - - 5234 -
Shift Memory - - 0 279
Total 258 32 5234 6976
Available 280 220 106400 53200
Utilization (%) 92 14 4 13

One alternative is to create an array of compact processor elements to get a better

speedup.

5.4 Performance evaluation of the unrolled

hardware architecture

The evaluation of this architecture is performed using the same datasets described

previously. The speed up obtained in this architecture is considerable because the

intersection and support counting has been unrolled. In the previous architecture,

these operations were implemented in an iterative way. The previous architecture

is a compact one, but it requires more clock cycles to perform the operations and

a low hardware usage. The unrolled architecture has a greater hardware usage, but

76

5.4 Performance evaluation of the unrolled hardware architecture

the execution time for each dataset is reduced considerably. Due to this increase

in the hardware usage, the architecture does not �t in the FPGA device available

but it was simulated using the operation frequency and the clock cycles reported by

the synthesizer. From �gure 5.7 to �gure 5.12 the unrolled hardware architecture

gets the best performance compared with Apriori, Eclat and Fp-growth because each

intersection and support counting operation is performed using 100 words of 32-bits

in parallel.

0.20.30.40.50.60.70.80.91
10

−2

10
−1

10
0

10
1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Harwdare Unrolled
DC FIM Harware Unrolled

Figure 5.7: Execution time comparison (Chess).

0.050.060.070.080.090.1

10
1

10
2

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware Unrolled
DC FIM Hardware Unrolled

Figure 5.8: Execution time comparison (T40I3N500k).

For example using the T90L5N499k dataset, the speedup achieved by the unrolled

hardware architecture is 16x and 36x for the dual core unrolled architecture. The best

77

5 Experimental Results and Performance Evaluation

0.040.050.060.070.080.090.1
10

0

10
1

10
2

10
3

Support	

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware Unrolled
DC FIM Hardware Unrolled

Figure 5.9: Execution time comparison (T40I3N1000k).

00.010.020.030.040.050.060.070.080.090.1
10

−2

10
−1

10
0

10
1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware Unrolled
DC FIM Hardware Unrolled

Figure 5.10: Execution time comparison (T40I10D100K).

speed up reported for the dual core unrolled architecture is 48x compared with the best

software implementation (without taking in account the Apriori algorithm for chess

dataset).

The experiments show that these architectures have good performance for sparse and

dense datasets, but for dataset T40I10D100K02 the speedup obtained is not consid-

erable because the transactions of the dataset share the same items. The architectures

proposed are good for sparse and datasets with a big number of items because the

partition proposed by the search strategy keeps in memory compact binary vectors.

78

5.4 Performance evaluation of the unrolled hardware architecture

0.0550.060.0650.070.0750.080.0850.090.0950.1
10

0

10
1

10
2

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware Unrolled
DC FIM Hardware Unrolled

Figure 5.11: Execution time comparison (T60I5N500k).

00.10.20.30.40.50.60.7
10

−1

10
0

10
1

10
2

10
3

10
4

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware Unrolled
DC FIM Hardware Unrolled

Figure 5.12: Execution time comparison (T90I5N499k).

These binary vectors are used to generate the k − itemsets in consequence the com-

plete dataset only is read twice (in the 1-itemset and 2-itemset generation). Also,

the partition in equivalence classes reduces the number of itemsets generated in each

iteration. For example, Apriori in one iteration generates all the k+1− itemsets from

k − itemsets. Instead the proposed architectures only generate the k + 1 − itemsets

of the current equivalence class, once that they have been processed they are not

necessary anymore, reducing the memory usage.

The dual core strategy gets the best results in each experiment reducing the execution

79

5 Experimental Results and Performance Evaluation

Table 5.4: Hardware Resources used by the one core of the unrolled architecture.

Name BRAM DSP48E FF LUT
Expression - - 0 5847
Instance 200 16 248 6648
Memory 2 - - -
Multiplexer - - - 51244
Registers - - 70224 -
Shift Memory - - 0 91
Total 202 16 70472 63830
Available 280 220 106400 53200
Utilization (%) 72 7 66 120

time considerably for each dataset. Also, an array of processor could be implemented

but the principal inconvenient is the area resources employed and each processor ele-

ment needs an independent o�-chip memory to avoid memory con�icts.

The operation frequency reported is 114 MHz, and the area resources are described in

Table 5.4 for the one core unrolled architecture. The unrolled hardware architecture has

a considerable consumption of LUTs and Flip Flops, in consequence this architecture

does not �t in the Zynq 7020 device that is a low-end device. The increment is

because two register banks of 100 words of 32 bits are implemented and multiplexers

are required to interconnect the registers to select the desired operation with the data

of those registers. For the unrolled intersection module, 4400 LUTs were employed,

and it requires one clock cycle to perform the AND operation of 100 words of 32 bits.

