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Automatic pain recognition from videos is a vital clinical application and, owing to its spontaneous nature, poses
interesting challenges to automatic facial expression recognition (AFER) research. Previous pain vs no-pain sys-
tems have highlighted twomajor challenges: (1) ground truth is provided for the sequence, but the presence or
absence of the target expression for a given frame is unknown, and (2) the time point and the duration of the pain
expression event(s) in each video are unknown. To address these issueswe propose a novel framework (referred
to as MS-MIL) where each sequence is represented as a bag containingmultiple segments, andmultiple instance
learning (MIL) is employed to handle this weakly labeled data in the form of sequence level ground-truth. These
segments are generated via multiple clustering of a sequence or running a multi-scale temporal scanning win-
dow, and are represented using a state-of-the-art Bag of Words (BoW) representation. This work extends the
idea of detecting facial expressions through ‘concept frames’ to ‘concept segments’ and argues through extensive
experiments that algorithms such as MIL are needed to reap the benefits of such representation.
The key advantages of our approach are: (1) joint detection and localization of painful frames using only
sequence-level ground-truth, (2) incorporation of temporal dynamics by representing the data not as individual
frames but as segments, and (3) extraction of multiple segments, which is well suited to signals with uncertain
temporal location and duration in the video. Extensive experiments on UNBC-McMaster Shoulder Pain dataset
highlight the effectiveness of the approach by achieving competitive results on both tasks of pain classification
and localization in videos. We also empirically evaluate the contributions of different components of MS-MIL.
The paper also includes the visualization of discriminative facial patches, important for pain detection, as discov-
ered by our algorithm and relates them to Action Units that have been associated with pain expression. We con-
clude the paper by demonstrating that MS-MIL yields a significant improvement on another spontaneous facial
expression dataset, the FEEDTUM dataset.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Pain is one of themost challenging problems in medicine and biolo-
gy and has substantial eco-social costs associated with it [9]. It has been
estimated that there might bemore than 30 million people in USAwith
chronic or recurrent pain [34]. Also nearly half of Americans seeking
treatment from a physician report pain as their primary symptom. The
United States Bureau of the Census estimated the total cost for chronic
pain to exceed $150 billion annually in year 1995–96 [9,34]. Thus
there has been a significant research effort in improving pain manage-
ment over the years.

Identifying pain among patients is considered critical in clinical set-
tings since it is used for regulating medications, long-term monitoring,
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and gauging the effectiveness of a treatment. Pain assessment in most
cases involves patient self-report, obtained through either clinical inter-
view or visual analog scale (VAS) [9]. For the latter case the nurse asks
the patient to mark his pain on a linear scale with ratings from 0 to
10, denoting no-pain to unbearable-pain. The fact that VAS is easy to
use and returns a numerical rating of pain hasmade VAS themost prev-
alent pain assessment tool. However VAS suffers from a number of
drawbacks such as subjective differences, and patient idiosyncrasies.
Therefore it cannot be used for unconscious or verbally-impaired pa-
tients [6] and may suffer from high individual bias. These drawbacks
have led to a considerable research effort to identify and quantify objec-
tive pain indicators using human facial expression [33]. However most
of these methods entail manual labeling of facial Action Units or evalu-
ations by highly trained observers, which inmost cases is time consum-
ing and unfit for real-time applications.

Over the years there has been a significant progress in analyzing fa-
cial expressions related to emotions using machine learning (ML) and
computer vision [19]. Most of this work has focused on posed facial
ed pain localization usingmultiple segment representation, Image Vis.
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expressions that are obtained under controlled laboratory settings and
differ from spontaneous facial expression in a number of ways [4,7].
We refer our readers to a survey on automatic facial expression recogni-
tion (AFER) by Bartlettet al. [4] that has identified the difficulties faced
by AFER on spontaneous expressions. Amajor challenge of spontaneous
expressions is temporal segmentation of the target expressions. Videos
may exist in which the target emotion or state was elicited, but the
onset, duration, and frequency of facial expressions within the video
are unknown.

A significant contribution to in research on spontaneous expressions
was the introduction of UNBC-McMaster Shoulder Pain dataset [21] that
involves subjects experiencing shoulder pain in a clinical setting. This
dataset was provided with two levels of annotations for measuring
pain— (1) per-frame pain ratings based on a formula applied to Action
Unit (AU) annotations, and (2) per-video pain ratings as measured by
experts (see Section 5.1). This work utilizes the per-video pain ratings
for training a binary pain classification system. Pain localization is
then evaluated using the per-frame pain ratings based on AU labels,
which are more costly to obtain. Thus our setting is such that each
video is labeled for the presence or absence of pain, but there is no infor-
mation about the location or duration of facial expressions within each
video. This setting is referred to as weakly labeled data and poses a
challenge for training sliding window classifiers and further limits the
performance of the standard approach of obtaining fixed length fea-
tures through averaging and training a classifier. Previous approaches
[2,22] follow a common paradigm of assigning each frame the label of
the corresponding video and using them to train a support vector
machine (SVM). Pain is detected in a video if the average output score
(distance from separating hyperplane) of member frames is above a
pre-computed threshold. Such approaches suffer from two major limi-
tations: (1) not all frames in a video have the same label and (2) averag-
ing output scores across all the frames may dampen the signal of
interest. This paper proposes to address these challenges by employing
multiple instance learning (MIL) framework [35].

