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Optimal Teaching Machines
Jacob Whitehill and Javier. R. Movellan

Abstract

Automated teaching systems have found success in various subjects areas, most notably high school mathe-
matics [1] and introductory computer programming [2], but their full potential to transform modern education by
providing each student with personalized instruction has not yet been realized. Most intelligent tutoring systems
employ only impoverished sensors consisting of a keyboard and mouse. Not only do such sensors enforce a rigid
interaction style which may be unnatural for the pupil, but because they ignore important real-time information
about the student, they may also be achieving suboptimal learning gains. Employing more sophisticated sensors
brings with it the new challenge of integrating perception and action in an intelligent manner, and principled
approaches will be needed to tackle this problem. In this paper, we explore the idea that the Partially Observable
Markov Decision Process (POMDP) may provide such a principled framework. We review the history of automated
teaching systems since the 1960s to present day with an eye on how teaching decisions are made. We show that
much of previous work on intelligent tutoring systems can be posed as a POMDP, and that the early research on
teaching “m independent items” (e.g., vocabulary flashcards) from the 1960s and 1970s is relevant to contemporary
“cognitive tutoring” systems. We further describe the computational limits of POMDPs for automated teaching
scenarios, suggest ways in which these may be partially overcome, and discuss avenues for further research.

Index Terms

Intelligent Tutoring Systems, Partially Observable Markov Decision Processes, Stochastic Optimal Control,
Machine Perception

I. INTRODUCTION

IT is well-known that one-to-one human tutoring is one of the most effective forms of instruction.
Bloom [3] found that expert human tutoring can result in learning gains of two standard deviations

above the mean score of students who were taught in conventional classroom style. Unfortunately, one-
to-one human tutoring is also relatively expensive, and good tutors may not always be available. It is
thus important to develop automated systems that can approximate the quality of human tutoring. While
considerable progress has been made in automated teaching systems towards the elusive 2σ goal in a
few domains (e.g., high school mathematics [1], introductory computer programming [2]), it is unclear
whether the current heuristic approaches to making teaching decisions used by most automated tutors will
generalize well to other teaching domains.

A striking feature of contemporary teaching systems is the unnatural, inflexible interaction style between
human pupil and computer teacher that are typically enforced by these systems: With a few notable
exceptions (e.g., Project LISTEN [4]), most contemporary tutors receive input from the student at only
a few bits per second, using a standard keyboard and mouse, and this input is retrieved only at specific
moments during the interaction. Not only is this unnatural for the human student, but by ignoring important
cues about the student’s state, it is also sub-optimal in terms of achieving learning gains. In contrast, human
tutors and teachers continuously solicit feedback from their students, both consciously and subconsciously,
over a variety of channels including speech, facial expression, eye gaze, and others. Recent years have
seen dramatic improvements in sensor technology and machine perception algorithms which could allow
automated systems to perceive through such channels, but adding new sensor inputs brings with it the new
challenge of integrating rich, unstructured sensor inputs at varying time scales in an intelligent manner. For
instance, what does it mean when a student looks away for a period of time when he/she should be solving
a math problem? Is the student bored? Has he given up entirely? Or is he merely looking elsewhere while
pondering the answer and about to deliver the solution? Knowing to what cause to attribute perceived
behavior, and knowing how to respond to the underlying causes, poses new challenges for the field of
automated teaching machines.
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In this paper we explore the idea that the Partially Observable Markov Decision Process (POMDP) may
provide a useful and principled approach to automated teaching, especially as the demands placed on the
automated teacher by more sophisticated sensors continue to grow. POMDPs integrate noisy observations,
state transitions, and reward signals in order to compute an optimal policy. As we will show, much of
previous research on optimal teaching machines can be formulated in terms of the POMDP framework.
By analyzing teaching scenarios from a POMDP perspective, one can benefit from new algorithms that
are emerging from the POMDP and related research communities in order to solve previously intractable
problems. In this paper, we review some of the most significant literature on automated teaching and
discuss its relationship to POMDPs. We discuss the computational limits of the POMDP approach to
optimal teaching, describe ways in which these limits can be partially overcome, and suggest important
avenues for future research.

This paper analyzes optimal teaching from a somewhat theoretical and abstract perspective: Put loosely,
we define teaching as what to teach to a student and when, in order to achieve a specific learning goal.
We are not interested in the particular graphical user interface used by the teaching machine, or in the
effort involved in entering the instructional content into the software, though these topics are of non-trivial
importance. In the language of POMDPs, we wish to compute optimal policies for the agent (i.e., the
teacher) so as to maximize some learning criterion in the environment (i.e., the student). From this abstract
viewpoint, we examine three important scenarios: (1) Teaching m independent “items,” where the notion
of “item” is general and could be a single vocabulary word or perhaps a particular motor, perceptual,
or cognitive skill; (2) teaching items that have knowledge dependencies, i.e., one item cannot be learned
without knowledge of another; and (3) cognitive skill learning, i.e., how to perform a task such as solving
an algebra problem.

The paper is structured as follows: We first provide a brief historical overview of the role of optimal
control theory in automated teaching systems (Section II). We then describe the basics of Partially Observ-
able Markov Decision Processes (Section III) and explain how they apply to the topic of optimal teaching
(Section IV). Next, we describe three fundamental scenarios in automated instruction: m independent
learning items (Section V), items with dependencies (Section VI), and cognitive skill acquisition using
“production rules” (Section VII). It will turn out that the “m independent items” literature from the
early years of automated teaching research may yet have bearing on much more recent cognitive tutoring
systems. In Sections VIII, IX, and X, we discuss three issues that we consider to be the frontier of optimal
teaching research: developing better learning models, integrating machine perception, and harnessing
research from the machine learning and reinforcement learning communities. Finally, we make concluding
remarks in Section XI.

II. HISTORICAL PERSPECTIVE

The first endeavors towards automated teaching machines took place primarily at Stanford University
in the 1960s and 1970s [5]–[10] and many of these efforts focused on teaching a list of “paired-associate”
items, e.g., vocabulary words and basic facts. The decisions of which “item” to teach next were based
on optimal control theory. The algorithms available at the time for solving these partially observable
control problems were limited to exact-solution dynamic programming algorithms, whose computational
time complexity is known to be doubly-exponential in the time horizon in the worst case. The teaching
problems that were amenable to optimal policy computation were thus necessarily very small in scale,
and it is thus not surprising that the optimality approach to computerized teachers mostly died off.

In the 1980s, the field of automated teaching was revived with John Anderson’s “cognitive tutor”
movement at Carnegie Mellon University. Cognitive tutors are based loosely on his ACT* and ACT-R
theories of cognition [11], [12]. Notable examples of cognitive tutors include the LISP Tutor and Geom-
etry Tutor [13]. Instead of teaching simple facts, these tutors provide students with structured practice
environments in which to hone their proficiency in cognitive skills such as solving algebra problems and
proving geometry theorems. Teaching decisions, such as which problem to present to the student next,
are made mostly using heuristic methods.
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Fig. 1. Schematic of a POMDP.

Since the mid 2000s, there has emerged a small renaissance of the optimality approach to teaching,
both for optimal inference and for decision-making: In [14], for example, Bayesian networks were used
to optimally infer the student’s problem-solving plan, and in [15] they were employed to assess whether
students benefit from receiving hints during tutoring. For automatic hint generation, [16] and [17] employed
fully observable MDPs to select hints so as to maximize the probability of the student reaching a solution.
A few researchers have designed teaching systems that make decisions by maximizing some form of
immediate reward [18], [19], i.e., one-step greedy look-ahead search over all possible actions. The only
recent POMDP application to teaching of which we are aware is by [20], who investigate methods for
decomposing a “monolithic” teaching POMDP into several smaller POMDPs, each one corresponding to
a different type of student.

