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Abstract. Automatic facial expression recognition (AFER) has under-
gone substantial advancement over the past two decades. This work ex-
plores the application of bag of words (BoW), a highly matured approach
for object and scene recognition to AFER. We proceed by first highlight-
ing the reasons that makes the task for BoW differ for AFER compared
to object and scene recognition. We propose suitable extensions to BoW
architecture for the AFER’s task. These extensions are able to address
some of the limitations of current state of the art appearance-based ap-
proaches to AFER. Our BoW architecture is based on the spatial pyra-
mid framework, augmented by multiscale dense SIFT features, and a
recently proposed approach for object classification: locality-constrained
linear coding and max-pooling. Combining these, we are able to achieve a
powerful facial representation that works well even with linear classifiers.
We show that a well designed BoW architecture can provide a perfor-
mance benefit for AFER, and elements of the proposed BoW architecture
are empirically evaluated. The proposed BoW approach supersedes pre-
vious state of the art results by achieving an average recognition rate of
96% on AFER for two public datasets.

1 Introduction

Automatic Facial Expression Recognition (AFER)[1,13,22,16] has been gaining
momentum over the years due to its application in multiple domains such as
human computer interaction, and analyzing human behavior, among others. This
progress has been possible due to advancement in computer vision and machine
learning, along with higher computing power.

Bag of words (BoW) models represent images as orderless collection of local
features. These models have recently shown remarkable performance in multiple
domains including scene recognition [11,23], object and texture categorization
[5,17,27], and human activity recognition [10]. Applicability to multiple domains
can be attributed to the simplicity of the BoW model along with significant
research in feature extraction [18,27], codebook construction [23,9], application
of fast but efficient kernels for discriminative classification [27,23], and encoding
schemes [4,26]. Efficient methods for pooling and matching over spatial and
temporal grids at multiple scales [10,11] has helped extend BoW to domains
where spatial or temporal information is important.
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A strength that BoW brings to the table is invariance. Feature values are
pooled within a specific region of space (or time) without reference to exactly
where in the window the feature occurred. This gives BoW models tolerance to
small perturbations in the positions of image features, making them robust to
variations in the shape of a cup, for example. In contrast, facial expression is
a subordinate level classification problem defined by nonrigid deformations of a
basic object shape. Fundamental differences have been described between face
and object recognition, in which objects can be defined by the presence of com-
ponent parts with substantial tolerance to metric differences in their positions,
whereas faces consist of the same parts in approximately the same relations, and
detection of metric variations in a holistic representation takes on much more
importance [2]. Hence the invariance structure of the facial expression task differs
from those of object recognition, potentially requiring for example, information
on multiple spatial scales. It therefore stands to reason that an optimal BoW
architecture suited for object recognition may also differ for the AFER task.

Recently BoW has been applied to problems involving discrimination of
subordinate-level categories such as flowers [17] and breeds of cats and dogs
[20]. These findings further motivated us to look into BoW for the problem of
facial expression recognition.

Our contribution lies in a principled exploration of BoW architectures for
the AFER domain, and investigating whether the resulting BoW architecture is
competitive with state-of-the-art performance for current approaches for AFER.
While a small number of previous papers employed BoW for an AFER task (e.g.
[14]) this is the first to present a principled exploration of BoW design in this
domain. Thus a clear picture has not yet emerged of a BoW architecture best
suited for the AFER domain, and how it compares to current approaches to
AFER. Specifically, this paper explores BoW for an appearance-based discrim-
inative approach to AFER. Appearance based discriminative approaches have
been highly successful for face detection [25] face identification [7] and expression
recognition [1] [22], and can provide person-independent recognition performance
in real-time [15]. State of the art AFER performance has been shown for Gabor
energy filters [1] [15], and local binary patterns (LBP) [22]. Here we compare
the performance of BoW framework to state-of-the-art AFER approaches based
on Gabor and LBP features.