MIL is an approach for handling ‘weakly labeled’ training data. In
such cases the training data only specifies the presence (or absence)
of a signal of interest in the data without indicating where it might be
present. For instance in the case of pain vs no-pain detection, a sequence
label only specifies if a subject is not in pain without any details regard-
ing the time point or duration of pain. Other techniques for tackling
weakly labeled data include part-based models [11] and latent models
such as pLSA and LDA [37]. Most of these approaches try to identify
the signal of interest by inferring the values of some latent variables
while minimizing a loss function. MIL was introduced to address the
problem of weakly supervised object detection [13,35]. Compared to
other approaches, MIL offers a tractable way to train a discriminative
classifier that avoids complex inference procedures. MIL has been
successfully employed for face recognition fromvideo [35] andmore re-
cently has been proposed for handling labeling noise in video classifica-
tion [18].

This work focuses at detecting spontaneous pain expression in
video when given only sequence level ground-truths. The phrase
detection is used throughout the paper to denote the joint tasks of
pain classification and localization in time. Explicitly, classification
refers to predicting the absence/presence of pain in a video, while
localization refers to predicting pain/no-pain at the frame level.
The novelty of this work lies in combining MIL with a dynamic
extension of concept frames, into a novel framework called multiple
segment-multiple instance learning (MS-MIL). Our major contribu-
tions are as follows:

1. Inherent drawbacks in previous approaches for pain detection in
videos are identified and a pipeline has been proposed to address
these concerns. The most salient feature of our approach is that it
can jointly classify and localize pain by using only sequence level
labels (Section 2).
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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2. For addressing the demands of the pain detection task,we propose to
represent each video as a bag containing multiple segments which
are modeled using MIL. The multiple segment based representa-
tion and MIL are able to address spontaneous expressions, such as
pain, that can have uncertain locations, durations and occurrences
(Section 4).

3. The performance of MS-MIL is compared on the detection task with
other competitive algorithms. We also perform systematic evalua-
tion to highlight the contribution ofmultiple segment representation
and MIL, in MS-MIL, separately. These results indicate the advantage
of using the MS-MIL approach along with some interesting insights
(Section 6).

The problem of detecting pain through facial expressions in general
includesmany challenges and this work is trying to focus on a particular
aspect of the problem. Other challenges in objective pain measurement
include differences between acute and chronic pain, as well as differ-
ences in personality including pain catastrophizing, which may affect
the intensity of pain expression. We are undertaking a separate study
to begin to address some of these factors [14].

2. Related work and motivation

The first computer vision work on automatic pain detection in
videos on the UNBC-McMaster Pain dataset was by Ashraf et al. [2].
Their approach started by first extracting AAM based features from
each frames and using these to cluster the frames in order to create a
training data with size that is manageable by a SVM. Following this,
each of these clustered frames was assigned with the label of their cor-
responding sequence and used to train a linear SVM. Finally during pre-
diction each test-frame was assigned a score based on its distance from
separating hyperplane. Then a test-video was predicted to be in pain if
the average score of its member frames exceeded a threshold. Lucey
et al. [22] extended this work by borrowing ideas from the related
field of visual speech recognition and proposed to compress the signal
in the spatial rather than temporal domain using the Discrete Cosine
Transform (DCT). Lucey et al. [22] used the system in [2] as their
baseline system and showed significant improvement in performance
using their idea.

Previous works didn't address the ambiguity introduced by weakly
labeled data, and each member frame was assigned the label of the se-
quence. Such approaches lead to a lower performance compared to
the case when ground-truth for each frame is known [1,2]. We address
this particular concern by proposing to useMIL (in-place of SVM)which
has been designed specifically to handle weakly labeled data.

Secondly, [22] highlighted that incorporating the dynamics of the
pain signal is difficult since there is no information about the number
of times pain expressions can occur or their location and duration in a
sequence. Following this, [22] suggested to add temporal information
by appending adjacent frames onto the frame of interest, as input to
the SVM [25]. [22] tested this idea of appending adjacent frames in
their paper, however they found that their performance degraded.
One possible explanation is that SVM classifiers are not well suited to
weakly labeled training data and may suffer from mislabels when the
data is in this form.