We believe that the recent re-visitation of the optimality approach to automated teaching can be
significantly expanded to cover more aspects of decision-making and inference procedures, and also
to integrate machine perception through more advanced sensors. In this paper we explore the utility for
automated teaching of one particular framework for optimal control – the Partially Observable Markov
Decision Process – which we introduce in the next section.

III. POMDPS

A Partially Observable Markov Decision Process (POMDP) is a probabilistic framework for sequential
decision-making in which an agent (the teacher, in our case) interacts with the environment (the student)
in order to maximize the long-term sum of accrued rewards (see Figure 1). In a POMDP, the agent cannot
directly inspect the state of the environment, just as a teacher cannot peer into the brain of his/her students.
Rather, the teacher must infer the state through noisy observations.

Formally, a POMDP consists of the following elements:
• A state space S that models the environment. The environment is assumed to be described by, and

is Markovian in, its state. Due to the Markov property, the transition dynamics of the environment
are independent of the past state given its current state and the action at:

P (st+1 | at, st, st−1, . . . , s1) = P (st+1 | at, st)

The state of the environment is not directly visible to the agent.
• A prior distribution P (s0) over the initial state of the environment.
• An action space A consisting of all actions the agent can execute and thereby affect the environment.
• An observation space O consisting of all possible observations the agent can make of the environment;

this is the only information the agent receives.
• A reward function R : S×A → R which specifies the value of the random variable Rt, the immediate

reward received by the agent at time t when the agent takes action at and the environment is in state
st.
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• The state transition distribution P (st+1 | st, at) specifying the probability that the environment will
transition from state st to state st+1 when the agent takes action at.

• An observation distribution P (ot | st, at) specifying the probability the environment will emit obser-
vation ot when in state st and the agent executes action at.

• A discount factor γ ∈ [0, 1] specifying by how much immediate rewards are to be favored over future
rewards.

• A horizon length T specifying the number of time steps for which the agent-environment interaction
will take place. T can be infinite.

The agent can affect the environment by executing an action a at each time step. Based on the particular
action executed and the current state of the environment, the agent receives an observation o from the
environment. In a partially observable MDP, the observation is the only information the agent receives
from the environment because the agent cannot observe the state directly. Along with the observation, the
agent also receives a reward r at each time step, but in general the reward value is not observed by the
agent1; hence, when making decisions, the agent can only maximize the expected sum of rewards given
its actions and observations.

A. Computing an Optimal Policy
Given a model of the the environment state dynamics P (st+1 | st, at), observation (emission) probabil-

ities P (ot | st, at), reward function R(st, at), and prior state probabilities P (s0), the agent must devise a
policy π that describes how it should act at each time step. Each policy induces a sum, over the entire
time horizon, of expected discounted rewards:

V (π) =
T∑
t=0

γtE[Rt | π] (1)

An optimal policy π∗ is one that maximizes V (π):

π∗ = arg max
π

V (π)

Note that an optimal policy seeks to maximize the expected sum of discounted rewards over the long
term, until the end of the time horizon. This contrasts with other methods of decision-making, such as
greedy one-step look-ahead search (see [18], [19], [21] for examples), which maximizes the reward only
at the next time-step.

For computing a policy, the only information visible to the agent in a POMDP is the history of actions
and observations:

Ht = ((At, Ot) , (At−1, Ot−1) , . . . , (A1, O1))

This history can grow arbitrarily long, thus making it an unwieldy representation to store in memory.
Fortunately, it turns out that the history can be compressed into a finite length representation without loss of
relevant information for policy computation: Instead of defining a policy from the system history to actions,
one can define the belief bt, which is a vector whose ith component is defined as bit = P (St = i | ht),
representing the posterior distribution of the state at time t given the observed history ht. The belief bt is
a sufficient statistic of the system history for maximizing V and allows the policy π to be formulated as
a mapping from beliefs to actions.

Using the belief representation, one can re-cast the Partially Observable MDP of the environment’s
unknown discrete state into a Fully Observable MDP of the continuous belief state (see [22] for a
derviation). The optimal policy can then be computed using, for example, the Value Iteration algorithm.

1More precisely, if the reward is observed and carries information about the state, then it must be incorporated as an observation because
otherwise the agent would not be acting optimally.



5

B. Belief Updates
Given a policy π and the agent’s current belief bt about the environment’s state st, the agent executes

action at = π(bt) and then receives an observation from the environment ot. The agent must now update
its belief about the environment’s state based on the newly acquired information. For discrete action and
observation spaces, this can be computed efficiently using a recursion relation:

bt+1 ∝
∑
st

P (st+1 | st, at)P (ot | st, at)bt (2)

After updating bt to bt+1, the agent then executes the next optimal action π(bt+1), receives another
observation, and so on, until the end of the session.

C. Horizon Length
A POMDP can assume either a finite horizon length T , in which case the interaction between agent and

environment terminates after exactly T time steps, or an infinite horizon length. To ensure convergence
in the general infinite-horizon case, rewards are typically discounted by a factor γt. Note that an infinite
horizon does not imply that the agent has “infinite time” to act – due to the discount factor, the longer-term
rewards will be given less weight than rewards that are received sooner. The main effect of an infinite
horizon is that the optimal policy is stationary, i.e., it does not vary with time, which may be simpler to
implement in some contexts.

D. Open Loop versus Closed Loop
A typical optimization problem consists of finding the optimal closed loop policy for a given POMDP,

in which the belief, and hence the action, at time t is a function of both the previous actions and the
observations. However, in principle the POMDP framework can also be used to compute an optimal open
loop controller, whose actions from the beginning to the end of the session are pre-determined and are
invariant to any observations. Open loop controllers in general deliver inferior performance to that of
a closed loop policy, but they do have the advantage of simplicity, since nothing need be computed at
run-time. They are also useful when observations are not available.

In this paper we focus mostly on closed loop control. We do discuss one research topic in which open
loop policies are still being explored – optimal study schedules to exploit the Spacing Effect of Practice
– in Section V-G.1.

E. Tractability
POMDPs are an elegant and powerful probabilistic framework to handle many sorts of control problems.

The main difficulty encountered in using them is computational tractability in both the time and space
sense.

The exact-solution value iteration algorithm of POMDPs alluded to above takes time O(|S|2|A||O|T ),
which is doubly exponential in the time horizon. However, using more recently developed approximate
methods (e.g., point-based methods), the exponential dependency on time can be reduced to be linear.
(The exponential dependency on number of observations still remains.) Another difficult challenge is the
size of the state space, which can easily become very large, as we will describe.

IV. TEACHING AS A POMDP: A SIMPLE EXAMPLE

Here we present a simple example of how teaching can be formulated as a POMDP. While the teaching
scenario may seem simplistic, it is fundamentally very similar to how acquisition of cognitive skills is
modeled in cognitive tutoring systems (see Section VII). Suppose that a teacher is charged with teaching
a student some skill. The student’s knowledge of the skill is assumed to be binary (see Figure 2), i.e,
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Fig. 2. The learning model of the Simple Example in Section IV.

it is either “learned” or “unlearned,” as in [23]. The teacher can perform only one of three actions at
each time-step: he/she can teach, meaning that the teacher attempts to transmit knowledge of the skill
to the student without eliciting any feedback from the learner; he/she can query the student’s knowledge
by asking him/her to demonstrate the skill; and the teacher can stop the teaching session, after which
no further teach or query actions can be performed. When the teacher teaches, the student’s state may
transition with probability p from the unlearned to the learned state. If the skill is already learned, then
it will always stay learned, i.e., there is no “forgetting.” When the teacher queries, the student’s state is
not affected, but the student will attempt to demonstrate the skill to the teacher, and the demonstration
will either be correct or incorrect. If the skill is learned, then with probability 1 the student demonstrates
the skill correctly. If the skill is unlearned, then the demonstration is correct with probability g (the “g”
is for “guessing” in some contexts).