The support counting module requires 200 BRAMs modules, 248 �ip-�ops, and 2258

LUTs; the BRAMs modules are necessary to store the look-up tables that determines

how many set bits contains the 100 32-bit words. This operation only uses three clock

cycles to count the set bits in the register bank. The experiments show that an unrolled

hardware architecture gets better speed up compared with the previous architecture

reported, and the memory constraints are approached using a partition strategy of the

search space.

80

5.5 Summary

5.5 Summary

In this chapter, the results and performance evaluation were presented. The evaluation

was performed using synthetics datasets used in the literature. All the developed

architectures have been tested in the same circumstances, and the reported data is

in area and operation frequency. The compact hardware implementation gets a poor

speed up compared to the unrolled architecture, but its speedup can be increased

attaching more processor elements. The dual core unrolled architecture has obtained

the best performance of all our implementations, and it has proved that frequent

itemset mining can be accelerated using specialized hardware architectures.

81

6

Conclusions and Future
Work

In this dissertation, a search strategy for Frequent Itemset Mining, and it's hardware

implementation have been presented. The proposed search strategy �ts well for hard-

ware implementations; the strategy splits the search space into separate equivalence

classes making disjoint sets of the original dataset. In consequence, the amount of

itemsets stored in the memory is reduced, this is a real advantage for memory con-

strained scenarios like in the hardware architecture development. Another advantage

of the partition into separate equivalence classes is that the equivalence classes can be

distributed among a set of processor elements to parallelize and distribute the work-

load.

Two hardware architectures and their dual-core implementations for Frequent Itemset

Mining has been proposed, the �rst one called hardware architecture based on the

proposed search strategy and the second one called unrolled hardware architecture.

The performance of both hardware architectures has been compared with software

implementations of Apriori, Eclat and FP-Growth [11, 12].

83

6 Conclusions and Future Work

For the �rst architecture, a one core implementation and a dual core implementation

have been developed. Both implementations have obtained better execution times for

almost all the datasets, for only one dataset FP-Growth obtained better execution

because the characteristics of such dataset. The most remarkable characteristic of this

architecture is that gets a 2.5x to 6x speedup despite its compactness.

For the second architecture, also a one core and a dual core implementation have

developed. Both implementations have also been compared with Apriori, Eclat, and

FP-Growth. For all the datasets, the unrolled architecture reports the best execution

times. With the experiments performed over this architecture, it has been shown that

an acceleration of the Frequent Itemset Mining problem can be achieved for dense and

sparse datasets. The hardware usage of this architecture can be justi�ed because a

remarkable acceleration is achieved. There is a cost-bene�t tradeo� between hardware

usage and execution time.

The objectives presented in the �rst chapter of this dissertation have been ful�lled,

because an e�cient search strategy for hardware architectures has been proposed and

a remarkable speed up for Frequent Itemset Mining problem has been achieved. Also,

this hardware architecture can process any dataset regardless of its size.

6.1 Future Work

Based on the results obtained in this dissertation, there are some variations of the

proposed hardware architecture that can be explored. First, it is possible to imple-

ment an array of processor elements, in other words, scale up the proposed dual-core

architecture from 2 to n processor elements, in consequence a better execution time

can be achieved. Therefore, it is necessary to introduce a fair division of the equiva-

lence classes among an array of processor elements that guarantees that all processor

elements have a balanced partition of the search space. For this purpose, it is necessary

to perform an analysis of the datasets to determine what is the best partition of the

search space.

84

6.1 Future Work

Second, it is possible to scale up the register banks that store the pre�x and the su�x

in the proposed hardware architecture, in consequence more than 100 32-bit words can

be processed in parallel but it is necessary to �nd the most e�cient way to achieve

this goal.

Finally, as an immediate goal, it is necessary to perform and study of memory consump-

tion of the proposed search strategy to validate the fact that the proposed architecture

saves memory compared with other algorithms proposed in the literature.

85

References

[1] János Abonyi. A novel bitmap-based algorithm for frequent itemsets mining. In

Computational Intelligence in Engineering, pages 171�180. Springer, 2010.

[2] Rakesh Agrawal, Tomasz Imieli«ski, and Arun Swami. Mining association rules

between sets of items in large databases. In ACM SIGMOD Record, volume 22,

pages 207�216. ACM, 1993.