Our contributions are as follows:

1. We identify inherent challenges in appearance based approaches to AFER
and argue that most of these can be addressed through a suitable BoW
pipeline. We highlight reasons why AFER differs from domains where BoW
has been applied successfully in the past, and which would influence the
architecture of our BoW model.

2. In order to address the demands of AFER task, we propose a BoW approach
that combines highly discriminative Multi-Scale Dense SIFT (MSDF) fea-
tures with spatial pyramid matching (SPM). To the best of our knowledge,
this is the first work employing MSDF features for AFER. The spatial pyra-
mid representation provides spatial information to BoW to maintain both
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holistic and local characteristics. This is augmented with the recently pro-
posed locality-constrained linear coding (LLC) [26] along with max-pooling,
leading to a representation that is powerful even with a linear classifier.

3. We compare the BoW performance to two of the most successful algorithms
for AFER: Gabor wavelets and LBP, as input to Support Vector Machines
(SVM). Experiments on two public datasets demonstrate that the proposed
BoW pipeline is highly effective for AFER, giving significantly better per-
formance than approaches relying on Gabors or LBP features.

4. Experiments further demonstrate the contributions of specific components
of the proposed BoW pipeline. We show that MSDF features compare favor-
ably with Gabor and LBP features when input directly to a SVM, however
a significant hike in performance is obtained by integrating them with pro-
posed BoW architecture. We further demonstrate the advantages of employ-
ing multi-scale features, compared to single scale features, and LLC coding,
compared to traditional hard coding, in our BoW pipeline.

2 Related Work

Appearance based approaches can extract features densely at every face pixel,
as in gabor wavelets [1], or can pool features in certain regions of support. For
instance in the case of LBP, the face is divided into regular overlapping grids
[22], while for the approach in [14] features are pooled over 4 segmented facial
regions around eyes, nose etc. It is possible to represent many AFER approaches
through a general block-diagram as shown in Fig. 1. Strategies for each block
for different methods used in this paper are given in Table. 1.

Although the Gabor energy representation possesses some shift invariance,
their spatial invariance is low relative to other image features explored here. This
could make them less robust to alignment errors that can result from variations
such as head pose, ethnicity etc. LBP based methods achieve some invariance
by employing a rectangular grid as a region of support. Selecting an apt grid
pattern is a non-trivial problem for LBP based methods.

A previous paper [14] constructed a BoW representation by pooling features
over 4 facial regions, which are obtained through a segmentation step. This inter-
mediate segmentation step poses the problem of using a non-standard support
region for feature pooling, and the final representation may critically depend on a
good segmentation. Since the algorithm is evaluated only on a single dataset, it is
unclear if the proposed segmentation works well across multiple datasets. Next,
separate dictionaries were learned for each of these sub-regions, which may lack
sufficient features for robust codebook construction. Moreover, the BoW rep-
resentation in [14] did not achieve strong performance alone, and required the
addition of pyramid histogram of gradients (PHOG) features to obtain apprecia-
ble results. This left the question open as to whether BoW itself provides coding
advantages in the AFER domain. This work attempts to address this question.
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Fig. 1. General Block diagram for AFER

3 Proposed Bag of Words Approach

The AFER community follows a common practice of separating the face de-
tection and alignment task from the task of expression recognition, factoring
out rigid deformations in order to make the problem more tractable. Hence the
AFER task does not typically entail invariance to transformations such as scale,
translation, or in-plane rotations. The goal is to detect the appearance or tex-
ture variations in face images that result from facial expression, while allowing
invariance to factors such as differences in the positions of the lip corners for a
low versus high intensity smile, or differences in facial wrinkling patterns due
to age or facial physiognomy, or variations due to small residual rotation and
alignment errors. The invariance task therefore may be on a different scale or
along different feature dimensions than for many object recognition tasks. We
address these goals by exploring a BoW architecture with suitable extensions,
which are mentioned in a sequential order below. The ordering adheres to the
general block diagram in Fig. 1.