Associated with the teach and query actions are fixed costs – we assume negative rewards rt and rq,
respectively. If the teacher stops and the student’s knowledge state was learned, then there is a positive
reward of rs; otherwise, the reward for stopping is 0. For an example from daily life, the costs might
consist of both the time that the teacher and student must invest, as well as any monetary costs, e.g., salary,
teaching supplies, etc. Note the form that “querying” can play in modern education systems: standardized
tests, for example, may retrieve valuable information about students’ knowledge, but they also interrupt
normal school instruction and hence incur a cost.

The question now is to determine what actions the teacher should take, and when. Forming such a set
of decision rules is equivalent to computing a policy π for the teacher. In particular, we are interested in
devising an optimal policy, i.e., a policy that maximizes V (π) from Equation 1.

A. POMDP Formulation
The POMDP framework provides exactly the machinery necessary to find the optimal teaching policy

for the above example. Let us call the unlearned and learned states u and l, respectively. Then, the entire
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POMDP formulation is as follows:

S = {u, l}
O = {correct, incorrect}
A = {teach, query, stop}

R(u, teach) = rt

R(l, teach) = rt

R(u, query) = rq

R(l, query) = rq

R(u, stop) = 0

R(l, stop) = rs

P (st+1 | st, At = teach) = as shown in Figure 2

P (st+1 | st, At = query) = 1 if st+1 = st;

0 otherwise

P (st+1 | st, At = stop) = 1 if st+1 = st;

0 otherwise

P (ot | st, At = teach) = 1 if ot = correct;

0 otherwise

P (ot | st, At = query) = as shown in Figure 2

P (ot | st, At = stop) = 1 if ot = correct;

0 otherwise

T = ∞
γ = 0.99

The particular parameter values we used were: rt = −1, rq = −0.5, and rs = 10, p = 0.2, and g = 0.1.
Note that, in our formulation above, the observation probabilities under the teach and stop actions are
constant with respect to the state; the teacher always receives a “correct” observation and hence receives
no information about the student’s underlying state. Only when the teacher executes the query action does
he/she receive meaningful information about the state.

B. Optimal Policy
Standard POMDP solution methods such as value iteration (see [22] for a detailed description) can be

used to find the optimal policy. Value iteration computes V ∗(bt), the expected long-term sum of rewards
given the optimal policy π∗ (see Equation 1) starting at time t. A plot of V ∗ and the associated optimal
action for each belief bt is shown in Figure 3 for t = 1. The x-axis represents P (St = l).

As shown in the figure, when the teacher’s estimate of the probability that the student has learned the
skill is low (below about 0.35, in this case), then the optimal action is to teach. When the estimated
probability of having learned the skill is above around 0.83, then the optimal action is to stop teaching
since the student has probably already mastered the skill. In the remaining (middle) probability region,
the teacher is very uncertain about whether the student is in state u or l. Teaching when the student is
already in l would be a costly waste of time, but stopping when the student is still in state u would forgo
the reward rs. Since querying reduces uncertainty of the student’s state and is less costly than teaching
in our example, the optimal action for the middle region is to query.

This concludes our simple example of posing teaching as a POMDP. In the next sections we examine
three fundamental teaching scenarios and how POMDPs can be used to find the optimal teaching policy
for them. While they may seem simplistic, we believe they can model a large variety of teaching situations.
The three scenarios we consider are m independent items, items with dependencies, and cognitive skill
learning.
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Fig. 3. Optimal policy π∗ and optimal value function V ∗(bt) for the example teaching scenario of Section IV.

V. TEACHING m INDEPENDENT ITEMS

One of the fundamental scenarios in teaching is that there are m independent “items” to be taught.
Such items could consist of vocabulary words, basic facts, or, as we will discuss later, cognitive skills.
Given the action At and state Si,t of item i at time t, the state Si,t+1 of item i at time t+1 is independent
of Sj,t for all items j 6= i. Knowing each item at the end of the teaching session is associated with some
reward. The goal in the m independent items problem is to compute an optimal policy of which item
to teach and how to teach it (if there are multiple alternative teaching methods) at each time t so as to
maximize the expected discounted reward.

In our treatment of the m independent items problem, we assume that the teacher has a model of how
the student learns. This assumption is important because it allows the teaching problem to be tackled using
a POMDP in the first place. Other approaches are conceivable; for instance, one might forgo modeling
the learning processes of the student and instead develop a policy which directly optimizes the student’s
performance on a test. In this paper, however, we assume that a learning model is available. We suggest
a possible method of creating such models in Section VIII.

There are two main learning models in the literature that have been used for the m independent
items problem: the single-operator model and the all-or-nothing model. As we will show, under certain
conditions, the former is a special case of the latter, and the latter can be formulated directly as a POMDP.
We discuss both these models below. Then, we describe the state-of-the-art of the specific kinds of m
independent items problems whose optimal policies can be computed using POMDPs.

A. Single-operator model
One of the oldest learning models in the optimal teaching machine literature is the single-operator

model [24]. The context is that, at each time step, the learning item in question is both taught and queried
simultaneously. Under the model, the probability of receiving an incorrect response decreases by a constant
factor at each time step. Hence, if the item is taught at time t, then the probability of error at time t+ 1
is

P (et+1) = αP (et) (3)

where α ∈ [0, 1]. Since Equation 3 is a linear difference equation, the model is sometimes also called the
linear model.
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Fig. 4. The one-element model (OEM), also known as the all-or-nothing model.

The only parameters of this model are the decay rate of error, α, and the initial error probability P (e0),
which is 1 minus the probability of a correct guess. Converting from a recursive to a closed-form solution,

P (et) = αtP (e0)

The probability of correct response is then

P (ct) = 1− P (et) = 1− αtP (e0)

Two features of the linear model are noteworthy: First, the probability of incorrect response decays
exponentially with teaching events. Second, the probability of correct/incorrect response at trial t is
independent of any prior observations.

B. All-or-nothing model
Another popular learning model is the all-or-nothing model [23]. In contrast to the single-operator

model, which is stateless, the all-or-nothing model is a finite-state machine with two states: unlearned
u and learned l. When an item is in the unlearned state and the student’s knowledge is queried by the
teacher, then the learner can only guess the correct response with probability g. If, however, the learner
is in the learned state for this item, then with probability 1 he/she responds correctly. The probability
of transitioning from state u to state l is p. The model can also be formulated more generally to allow
for “slipping” – the probability s that an item will be incorrectly recalled even when it is learned –
and “forgetting” – the probability of transitioning from learned to unlearned. Usually, forgetting is only
possible when the item is not taught at a specific time step. The complete model is depicted in Figure 4.
Note the strong similarity to the POMDP example we presented in Figure 2 – though the all-or-nothing
model predated the discovery of POMDPs, the all-or-nothing model is directly amenable to optimal policy
computation using POMDPs.