[3] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining asso-

ciation rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215,

pages 487�499, 1994.

[4] Altera. Nios Development Board, 7 2003. V. 1.1.

[5] AG Anan'ko, KF Lysakov, M Yu Shadrin, and MM Lavrentiev. Development and

application of an fpga-based special processor for solving bioinformatics problems.

Pattern Recognition and Image Analysis, 21(3):370�372, 2011.

[6] Zachary K Baker and Viktor K Prasanna. E�cient hardware data mining with the

apriori algorithm on fpgas. In Field-Programmable Custom Computing Machines,

2005. FCCM 2005. 13th Annual IEEE Symposium on, pages 3�12. IEEE, 2005.

[7] Zachary K Baker and Viktor K Prasanna. An architecture for e�cient hardware

data mining using recon�gurable computing systems. In Field-Programmable Cus-

tom Computing Machines, 2006. FCCM'06. 14th Annual IEEE Symposium on,

pages 67�75. IEEE, 2006.

[8] Michael JA Berry and Gordon S Lino�. Data mining techniques: for marketing,

sales, and customer relationship management. John Wiley & Sons, 2004.

87

REFERENCES

[9] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-gpu accelerated multi-spin

monte carlo simulations of the 2d ising model. Computer Physics Communica-

tions, 181(9):1549�1556, 2010.

[10] Francesco Bonchi and Bart Goethals. Fp-bonsai: the art of growing and pruning

small fp-trees. In Advances in Knowledge Discovery and Data Mining, pages 155�

160. Springer, 2004.

[11] Christian Borgelt. E�cient implementations of apriori and eclat. In FIMI'03:

Proceedings of the IEEE ICDM workshop on frequent itemset mining implemen-

tations, 2003.

[12] Christian Borgelt. An implementation of the fp-growth algorithm. In Proceedings

of the 1st international workshop on open source data mining: frequent pattern

mining implementations, pages 1�5. ACM, 2005.

[13] Christian Borgelt. Christian borgelt's web pages. url-

http://www.borgelt.net/�mgui.html, 2015.

[14] Sebastian Breÿ, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter

Saake. Gpu-accelerated database systems: Survey and open challenges. In Trans-

actions on Large-Scale Data-and Knowledge-Centered Systems XV, pages 1�35.

Springer, 2014.

[15] Toon Calders, Calin Garboni, and Bart Goethals. E�cient pattern mining of

uncertain data with sampling. In Advances in Knowledge Discovery and Data

Mining, pages 480�487. Springer, 2010.

[16] Leonardo Chang, José Hernández-Palancar, L Enrique Sucar, and Miguel Arias-

Estrada. Fpga-based detection of sift interest keypoints. Machine vision and

applications, 24(2):371�392, 2013.

[17] Rui Chang and Zhiyi Liu. An improved apriori algorithm. In Electronics and

Optoelectronics (ICEOE), 2011 International Conference on, volume 1, pages V1�

476. IEEE, 2011.

[18] Shuai Che, Jie Li, Jeremy W Shea�er, Kevin Skadron, and John Lach. Acceler-

ating compute-intensive applications with gpus and fpgas. In Application Speci�c

Processors, 2008. SASP 2008. Symposium on, pages 101�107. IEEE, 2008.

88

REFERENCES

[19] Alok Choudhary, Ramanathan Narayanan, Berkin Öz�s Iky�lmaz, Gokhan Memik,

Joseph Zambreno, and Jayaprakash Pisharath. Optimizing data mining workloads

using hardware accelerators. In In Proc. of the Workshop on Computer Architec-

ture Evaluation using Commercial Workloads (CAECW. Citeseer, 2007.

[20] Thomas H Davenport, Paul Barth, and Randy Bean. How `big data'is di�erent.

MIT Sloan Management Review, 54(1), 2013.

[21] Mike Estlick, Miriam Leeser, James Theiler, and John J Szymanski. Algorithmic

transformations in the implementation of k-means clustering on recon�gurable

hardware. In Proceedings of the 2001 ACM/SIGDA ninth international symposium

on Field programmable gate arrays, pages 103�110. ACM, 2001.

[22] Wenbin Fang, Ka Keung Lau, Mian Lu, Xiangye Xiao, Chi Kit Lam, Philip Yang

Yang, Bingsheng He, Qiong Luo, Pedro V Sander, and Ke Yang. Parallel data

mining on graphics processors. Hong Kong University of Science and Technology,

Tech. Rep. HKUST-CS08-07, 2, 2008.