1. Sampling strategy and features: BoW represents images as collection
of independent local patches. These patches can either be sampled as sparse
informative points, i.e. ones extracted using various interest point detectors
[5,27], or as dense patches at different locations and scales. Work in [18]
pointed out that, (1) interest points based methods often saturate in perfor-
mance since they can only provide limited patches, and (2) the minimum-
scale of patches has a considerable influence on results because the vast
majority of patches or interest points typically occur at the finest few scales.
Thus, based on these findings we compute SIFT descriptors (constant orien-
tation) densely on the image by extracting them with a stride of 2 pixels. In
this paper we explore a multi-scale dense SIFT representation (MSDF) [24],
which pools over multiple region sizes, retaining more spatial information at
the smaller scales. Here we employed 5 different scales, defined by setting
the width of the SIFT spatial bins to 4, 8, 12, 16, and 24 pixels. Empiri-
cal comparisons demonstrated that multi-scale SIFT features indeed lead to
better performance than their single-scale counterpart. SIFT features have
been extracted using code from author’s website in [11].

2. Codebook Construction (for encoding): The vocabulary is constructed
by quantizing SIFT descriptors randomly selected from the training images
using approximate K-means clustering. This clustering approach is based on
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calculating data-to-cluster distances using the Approximate Nearest Neigh-
bor (ANN) algorithm. We used the implementation provided by authors in
[4]. The size of the dictionary was set based on empirical experiments to 800.
We have provided a brief discussion in Sec. 5 on the effect of vocabulary size
on recognition rates.

3. Encoding and Pooling: The original BoW model ignores the spatial order
of local descriptors. However spatial information is necessary for AFER. To
address this particular limitation, we have incorporated a particular exten-
sion of BoW [11] called spatial pyramid matching (SPM), that has shown
significant success on a number of tasks [27,20]. For our spatial pyramid rep-
resentation, we partition an image into 2l × 2l segments in different scales
l = 0, 1, 2, 3, 4, compute the BoW histograms within these 341 segments and
finally concatenate the histograms into a single feature vectors. This strategy
of pooling over spatial pyramids is more structured and eliminates the need
to select the right grid pattern, as was the case for LBP and the approach
in [14]. Experimental results demonstrate that spatial pyramid matching
contributes substantially to performance for AFER.
Recent research shows that the choice of encoding and pooling has a sig-
nificant effect on the classification accuracy [4]. Hence this work employs
the recently proposed LLC encoding along with max spatial pooling [26] to
construct the final multi-scale representation. LLC encoding projects each
descriptor to a local linear subspace spanned by some codewords by solving
an optimization problem [26]. This approach is known to be more robust
to local spatial translations and captures more salient properties of visual
patterns as compared to the original simple histogram spatial encoding [26].
Most importantly a linear kernel is sufficient to achieve good performance
with LLC encoding, thus avoiding the computational expense of applying
non-linear kernels [4], as is the case with spatial histogram based encoding
[11,27]. The two parameters for LLC encoding were (1) M , the number of
nearest visual words to be considered, was set to 5, and (2) parameter β
used in the computation of the projections was set to 10−4, as done in [4].

4 Experiments

4.1 Datasets

These algorithms were evaluated on two public datasets, the Cohn-Kanade+
(CK+) [16] and Amsterdam Dynamic Facial Expression Set (ADFES) [21]. Of
these, CK+ is the most widely used dataset for AFER, while ADFES as an
evaluation dataset for AFER task has been introduced in this paper. The ratio-
nale behind using these two datasets is that they both consist of directed facial
expressions, validated by the Facial Action Coding System (FACS).

CK+: The CK+ dataset consists of 123 subjects between the age of 18 to 50
years, of which 69% female, 81% Euro-American, 13% Afro-American, and 6%
other groups. Subjects were instructed to perform a series of 23 facial displays, six
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of which were based on description of prototypic emotions. For our experiments,
we used the 327 peak frames which had emotion labels validated by trained pro-
fessionals as provided by the authors. The faces were cropped and resized as men-
tioned in Section 4.2. A salient feature of this dataset is that the authors have pro-
vided a standard evaluation procedure [16] so that it is possible to compare results
from different works directly. The algorithms are tested on a leave-one-subject-
out cross-validation experiment where an expression is classified into one of the 7
classes, namely- angry, contempt, disgust, fear, happy, sadness and surprise.