Like the single-operator (linear) model, the all-or-nothing model also exhibits an exponential drop-off
in probability of incorrect response. This can be readily seen from the fact that, assuming there is no
slipping, an incorrect response can occur only if the item is still in state u at time t. Hence, the probability
of incorrect response under the all-or-nothing model is

P (et) = P (Ot = incorrect)
= P (Ot = incorrect, St = l) + P (Ot = incorrect, St = u)

= P (St = u)P (Ot = incorrect | St = u)

= (1− p)t(1− g)
= αtP (e0)
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Hence, if we set the decay rate of the single-operator model α equal to 1 minus the learning rate p, then the
two models, in the absence of any observations, are equivalent. However, while the marginal distributions
P (et) are the same for both models, the joint distributions of states and observations over t = 1, . . . , T
are very different. This results in different predictions of various learning statistics, including the average
number of correct responses between successive errors, the average length of a run of incorrect responses,
and more.

C. Multi-state Models
A natural extension to the all-or-nothing model is to add additional states. Empirically it was found [10],

[25] that adding a state to represent “transient knowledge” (i.e., that can be forgotten) may fit experimental
data more accurately than the two-state, all-or-nothing model. In a vocabulary teaching machine, [10] split
the “learned” state l into two different states – “transient” t and “permanent” p. An item that is permanently
learned is never forgotten, but an item that is only transiently learned may be forgotten.

D. Formulation as a POMDP
The above models deal with only one item at a time, but formulating the m independent items problem

as a POMDP is a straightforward extension. Here we assume the all-or-nothing model as the model
of learning. Given a set of possible teaching methods (independent of the particular item being taught)
T = {teachMethod1, teachMethod2, . . .} and a set of items M = {1, . . . ,m}, then the set of actions
A = T ×M. A reward is given each time an item transitions from the unlearned to the learned state,
and a negative reward is given for transitioning from learned to unlearned.

The most troublesome aspect of the POMDP for this problem is the state space. Using the simplest
state representation, the number of states necessary to model the m independent items problem is 2m

because each item can be either learned or unlearned, and there are m such items. For standard value
iteration solution methods, the probability of all possible joint states must be considered when calculating
the optimal policy. Even though the transition function P (st+1 | at, st) for the joint state at time t to the
joint state at time t + 1 factorizes into the product of the marginal distributions for each item, it is an
open question how this fact can be exploited to reduce the computation needed to find the optimal policy.

The empirical effect of the exponential state-space representation is shown in the table below, which
contains execution times of policy computation for m = 1, . . . , 5 learning items on a 2.8 GHz Intel
Pentium IV.

m Time (sec)
1 .06
2 .10
3 .16
4 372.34
5 ?

For m = 5, the memory requirements exceeded 32GB, rendering computation of the optimal policy
effectively impossible on our machine.

To overcome the state space problem, POMDP solution methods that do not rely on value iteration
and hence are not dependent on the state size, such as policy iteration (see Section X), may be useful. In
addition, there are some important special cases of the m independent items problem that are tractable,
which we discuss below.

E. Homogeneous Items
In the undiscounted, finite-horizon case where the rewards associated with learning each item are equal;

where the transition and emission probabilities p, g, and s are equal across all items; and where there is
no forgetting (f = 0), it can be shown [26] that the optimal policy under the all-or-nothing model is to
teach the item whose current probability of being learned is a minimum over all items.
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F. Undiscounted, infinite horizon
When a discount factor γ < 1 is imposed, or when the horizon length is finite, then Si,t and Sj,t for two

items i 6= j cannot be truly independent: If item i is in the learned state, then that is evidence that time
was spent teaching i; therefore, less time must have been spent teaching j, and the posterior probability
of l for item j must necessarily be lower than if item i were unlearned. However, if the time horizon
were infinite and no discount were imposed, then this dependency would be removed.

This intuition was exploited in [6] to prove that the optimal policy under the all-or-nothing model for
teaching a set of m items can be decoupled into the optimal policies for teaching each item individually
when γ = 1 and T = ∞. At a high level, each item is taught until teaching it is no longer worth the
cost. The item is then set aside forever (i.e., the “stop” action for that item is executed), and the teacher
moves on to the next item, which can be selected arbitrarily. Their proof assumes f = 0, but learning and
emission probabilities can differ from item to item.

When the assumptions of infinite horizon and no discounting are justified, this result is very useful
because it allows the POMDP of all m items to be decomposed into m component POMDPs. This reduces
the computational complexity immensely.

G. Open Loop Case
The m independent items problem is one of the few domains where open loop teaching may be feasible.

Since items are assumed to have no knowledge dependence structure, the teaching machine can reasonably
“cycle through” the items (in some particular order) without concern for whether the dependencies of one
item might have already been fulfilled by the learning states of others. The most general formulation of m
independent item optimal teaching in open loop can be easily formulated as a POMDP. The observation
space O is set to a single “null” observation which is always observed, regardless of learning state,
and hence provides no information. Assuming there is only one method of teaching, then the action
space is A = {1, . . . ,m}, i.e., one action for each item. The all-or-nothing model, which gives rise to
a state with 2m possible values as described previously, is a natural if cumbersome representation in the
POMDP. As explained before, when observations are ignored, the all-or-nothing model is equivalent to
the single-operator model.

In its most general formulation, in which any item may be taught at any time, optimal policy computation
for an open loop teacher is less difficult than closed loop policy computation since the observation space is
of size 1, but still exponential in the number of time steps. One special case that can be solved analytically
is when the items are assumed to be divided into equally sized “stacks” of size k, such that the items in
the first stack are taught in round-robin order a fixed number of times n; the first stack is then set aside,
the next stack is processed, and so on. Suppes [5] showed that, under a single-operator model including
both learning and forgetting, the optimal stack size k is either m (i.e., the stack equals the entire set of
items) or 1 (i.e., each stack is only 1 item, so that each item is taught n times in a row and then set aside)
depending on whether the learning rate is higher than the forgetting rate, or vice-versa, respectively.

1) The Spacing Effect: Open loop optimal teaching is still an active field of research in psychology [27],
especially in connection with the Spacing Effect [28], whereby the optimal length of time between multiple
study sessions may vary depending on when testing will occur. Cepeda, et al [27] examined the question of
the ideal inter-study time when the time until testing was longer than ever previously investigated. In their
study, the gap between the second study session and the test (the “retention interval”) was about 6 months.
They found that lengthening the inter-study session gap initially causes the expected test performance to
increase; after it reaches a maximum value, it then decays. Their study is the first to show that a study
gap of greater than 1 day is optimal for a memory task of foreign language vocabulary, facts, and visual
object names.

H. How Good is Optimal?
Given that, for large m, computing the optimal policy using standard POMDP methods can be in-

tractable, it is important to assess how much of a gain an optimal policy can deliver compared to reasonable
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Fig. 5. An example of knowledge dependencies for the topic of programming recursion.

heuristic policies. We thus performed an experiment for a learning task in which m was small enough
(we set m = 4) to allow optimal policy computation even with an exponentially large state space. We
compared performance of the optimal policy (Optimal) to two reasonable alternatives: selecting the item
whose current probability of being learned was minimal across all items (MinProb), and a simple round-
robin selection (RoundRobin). The guessing and slipping parameters were fixed across all items: g = 0.5,
s = 0.1. The learning and forgetting rates for the items were drawn uniformly at random from [0, 1];
hence, the items were non-homogeneous. We computed a non-stationary policy whose horizon length was
the same as the simulation itself (40 time steps). No discount was imposed (γ = 1). One unit of reward
was issued for each item that was in the learned state when the simulation ended. Each simulation was
40 time steps, and results were averaged over 50 simulations. The results are as follows (“return” is the
sum of discounted rewards):

Method Mean Return (Std)
Optimal 2.40 (0.57)
MinProb 1.46 (0.58)
RoundRobin 1.48 (0.68)

The difference between the optimal policy and a naive round robin policy was substantial – the optimal
policy was nearly 60% better. The heuristic of selecting the item with minimum current probability turned
out to be just as bad as round-robin. While this simulation is simplistic, it already suggests that optimal
decision-making can result in real learning gains in teaching domains.