[23] Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He, and Qiong Luo. Frequent

itemset mining on graphics processors. In Proceedings of the �fth international

workshop on data management on new hardware, pages 34�42. ACM, 2009.

[24] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data

mining to knowledge discovery in databases. AI magazine, 17(3):37, 1996.

[25] R Ferguson. It's all about the platform: What walmart and google have in com-

mon. Sloan Management Review, 2013.

[26] GiDEL. PROCStar III PCIe x8 Computation Accelerator, 2 2009. V. 1.

[27] Bart Goethals and Mohammed J Zaki. Fimi'03: Workshop on frequent itemset

mining implementations. In Third IEEE International Conference on Data Mining

Workshop on Frequent Itemset Mining Implementations, pages 1�13, 2003.

[28] Zhengyang Guo, Wenbo Xu, and Zhilei Chai. Image edge detection based on fpga.

In Distributed Computing and Applications to Business Engineering and Science

(DCABES), 2010 Ninth International Symposium on, pages 169�171. IEEE, 2010.

89

REFERENCES

[29] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In ACM SIGMOD Record, volume 29, pages 1�12. ACM, 2000.

[30] Raudel Hernández-León, J Hernández-Palancar, Jesús A Carrasco-Ochoa, and

José Fco Martínez-Trinidad. Algorithms for mining frequent itemsets in static

and dynamic datasets. Intelligent Data Analysis, 14(3):419�435, 2010.

[31] Hanaa M Hussain, Khaled Benkrid, Huseyin Seker, and Ahmet T Erdogan. Fpga

implementation of k-means algorithm for bioinformatics application: An acceler-

ated approach to clustering microarray data. In Adaptive Hardware and Systems

(AHS), 2011 NASA/ESA Conference on, pages 248�255. IEEE, 2011.

[32] N Jayalakshmi, V Vidhya, M Krishnamurthy, and A Kannan. Frequent itemset

generation using double hashing technique. Procedia Engineering, 38:1467�1478,

2012.

[33] Ferenc Kovacs and János Illés. Frequent itemset mining on hadoop. In Compu-

tational Cybernetics (ICCC), 2013 IEEE 9th International Conference on, pages

241�245. IEEE, 2013.

[34] B Santhosh Kumar and KV Rukmani. Implementation of web usage mining

using apriori and fp growth algorithms. Int. J. of Advanced Networking and

Applications, 1(06):400�404, 2010.

[35] Phuong-Thanh La, Bac Le, and Bay Vo. Incrementally building frequent closed

itemset lattice. Expert Systems with Applications, 41(6):2703�2712, 2014.

[36] You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu. Speeding up k-means

algorithm by gpus. In Computer and Information Technology (CIT), 2010 IEEE

10th International Conference on, pages 115�122. IEEE, 2010.

[37] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based frequent itemset

mining algorithms on mapreduce. In Proceedings of the 6th international confer-

ence on ubiquitous information management and communication, page 76. ACM,

2012.

[38] Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and Dominic

Barton. Big data. The management revolution. Harvard Bus Rev, 90(10):61�67,

2012.

90

REFERENCES

[39] Alejandro Mesa, Claudia Feregrino-Uribe, René Cumplido, and José Hernández-

Palancar. A highly parallel algorithm for frequent itemset mining. In Advances

in Pattern Recognition, pages 291�300. Springer, 2010.

[40] David L Olson and Dursun Delen. Advanced data mining techniques. Springer

Science & Business Media, 2008.

[41] Matthew Eric Otey, Srinivasan Parthasarathy, Chao Wang, Adriano Veloso, and

Wagner Meira. Parallel and distributed methods for incremental frequent itemset

mining. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, 34(6):2439�2450, 2004.

[42] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose computation

on graphics hardware. In Computer graphics forum, volume 26, pages 80�113.

Wiley Online Library, 2007.

[43] Jong Soo Park, Ming-Syan Chen, and Philip S Yu. An e�ective hash-based algo-

rithm for mining association rules, volume 24. ACM, 1995.

[44] Nunu Ren, Jimin Liang, Xiaochao Qu, Jianfeng Li, Bingjia Lu, and Jie Tian.

Gpu-based monte carlo simulation for light propagation in complex heterogeneous

tissues. Optics express, 18(7):6811�6823, 2010.

[45] Philip E Ross. Top 11 technologies of the decade. IEEE Spectrum, 48(1):27�63,

2011.

[46] Pratanu Roy, Jens Teubner, and Gustavo Alonso. E�cient frequent item counting

in multi-core hardware. In Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1451�1459. ACM,

2012.