ADFES: The ADFES dataset consists of 22 subjects aged from 18 to 25 years
old, of which 10 are Mediterranean and 12 are North-European, and 10 are
females and 12 are males. The subjects were instructed to perform nine emotional
states of which six popular basic emotions [8] are being used for our experiments.
Again the faces were registered into 96×96 patches as mentioned in Section 4.2.
The algorithms are evaluated on 5 fold cross-validation experiment where an
expression is classified into one of the six classes

4.2 Methods

Pre-processing: Faces were detected automatically by a variant of the Viola
and Jones detector [6] and normalized to 96× 96 patches based on the location
of the eyes.

The first baselinemethod was based onGaborwavelets. Features were extracted
using 72 Gabor filters spanning 8 orientations and 9 scales, whose parameters were
selected as in [15]. The imageswere first convolvedwith each filter in the filter bank
and the output magnitudes were concatenated into a feature vector. The second
baseline method was LBP. Implementation of LBP features was obtained from the
authors’ [19] website. Normalized uniform LBP histogramswere extractedwith an
exhaustive combination of parameters (namely neighborhood parameters (P,R),
number of horizontal and vertical grids and overlap ratio between blocks) and the
best results were reported. The rationale behind running the experiment with an
exhaustive combination of parameters was to realize the degree to which the per-
formance of the algorithm depends on the chosen parameters. Our experiments
revealed that the best parameters for LBP were different for both datasets indi-
cating that this method might be parameter dependent.

Classifier: As mentioned earlier a linear support vector machine (SVM) [3] was
used as the classifier for the proposed BoW method as well as for the Gabor
baseline. For LBP and simple BoW, SVM with a polynomial kernel of degree
2 and a histogram intersection kernel was used for consistency with previous
papers employing these methods [28] [27]. To avoid over-fitting we applied a
double cross-validation method. Double cross-validation is a method to estimate
separate training, test, and validation set performance in small datasets. Here,
the hyper-parameters for the SVM (or kernel) were obtained by selecting the
parameters with best performance on a 25% subset of the training samples. For
each experiment we have reported the average percentage accuracy and standard
error measure.
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Most of the details of the proposed BoW algorithm are described in Sec 3.
Since experiments for CK+ are run in a leave-one-subject-out fashion, we chose
to prevent re-clustering of data for each fold by constructing a dictionary once
from samples in the ADFES dataset and using the same for each fold. This
strategy also tests the generalization capability of the BoW approach, where a
different dataset is used for codebook construction.

Table 1. Methods compared in this paper for AFER. All methods below the double
line are based on BoW. Those above the double line are passed directly to an SVM.

Method Pixel Sampling Features Encoding Pooling Strategy

Gabor 1 Pixel Gabor filter outputs No Concatenation
(9 scales & 8 orient.)

LBP 1 Pixel LBP No Sum-pooling over
regular grids

MSDF 2 Pixel SIFT (5 scales) No Concatenation

Simple BoW 2 Pixel SIFT (5 scales) Hard Sum-pooling over
encoding Spatial Pyramids

SS-SIFT+BoW 2 Pixel SIFT (1 scale) LLC Max-pooling over
Spatial Pyramids

Proposed Method 2 Pixels SIFT (5 scales) LLC Max-pooling over
(MSDF+BoW) Spatial Pyramids

5 Results

The performance statistics for prescribed experiments on CK+ and ADFES are
shown in Table. 2. It is evident that the proposed BoW approach outperforms
previous state of the art AFER approaches, Gabors and LBP, on the two recogni-
tion tasks. Moreover to the best of our knowledge these are the best publishable
results for AFER on both CK+ and ADFES. This observation supports our
contention that a suitable BoW architecture can indeed provide a performance
benefit for AFER.