VI. DEPENDENT ITEMS

The m independent items scenario is useful for such situations as vocabulary learning, but it clearly
fails to model many other learning tasks. Consider a student of introductory computer programming, for
example, who is about to learn about recursion. A student must first know both what a function is, as
well as an if/then statement (to distinguish between the base case and the recursive call), before he/she
can master recursion itself. If we let item 1 be if/then statements, item 2 be functions, and item 3 be
recursion, then the set of feasible knowledge states across all three items might be represented by Figure
5. Note that, due to the dependency, the number of states (5) is substantially less than the 2m = 23 = 8
that would be possible were the items independent.

The recursion example above is an example of a “hard” (as opposed to “soft”) dependency be-
cause learning about recursion was assumed to be impossible if the student had not already mastered
both the pre-requisites. This is a special case, however. More generally, a learning depedency exists if
P (si,t+1 | si,t, at, sj,t) 6= P (si,t+1 | si,t, at) for some item j 6= i.
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Fig. 6. State dynamics model of the Vygotsky Problem, in which the m learning items are completely dependent in the form of a chain.

A. Dependency Formulation under POMDPs
Defining a POMDP for learning items becomes more tedious as dependencies among items are in-

troduced. Whereas for m independent items the transition probabilities between the 2m states could be
computed simply as the product of the marginals, with dependencies, more transition probabilities must
potentially be somehow estimated from prior data. On the other hand, in the case of “hard” dependencies
illustrated above, dependencies can sometimes also result in fewer states. To the extent that reducing the
size of the state space reduces the computational cost of finding the optimal policy, it may be advantageous
to exploit knowledge dependencies that exist in the target learning domain.

The optimal teacher of m dependent items is faced with a challenge not encountered when the items
were independent. Whenever a knowledge dependency exists such that item i is required before item j
can be learned, the teacher must first ascertain that the student knows i before attempting to teach j.
An optimal policy, as computed with various standard POMDP solution methods, will implicitly query
the student’s state as needed to obtain high certainty that i has been mastered. We illustrate this with an
example below.

B. The Vygotsky Problem
As an example of the most extreme set of dependencies among m items, consider the model depicted

in Figure 6. The student’s knowledge is modeled to be in a state i ∈ M, where M = {1, . . . ,m} is
an ordered set of states such that higher numbered states imply greater mastery of the subject matter.
These items might, for example, correspond to a sequence of successively more difficult math problems,
or perhaps even to the individual sentences of a lecture, each of which can be “learned” or “unlearned”
by the end of the talk. The “Vygotsky Teaching Problem” (as we call it – he did not pose this problem
himself) is to bring the student from his/her current state to the highest level possible within the given
time length. A reward of 1 unit is given whenever the student advances from i to i+ 1. We assume that
the state cannot regress, and that the state can advance by at most 1 level in each time step.

The action space is the set A = {1, . . . ,m}. Teaching with action i is assumed to comprise two actions:
first, a query at level i to see if the student has mastered that level; then, an attempt to advance the student
to level i. If the level taught i is higher than the student’s current level j, then the student can only guess
the answer to the question, and the probability of correct guess is g. Otherwise (i ≤ j), the student
knows the answer and will respond correctly (with probability 1 − s) unless he/she “slips” (probability
s). Advancement to level i can occur (with probability p) only if the student is currently at level i − 1;
otherwise, the transition probability is 0.

This notion of a critical zone within which learning occurs (only at the next higher level) is somewhat
reminiscent of Vygotsky’s Zone of Proximal Development (ZPD) [29]: The ZPD represents the range
of difficulty of problems that a student can solve with or without an instructor’s assistance. What the
student can accomplish independently defines the lower end of the ZPD, whereas what the student can
achieve with the aid of an instructor defines the upper end. According to Vygotsky, the role of education,
then, is to provide learning experiences within a student’s ZPD at each stage of his/her development. In
accordance with this notion, we call the optimal teaching problem of this section the Vygotsky Problem.

Optimal Policy: In this problem, the m levels give rise to only m states; this is a marked contrast to
m items which can each be in one of two possible states, which gives rise to 2m states. We used value
iteration to compute the optimal policy for the simplest case of the Vygotsky problem: g = 0, s = 0, p = 1,



14

and the student’s initial state is drawn uniformly at random from {1, . . . ,m}. The optimal teacher exhibits
the following two-staged behavior:

1) The teacher locates the student’s current state using approximately “binary search”;
2) Once the teacher has identified the student’s current state i (by finding the highest level at which

the observation was “correct”), it proceeds to teach at level i + 1 until another correct response is
emitted. This implies the student is now at state i + 1, and so the teacher then begins teaching at
level i + 2, and so on. This process repeats until either the time has run out or the student is at
level m.

What is noteworthy from this example is that nothing in the model explicitly suggested that the teacher
should first search for the student’s current state, let alone perform the optimal search algorithm (binary
search). It simply emerged from the model and the reward structure that this behavior was optimal. While
the policy for this particular example might have easily been developed by hand, the point of principled
frameworks such as POMDPs is that it didn’t have to be – the inference procedure deduces the optimal
behavior automatically.

VII. COGNITIVE SKILL LEARNING

Up to now, in our discussion of optimal teaching we have treated knowledge as a set of facts (items)
which can be either known or unknown. What has been missing is how learning a set of items might
enable a person to do something, such as prove a geometry theorem or solve an algebra problem. Cognitive
theories such as the Adaptive Character of Thought frameworks (e.g., [11], [12]) help to fill this gap by
defining cognitive skills as the collection of independent production rules. Arguably, the most influential
automated teaching systems [13] to date have been inspired by ACT-R. As we will show, cognitive skill
learning under production systems such as ACT-R reduces to the learning of m independent items.

ACT-R was developed by John Anderson [12] as the culmination of several earlier models of cognition
(e.g., ACT, ACTE, ACT* [30]). It models the memory and decision-making processes of human cognition
as a production rule system. In such systems, a given task is decomposed into a sequence of subgoals
using production rules. Production rules are if/then statements that contain a pre-condition, or required
state of working memory for the rule to fire; as well as a consequence, or action associated with that rule
firing.

The ACT family of models of cognition has inspired probably the most influential automated teaching
machines to date, including the Geometry Tutor [13], the LISP Tutor [13], and Andes [31], a physics
tutor. These systems are commonly referred to as “cognitive tutors”. By 2009, the array of cognitive
mathematics tutors had been deployed more widely than perhaps any other teaching machine, in over
2600 schools among 500,000 students [32]. The educational gains of these tutors is well established, with
mean score improvement over students without automated tutoring of at least one standard deviation [2]. It
is thus crucial to understand precisely how ACT-R and the cognitive tutoring systems themselves operate.

Unfortunately, obtaining a full grasp of ACT-R and the cognitive tutoring systems is problematic: the
ACT-R literature, which is distributed across a vast collection of journal articles and monographs, is
marred by a lack of specificity and consistency. Important parts of the definition vary from source to
source, with no explanation as to why the change was made, or even an acknowledgement that the change
had occurred at all. (An example of this is the decay rate of a learning event for estimating its effect
on activation.) Mathematically precise terminology such as “log odds of X” (for some event X) is used
informally, without any proof that the associated quantity equals what it should. However, ACT-R is
also ingenious in how it decomposes complex cognitive skills (e.g., proving geometry theorems) into the
collection of individual elements (“production rules”) that can be learned independently.