[47] Philip Russom et al. Big data analytics. TDWI Best Practices Report, Fourth

Quarter, 2011.

[48] Neil Savage. Twitter as medium and message. Communications of the ACM,

54(3):18�20, 2011.

91

REFERENCES

[49] Ashok Savasere, Edward Robert Omiecinski, and Shamkant B Navathe. An e�-

cient algorithm for mining association rules in large databases. 1995.

[50] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. Memory-e�cient

frequent-itemset mining. In Proceedings of the 14th International Conference on

Extending Database Technology, pages 461�472. ACM, 2011.

[51] Shaobo Shi, Yue Qi, and Qin Wang. Accelerating intersection computation in

frequent itemset mining with fpga. In High Performance Computing and Com-

munications & 2013 IEEE International Conference on Embedded and Ubiquitous

Computing (HPCC_EUC), 2013 IEEE 10th International Conference on, pages

659�665. IEEE, 2013.

[52] Andreia Silva and Cláudia Antunes. Pattern mining on stars with fp-growth. In

Modeling Decisions for Arti�cial Intelligence, pages 175�186. Springer, 2010.

[53] R Sumithra and Sujni Paul. Using distributed apriori association rule and clas-

sical apriori mining algorithms for grid based knowledge discovery. In Comput-

ing Communication and Networking Technologies (ICCCNT), 2010 International

Conference on, pages 1�5. IEEE, 2010.

[54] Song Sun, Michael Ste�en, and Joseph Zambreno. A recon�gurable platform

for frequent pattern mining. In Recon�gurable Computing and FPGAs, 2008.

ReConFig'08. International Conference on, pages 55�60. IEEE, 2008.

[55] Song Sun and Joseph Zambreno. Design and analysis of a recon�gurable platform

for frequent pattern mining. Parallel and Distributed Systems, IEEE Transactions

on, 22(9):1497�1505, 2011.

[56] DW Thoni and Alfred Strey. Novel strategies for hardware acceleration of frequent

itemset mining with the apriori algorithm. In Field Programmable Logic and

Applications, 2009. FPL 2009. International Conference on, pages 489�492. IEEE,

2009.

[57] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear

algebra solvers for multicore with gpu accelerators. In Parallel & Distributed Pro-

cessing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Sym-

posium on, pages 1�8. IEEE, 2010.

92

REFERENCES

[58] Fan-Chen Tseng. Mining frequent itemsets in large databases: The hierarchical

partitioning approach. Expert Systems with Applications, 40(5):1654�1661, 2013.

[59] Le Wang, Lin Feng, PL Jing Zhang, and Pengyu Liao. An e�cient algorithm

of frequent itemsets mining based on mapreduce. Journal of Information and

Computational Science, 11(8):2809�2816.

[60] Ying-Hsiang Wen, Jen-Wei Huang, and Ming-Syan Chen. Hardware-enhanced

association rule mining with hashing and pipelining. Knowledge and Data Engi-

neering, IEEE Transactions on, 20(6):784�795, 2008.

[61] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

[62] Di Wu and Andreas Moshovos. Image signal processors on fpgas. In 2014 IEEE

22nd Annual International Symposium on Field-Programmable Custom Comput-

ing Machines (FCCM), pages 176�176. IEEE, 2014.

[63] Xilinx. Virtex-4 Family Overview, 8 2010. V. 3.1.

[64] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,

6 2011. V. 5.0.

[65] Xilinx. Virtex-II Platform FPGAs: Complete Data Sheet, 5 2014. V. 4.0.

[66] Xilinx. Virtex-5 Family Overview, 8 2015. V. 5.1.

[67] Xilinx. Virtex-6 Family Overview, 8 2015. V. 2.5.

[68] Mohammed Javeed Zaki. Scalable algorithms for association mining. Knowledge

and Data Engineering, IEEE Transactions on, 12(3):372�390, 2000.

[69] Fan Zhang, Yan Zhang, and Jason D Bakos. Accelerating frequent itemset mining

on graphics processing units. The Journal of Supercomputing, 66(1):94�117, 2013.

[70] Yan Zhang, Fan Zhang, Zheming Jin, and Jason D Bakos. An fpga-based accelera-

tor for frequent itemset mining. ACM Transactions on Recon�gurable Technology

and Systems (TRETS), 6(1):2, 2013.

93

REFERENCES

[71] Zhigang Zhang, Genlin Ji, and Mengmeng Tang. Mreclat: An algorithm for

parallel mining frequent itemsets. In Advanced Cloud and Big Data (CBD), 2013

International Conference on, pages 177�180. IEEE, 2013.

94