Regarding dictionary size, we found that increasing the dictionary size im-
proved performance for small dictionary sizes, saturated at 800, and began to
decrease for larger dictionary sizes. Performance started decreasing significantly
at dictionary size beyond 2000.

Regarding image features, we note that raw MSDF features performed better
than both Gabor and LBP on CK+, although not on ADFES. In order to sup-
port the argument that the proposed BoW architecture is responsible for boost
in performance and not MSDF features alone, we extracted MSDF features as
described in Section 3, concatenated all the features in an image into a single
vector and passed it straight to an SVM, which is similar to that used in Gabor
based methods [15]. This was compared to the same MSDF features in the pro-
posed BoW architecture. Table. 2 shows that the proposed method contributes
performance benefit beyond MSDF features alone.
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Table 2. Comparison of the proposed BoW pipeline with other approaches- Gabor
wavelets [15], LBP [22], MSDF consisting of vectorized MSDF features passed to a
linear SVM, Simple BoW, and Single-Scale SIFT+BoW as described in Section 4.2.

DATASET ADFES CK+

Gabor 94.59 ± 2.61 91.81 ± 1.94

LBP 94.96 ± 1.96 82.38 ± 2.34

MSDF 92.59 ± 3.41 94.34 ± 1.62

Simple BoW 94.09 ± 2.32 92.67 ± 1.93

SS-SIFT+BoW 93.3± 1.13 93.28 ± 1.76

Proposed Method 96.30 ± 1.08 95.85± 1.40

Next, to highlight the advantage of employing multi-scale features compared
to single scale features, we also ran our proposed pipeline, except with Single
Scale SIFT (SS-SIFT) features instead of MSDF features. For SS-SIFT we used
a spatial bin size of 4 pixels and a stride of 2 pixels. Table. 2 shows that the
multiscale features in the Proposed Method give about a 3 percentage point
advantage over the same model implemented with single scale features.

We also evaluated coding strategies. We compared the LLC encoding with
max-pooling to the simple histogramming strategy [4], comprised of traditional
hard quantization and sum-pooling. We refer to this as ”simple BoW”. By com-
paring the Proposed Method to simple BoW, we observe that selecting LLC
encoding along with max pooling in our proposed method leads to consistent
improvement in performance for both datasets.

The most substantial performance benefit was provided by the spatial pyra-
mid matching. Removal of the SPM from the BoW model, eliminating all spa-
tial information, reduced classification performance on CK+ from 95.9% to
83.1%(±2.5).

6 Conclusion

This paper explores the applications of Bags of Words, a technique highly suc-
cessful in object and scene recognition community, to AFER. We first highlighted
reasons that had hindered the success of BoW for AFER, and then proposed ways
to tackle these issues based on recent advances in computer vision. Elements of
the proposed BoW architecture were empirically evaluated.

Spatial information at multiple scales is crucial for AFER as compared to
object and scene classification tasks. Hence spatial pyramid matching is recom-
mended for the BoW architecture to preserve spatial information during match-
ing, and we showed that performance drops substantially without it. We also
discovered that multi-scale features are necessary for AFER as is the case for
most object and scene categorization tasks. In particular BoW allowed us to ef-
fectively employ highly discriminative multi-scale SIFT features. We also showed
that the performance benefit was not from the MSDF features alone. The BoW
architecture itself contributed further to performance. Advantages of employ-
ing novel encoding and pooling strategies as compared to standard histogram
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of quantized descriptors was also shown for the task of AFER. The final model
is a multilayered architecture with successive nonlinearities in the MSDF fea-
tures, codebook, and pooling. As such, this sequence of nonlinearities bears a
relationship to deep learning [12].

State of the art results on two public datasets highlight the effectiveness of this
approach on AFER. In conclusion our findings support the claim that a principled
BoW architecture can provide a performance benefit for the AFER task.
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