Below we summarize the main contributions of the ACT-R model as it pertains to automated tutoring
systems. As a concrete anchor point for how ACT-R is used in practice, we will examine a demonstration
version of the Fraction Tutor [33]. While this tutoring system is simplistic, the fact that it is open source
and hence its production rules can be inspected directly offers an invaluable opportunity to understand
how a cognitive tutor is actually implemented in practice.
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A. Declarative versus Procedural Knowledge
Under ACT-R, human knowledge is divided into declarative and procedural knowledge. Declarative

knowledge comprises many knowledge chunks, which are analogous to variables in a computer program.
Variables can take on values, but they do not directly perform any action. Examples of chunks include
such statements as x = 0 (for an algebra problem), AB ⊥ BC (in a geometry proof), and “the current
goal is to write a recursive function that calculates the factorial of x.” The full ACT-R theory models the
strength of memory of knowledge chunks using “activation” [11], [12], [30], which supposedly predicts
both latency and probability of recall of that chunk. Recent work [34] applied this theory to the “m
independent items” problem by attempting to maximize gain in chunk activation using greedy one-step
look-ahead for item selection.

Procedural knowledge consists of the set of production rules that are known by the student. Production
rules are if/then statements that specify how a particular goal can be achieved when a specified pre-
condition is met. Two typical production rules might be, “If the goal is to prove triangle similarity, then
prove that any two pairs of angles are congruent”, and “If the goal is to solve for x AND the equation
x+ a = c is currently in declarative memory, then subtract a from both sides.”

B. Solving Problems under ACT-R
Under ACT-R, the cognitive skills necessary to solve math problems, program a computer, understand

physics, etc., are modeled as nothing more than a collection of production rules that the student must
master. The essence of cognitive tutors is to help students learn these rules by providing them with practice
opportunities: the tutor selects new problems containing production rules the student has presumably not
yet mastered. The system designer of the cognitive tutor must define the set of important production rules
a priori.

When the student tackles a specific problem within the tutor, he/she implicitly fires production rules,
thereby affecting state of declarative memory. These changes to working memory may then cause another
production rule to fire, and so on, until the problem is solved. The “snapshots” of the current set of
knowledge chunks in declarative memory correspond to the state of the student, represented by nodes in
a solution graph (described below). The production rules that fire and thereby alter the state of declarative
memory are the edges between the nodes.

C. Example: Fraction Tutor
To make the ideas described above more concrete, let us consider the setting of teaching students to

manipulate fractions. Suppose the task is to add two fractions with possibly differing denominators. The
student must first find a common denominator for the two fractions, convert the numerators, add them,
and then reduce the combined fraction to the lowest possible denominator. This is exactly the task that is
taught by the Fraction tutor, whose graphical interface is shown in Figure 7, by providing the student with
opportunities to practice this skill. The system designer of the Fraction Tutor must compose a list of all
possible ways in which the problem could be tackled by the student, and then model each method using
appropriate production rules. In the fraction addition example, a student could reasonably either find the
least common denominator (LCD) of the two fractions, or she could also choose to simply multiply the
two denominators. Each of these two actions is modeled as a different production rule:

P1 : IF the goal is to add two fractions, THEN set as a subgoal to find the LCD.
P2 : IF the goal is to add two fractions, THEN set as a subgoal to multiply the two denominators.

The designer might also wish to model a “buggy” strategy such as the erroneous step of adding the two
numerators and denominators separately. Modeling this mistake as a buggy production will allow the
cognitive tutor to catch this error and inform the student of his/her mistake.
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Fig. 7. Graphical user interface of the Fraction Tutor. At the current time step, the student has correctly computed the least common
denominator of the two fractions and entered this denominator into the appropriate textbox. Since this input is correct, it is shown in green.

D. Model Tracing
The set of production rules defined by the system designer induces a solution graph (see Figure 8)

of all possible solutions to the given problem posed to the student (in fact, the figure includes only a
few representative paths). For small sets of production rules, this graph can be computed automatically
by theorem proving software. At each point in time while using the tutor, a student may be at any node
within this graph. To keep track of the student’s current state, the cognitive tutor makes use of observations,
described below:

In the Fraction Tutor, not only can a production rule set new subgoals and add chunks to memory, but
it can also trigger actions by the student which are then observed by the teacher. In this way, production
rules define a generative model of how observations originate. For instance, one production rule used in
the Fraction Tutor is of the following form:

P3 : IF the goal is to add fractions AND they have a common denominator d AND their component
numerators are n1 and n2, THEN fill in the numerator part of the answer textbox with value (n1+n2).

Another production rule might be similar except that the observation would be to write the common
denominator d in the answer textbox instead. Given the actual student action observed by the cognitive
tutor at the current time step, the tutor can infer which production rule must have fired. The process
of updating one’s belief about which productions fired and which state the student currently inhabits is
known as model tracing. In the language of POMDPs, it corresponds to a simple belief update.

E. Hints
The Fraction Tutor as we have described it thus far only monitors the student’s progress. Upon request

from the student, the tutor can also provide a hint. A hint can be attached to each production rule and
suggests a reasonable course of action from each node in the solution graph. For instance, at the start
state, the hint might be to “find the LCD of the two fractions.” In the Fraction Tutor, when multiple paths
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Fig. 8. Graph of possible states and paths to solution of the given fraction addition problem. Note that this graph is not complete as
it does not allow for all possible orderings of production rules. The current state of the student whose progress is shown in Figure 7 is
automatically deduced by the tutor and is shown in bold in the figure above. Note that the P1, P2, and “start state” were added to the graph
and correspond to the productions listed in Section VII-C.

emerge from the current state, the hint to be given is decided based on the “saliency” (a preference value
set by the system designer) of each production rule. Recent work has experimented with fully observable
Markov Decision Processes to present “optimal hints” to the user based on problem-solving data collected
from other students [16], [17].

F. Learning and Knowledge Tracing
Cognitive tutors assume that a student acquires knowledge of a particular production rule through

practice. A production rule can only be practiced at those points in the solution graph of a tutoring problem
that fulfill the pre-condition of that production rule. When the declarative memory state fulfills the pre-
condition (“If”-part) of a particular production rule, then that production is said to have an opportunity to
fire. At each firing opportunity, the student may learn that production (with some probability) if it is not
learned already. If it was already learned, then the student may fire it correctly with some probability 1−s,
where s is a “slipping” parameter (with the same meaning as in our “m independent items” discussion).
If it was not learned, then with probability g the student may guess the response corresponding to that
production rule. The cognitive tutor keeps track of which productions are learned or not learned by the
student by monitoring the student’s observations in a process known as knowledge tracing.
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G. Reduction to m Independent Items
Cognitive tutors typically model the unlearned/learned state of each production rule using exactly the

same all-or-nothing model as we described in Section V [35]. Since ACT-R assumes that production rules
can be learned independently, teaching of cognitive skills effectively reduces to the m independent items
problem. This means that all of the existing literature on the m independent items problem, and all more
recently developed POMDP machinery for solving such problems, is relevant for cognitive tutors as well.

H. Selecting the Next Problem
In cognitive tutoring systems, after the student completes a tutoring problem, the tutor must select

another problem for the student to tackle. Some cognitive tutors have a fixed threshold for the minimum
probability that each production to be taught is in the learned state [35]. Hence, if some productions are
below this threshold, then a task should be selected in which the student can gain greater mastery of them.

From the literature, it is unclear how exactly this is performed in practice because important details
are left unresolved, and we must assume that heuristic methods are employed. However, one can envision
some reasonable strategies. For instance, the tutor might select the problem containing the highest number
of production rules whose knowledge by the student is assumed to be below some threshold. Since one
problem might be solvable using one of several alternative production rules, another factor to consider is
how likely a student is to choose a particular production when solving the next problem.

I. Formulation as a POMDP
The cognitive tutoring architecture, whereby a student learns a set of production rules which enable

him/her to progress through a sequence of declarative memory states from the starting state to the solution
(Figure 8), can be modeled as a POMDP. Doing so allows one to re-formulate both model tracing and
knowledge tracing as a probabilistic inference procedure. Several POMDP formulations are possible; we
sketch one below. For simplicity, we omit discussion of the Hint actions that cognitive tutors can execute.

For a given problem domain (e.g., geometry), let the 2m-dimensional state space representing the
learned/unlearned state of m productions be called P . Let D represent the declarative memory state.

In our POMDP formulation we define the state space S to be P ×D; hence, the state at any particular
time will be called (p, d). The reward will be defined so that, at the end of the time horizon, the reward is
equal to the number of productions that were learned. The action space A contains a Proceed and several
NextProblem actions, corresponding to the set of practice problems contained by the tutor. The Proceed
action simply waits for the student to perform some operation within the cognitive tutoring system, e.g.,
enter the numerator of a fraction into a textbox. Presumably, the tutor will invoke the Proceed action
many times as the student progresses from the starting point to the goal of each learning problem. The
NextProblem actions reset the declarative memory portion of the state (d) to match the starting condition of
some new tutoring problem; it does not affect p, i.e., which production rules are currently learned/unlearned
by the student. The observation space O consists of all possible inputs into the tutor’s user interface. It
would include all the possible inputs into the various fraction textboxes that might occur when the student
fires a particular production rule.

If the declarative memory state d corresponds to an opportunity to fire a production (i.e., that pro-
duction’s pre-condition is fulfilled), then when the tutor invokes the Proceed action, the student may
probabilistically change from production state p to p′, reflecting the fact that he/she has learned that
production. In the event the production fired (by guessing, if the production was not learned, or by not
slipping, if the production was learned), then the declarative memory state may also change from d to d′.

The tutor only sees the observations, in the form of inputs into the tutor’s graphical user interface. In
the Fraction Tutor, these inputs unambiguously specify the production rule that fired. However, under the
POMDP formulation this restriction is not necessary. Based on the observations it receives, the teaching
agent can infer information about the state (p, d) using the belief update step described in Section III.
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Since p encompasses the student’s knowledge of productions, and d specifies the student’s progress along
the solution graph, this POMDP formulation allows both tasks of knowledge tracing and model tracing,
which are vital to cognitive tutors, to be computed elegantly as a simple belief update using Equation 2.

Whether the optimal policy for the above POMDP formulation could be tractably computed in practice
remains to be investigated. What we wish to point out in this section is that the tasks of knowledge
tracing, model tracing, and next-problem selection – which are typically handled separately, and often
heuristically, in cognitive tutors – can be integrated in one principled framework. By doing so, and by
realizing that the all-or-nothing model of production rule knowledge [35] reduces the teaching problem to
the “m independent items” scenarios, one gains access to a wide range of optimization techniques from
a rich literature (e.g., stochastic optimal control, reinforcement learning, machine learning) that can be
applied in automated teaching domains.

This concludes our treatment of ACT-R, cognitive tutors, and the fundamental teaching scenarios we
wished to approach using POMDPs. In the next sections we discuss what we believe to be key issues on
the frontier of optimal teaching machines.

VIII. BETTER LEARNING MODELS

Thus far we have assumed that a model of the learner already exists – both its structure (number of
states) and parameters. The necessity of a model is argubably a weakness of the POMDP approach, but
there are techniques from the machine learning literature which mitigate the modeling issue. Perhaps the
most common learner model used in the automated teaching literature is the all-or-nothing model. While
elegant in its simplicity, it does not model well-known psychological phenomena such as the Spacing
Effect. In general, it is important to have methods for developing and tuning new models.

Assuming a sufficiently large dataset of student observation data is available – e.g., correct/incorrect
responses to specific item queries – one could employ Hidden Markov Models to infer the most likely
transition and observation probabilities of a finite state model (for a specified fixed number of states
k) using the well-known Baum-Welch algorithm. The learned states will not necessarily have intuitive
interpretations, but for use in optimal policy planning this need not be a concern.

A. User Dependent Models
It is conceivable that the parameters of a learning model might vary substantially from student to

student. For instance, the learning probability p for a particular item might vary between the faster- and
slower-learning students within a class. In such cases, it may be beneficial for the teaching machine to
infer the learning model while teaching.

One method of doing so is to “fold” the parameters of the learning model into the state space of the
POMDP. Most simply, this can be performed by discretizing the parameter space into a finite set of values
C, and then forming a new state space S ′ as the Cartesian product S × C. The resultant POMDP will
then simultaneously explore the space of parameters of the model, and attempt to exploit the knowledge
of the model it has already received, in order to maximize the expected long-term reward.

An alternative approach is to treat the parameters of the model as being drawn from an appropriate
Bayesian conjugate distribution, such as the Beta or Dirichlet distribution. Posterior probability estimates
of the parameter estimates can be computed at each time step based on the counts of observations received
and transitions that occur during the agent-environment interaction. As with the “discretized” approach to
parameter exploration described above, this method forms a new state space S ′ as the Cartesian product
of the original state and the set of all possible counts of observations and/or transitions. What results is
a so-called Bayes-Adaptive POMDP [36]. While the new state space is in general enormous, techniques
exist to weigh off complexity of the policy computation process with performance of the resulting policy.
A simplified version of this approach for optimal teaching was employed even before the advent of the
original POMDP formulation [7].
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Finally, if one can define a few “protoypical” student models including their parameter values, then a
recently developed method [20] to simultaneously infer the correct “student type” and achieve (approxi-
mately) optimal learning gains is to perform policy switching: Using the observations received so far, one
can derive posterior probability estimates that the student matches each prototype. The optimal action can
then be sampled, according to those probabilities, from the optimal actions for each prototypical student
policy.

IX. INTEGRATING MACHINE PERCEPTION

The models of learning and teaching we have discussed thus far have all but ignored the issue of
perception – the only input the teacher receives from the student is a correct or incorrect response (for the
all-or-nothing model) or at most a few keystrokes and mouse clicks necessary to enter the answer (for the
ACT-R-based cognitive tutors). A human tutor, in contrast, is continuously bombarded with much richer
sensor inputs at a much shorter temporal scale and a higher rate of throughput. Relatively little research
on automated teaching has examined how to perceive important information about the student not directly
related to the answer of the current question, and even less has studied how to use it for control.

As a simple example of why perception is important to teaching, we examine one of the few papers in
the cognitive tutoring literature that employed advanced sensors. Gluck, et al [37] augmented an Algebra
Tutor with an eye-gaze tracker in order to detect whether particular kinds of errors in problem solving
could be predicted from the student’s eye gaze. For instance, suppose the student had omitted intermediary
steps in his/her calculation of the final answer to an algebra word problem displayed on the screen. If
the student erroneously enters the final result into a textbox intended for an intermediary result, then the
tutor might think the student had failed to grasp the problem, which would be an incorrect conclusion.
However, if the tutor had noticed that the student’s eye gaze was fixated on parts of the problem text
relevant for the final answer, then it might infer that the student had simply entered his/her response into
the wrong box. Being able to distinguish between simple carelessness and a real lack of understanding is
important.

Gluck, et al also used the eye gaze tracker to study whether students fixated more on the textual
description of the problem, or just on the displayed algebraic equation. They then correlated the more
prominent fixation location with probability of solving the problem correctly. They found that focusing on
the expression alone was associated with lower error probability than focusing on the problem text alone.
Regardless of the particular findings of their study, their work underlines two important lessons about
machine perception in teaching: First, good sensors can be used to disambiguate two possible causes of
the same observation: Was the student sloppy, or did he lack understanding? Did the student leave the
room, or is he still working on the problem? Second, sensors, can be used pro-actively to steer students
out of undesirable states. If the student’s gaze is focused too long on an irrelevant part of the screen, then
the student might have “zoned out,” and it would be prudent to call this to the student’s attention.

A. The Perceptual Vygotsky Problem
While machine perception technology has produced sophisticated sensors in recent years, including eye-

gaze trackers [37], facial expression recognition systems [38], [39], and pressure-based posture sensors
[40], it is unclear how to use this information in practice. Here we discuss the problem of perceptual
teaching machines in the context of the Vygotsky Problem from Section VI-B. Suppose we augmented the
Vygotsky teacher with a machine perception capability such as facial expression recognition that triggers
sensor events many times per second. How could this information be integrated into the Vygotsky teaching
machine, whose intrinsic teaching time scale might be much longer? While this is an open problem, we
suggest three alternative approaches that may be useful in real perceptual teaching machines. We call
them the Aggregated, Time-driven, and Hierarchical approaches; we discuss each below.
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1) Aggregated: One simple approach is to retain the same time scale as was used by the teacher without
machine perception. The teacher may be either event driven, if for instance the teacher waits indefinitely
for the student to issue some response while teaching, or time driven, in which case teaching events are
always terminated after a fixed duration. In either case, in the aggregated approach, some sufficient statistic
of the sensor information, which was presumably received multiple times during a single teaching action,
is computed. This statistic is then received by the teacher as an additional dimension of the observation
vector.

This architecture does not allow the sensors to interrupt a teaching action. This means, for instance, that
even if a student’s facial expression clearly indicated at the start of teaching that the student was confused,
the confused expression can only be handled at the end of the teaching event (when the observation is
issued). Even this limited form of sensing may be better than nothing, however, and requires little change to
the existing architecture. Another use of the Aggregated approach is to determine a good prior distribution
over the student’s learning state: If the facial analysis software indicates, for instance, that the student is
very young, then this may suggest the initial level of the student should be low.

2) Time driven: For the Time Driven approach, we assume that the original Vygotsky teaching actions
were time driven (or could be converted to be so), and that the time scale of the sensors is shorter than
that of teaching. In this approach, the states and actions of the Vygotsky teacher are “sub-divided” so
that the time scales of the teacher and the sensors exactly match. If teaching previously advanced the
student by 1 level in 10 seconds, and the sensors operate 5 times per second, then the adapted teaching
model would advance the student by 0.02 levels every 0.2 seconds so that the teaching and sensor events
are synchronized. The state and action spaces would need to be both expanded by a factor of 50. Each
individual sensor reading can now be processed in the form of an observation, and computing a sufficient
statistic is not necessary. Compared to the Aggregated approach, the Time Driven model may be more
responsive since there is no waiting until the end of the teaching action to handle the sensor input.
However, scaling down the time scale means the POMDP time horizon becomes longer for the same
wall-clock time, and the state space is increased as well. This may pose a tractability problem.

3) Hierarchical: The hierarchical approach attempts to retain the high responsiveness of the Time
Driven architecture while reducing the complexity of policy computation, at the expense of full optimality.
As in the Time Driven approach, the time scale of the teacher is adjusted to that of the sensor, and the state
space is expanded accordingly. But now, instead of modeling levels 1, 1.02, 1.04, . . . , 2, 2.02, . . . ,m with
a single “monolithic” POMDP, we divide the teaching problems into two tasks: the “high-level” teacher,
responsible for advancing the student from level 1 to 2, 2 to 3, etc.; and the “low-level” teacher, which
advances the student by exactly 1 level, divided into fine gradations (0, 0.02, 0.04, . . . , 1) in accordance
with the sensor’s intrinsic time scale.

From the standpoint of the high-level POMDP, each teaching action attempts to advance the student
from level i to level i + 1 by invoking the low-level POMDP as a “black box.” The low-level POMDP,
on the other hand, knows nothing of the different levels 1, 2, . . . ,m – it is myopic and knows only of the
fine grained levels necessary to advance the student by exactly one level.

This approach retains the responsiveness of the Time Driven method but sheds much of the complexity
since both the high-level and the low-level POMDPs are much smaller in both time horizon and state size
than the monolithic POMDP. The disdavantage is that, since the low-level POMDP knows nothing about
previous or future levels of the high-level POMDP, it cannot take all possible actions that the monolithic
model could; hence, the solution is not truly optimal.

X. APPROXIMATE SOLUTION METHODS

The two main tractability issues for POMDP-based optimal policy computation are the time horizon
(the worst-case time complexity of value iteration is doubly exponential in the time horizon) and the state
representation. Both of these issues likely posed considerable difficulty for the early pioneers of optimal
control-based teaching in the 1960s and 1970s. More recently approximate solution methods that now
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exist may partially overcome these challenges, however. If POMDPs are to be used in real-life teaching
applications, then exploiting such methods will be important.

Various point-based methods of value iteration limit the exponential impact of time horizon by bounding
the size of the optimal value function representation to be constant. A smaller representation (quantified
in the number of hyperplanes used to represent the value function) results in faster policy computation
but higher regret, i.e., discrepancy between the achieved and the true optimal value function. All of the
experimental results reported in this paper were computed using a point-based approximation.

For mitigating the 2m state space issue, one may consider avoiding the computation of the optimal value
function over beliefs bt altogether, and instead using a policy gradient approach. With policy gradient, the
policy π is parameterized with a continuous-valued vector θ. The argument of π need not be a function
of bt – its argument could instead be a sufficient statistic. For the m independent items problem, for
example, this might be the m individual probabilities of the learned state for the m independent items.
The parameter θ is then tuned using gradient ascent to maximize the value of the policy. Though the
resultant policy is only approximately optimal, this method completely avoids the exponential blow-up in
state representation.

Finally, by reaching outside the immediate realm of POMDPs into the larger field of reinforcement
learning, one can give up on true optimal decision-making and instead learn from observations of expert
human teachers; this is the approach of apprenticeship learning. While the state is assumed to be visible
to the agent, the reward function is assumed to be unknown. A human teacher in the role of the “master”
provides examples in the form of state-action “trajectories” of how he/she would act in a particular
state. The computer “apprentice” attempts to infer what reward function the human teacher was implicitly
optimizing. After inferring the reward function, the optimal policy for this function can then be computed.
Apprenticeship learning was used to train a robot teacher that interacts with toddlers in [41].

XI. CONCLUSION

In this paper we examined the problem of automated teaching from an optimality perspective. We
explored three fundamental teaching scenarios – m independent items, items with dependencies, and
cognitive skill learning – and showwed in all three cases that the inference and decision-making problems
can be handled by the POMDP framework. While the use of POMDPs typically raises questions of
tractability, more recently developed solution methods such as point-based approximations and policy
gradient approaches may offer help. Finally, we have described possible areas for further research –
developing better learner models, and integrating machine perception – and suggested ways of approaching
these problems.

We end by re-emphasizing why we approached automated teaching from an optimal control perspective
in the first place: By framing teaching as a POMDP, one immediately gains access to a wide range of
solution methods, not just from the POMDP literature itself, but also from related and broader fields of
stochastic optimal control, reinforcement learning, online learning, and machine learning in general. We
believe that this rich literature may hold considerable promise for bringing automated teaching machines
to the next level.
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