Motivated by the last idea we propose to incorporate temporal
dynamics by representing each sequence not as individual frames (as
done earlier) but as sets of frames, referred to as ‘multiple segments’.
The benefits of such a representation are reaped by using MIL, which
can efficiently handle data in such form. Since MIL handles data as
bags, we can visualize every sequence as a bag containingmultiple seg-
ments. Multiple segments (MS) have twofold advantages: (1) it allows
pain expression to have random duration and occurrence, and (2) it in-
corporates temporal information by pooling across multiple frames in a
segment. Thirdly, the earlier work performed prediction for each se-
quence using the average decision score of its frames. Such an approach
ed pain localization usingmultiple segment representation, Image Vis.
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Fig. 1. Figure showing positive and negative bags used in MIL. A positive bag contains at
least one positive instance and negative contains only negative instance.
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may not be optimal in all situations since the averaging operation tends
to dampen the signal of interest. The MIL framework employed in this
work avoids this limitation by using the max operation to predict the
label of a bag based on the posterior probability of its instances (see
Section 3).

Another potential approach to the problem of pain detection comes
from the classical approach to action recognition from computer vision
literature [17,39]. This approach is based on BoW architecture and com-
posed of three steps: feature extraction, encoding features using a dic-
tionary of visual words and pooling with l1 normalization. Since each
video is represented as a fixed length vector, we shall refer to these
techniques as global-feature based approaches. [39] have provided a
systematic evaluation of different components of this pipeline on two
human action datasets. These techniques are known to work well for
problems with uniform actions that span the entire video such as
CK+ facial expression dataset [20] or KTH human action dataset [16].
However their performance falls down when actions have high intra-
class variations and are localized in the video, which is true for the
pain detection problem as well. We also found this hypothesis to be
true during our experiments and attribute it to the argument that
pooling features across the entire video tend to reduce discriminative
ability of the features.

In a recent paper [31] Tax et al. explored the question ofwhether it is
always necessary to fully model the entire sequence, or whether the
presence of specific frames, called ‘concept frames’, might be sufficient
for reliable detection of facial expressions. In their study two different
approaches for AFER were investigated: (1) modeling full sequences
using approaches such as Hidden Markov Models and Conditional Ran-
dom Fields, and (2) modeling only certain frames, for AU detection in
sequences. The author in [31] also suggested that formodeling only par-
ticular key frames, algorithms such asMIL are required and investigated
one such approach. Through extensive experiments the authors showed
that for reliable classification, modeling certain key frames is sufficient
compared to modeling the entire sequence. A limitation of ‘concept
frames’, however, is that they do not incorporate temporal information,
which could potentially be exploited by learning algorithms such asMIL
(and to some extent SVM [30]).

The present paper takes a leap forward by proposing a dynamic var-
iant of ‘concept frames’. Here we extend the idea of ‘concept frames’ to
‘concept segments’ consisting of multiple frames. These ‘concept seg-
ments’ can be thought of as localized sub-expressions that contain the
expression of interest in a sequence. We propose that reliable detection
of facial expression can be achieved by detection of key localized seg-
ments using tailored algorithms such as MIL. [30] explored a segment
based approach, called k-Seg SVM, and employed a structured-SVM to
detect temporal events (AU segments in their case). Our work differs
from this work in several respects, most notably that [30] is a complete-
ly supervised algorithm requiring location information in the training
data, whereas the approach presented here operates on weakly labeled
data. Authors in [8] represented a video by concatenating features from
6key-frames (segments) thatwere identified by clustering based on the
output of an emotion classification task. We overcome the possible
limitations of this work by allowing the videos to be represented by a
variable number of segments of varying lengths and performing classi-
fication by explicitly spotting the segment containing target expression.

3. MIL

The general machine learning paradigm involves finding a classi-
fication function that minimizes a loss function L (D, h(x)) over
training data provided as N samples and their corresponding labels,
D= {xi, yi}i = 1

N , where xi ∈ X and yi ∈ Y. Rather than handing training
data in the form of individual samples, the MIL paradigm is designed
to handle problems involving training data in the form of bags, B =

{Xi, yi}i = 1
N , where Xi ¼ xij

� �Ni

j¼1 , yi ∈ Y and Ni are the number of
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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instances in Xi. Since this work deals with only binary classification
problems, the output space Y∈ {−1, 1}. Such problems occur frequent-
ly in computer vision since it is easier to obtain a group label for the data
compared to individual labels and such labels can also suffer fromanno-
tator bias and noise [18]. Recently several works have adopted MIL to
address these concerns in domains such as handling label noise in
video classification [18], face recognition in videos with subtitles [40],
and object localization [13].

As shown in Fig. 1 theMIL framework defines two kinds of bags, pos-
itive and negative, in a similar fashion to positive and negative instances
in traditional machine learning. A bag is a positive bag if it contains at
least one positive instance, while a negative bag contains no positive
instance.

We have employed multiple instance learning based on boosting
(MilBoost) algorithm proposed by Viola et al. [35] for this work. In the
next two sections we shall give an overview of Friedman's gradient
boosting framework [12], which is the backbone of MilBoost. This will
be followed by the description of MilBoost.

3.1. Gradient boosting

We shall define the gradient boosting in the realm of traditional
learning framework and thendiscuss its extension to theMIL framework.

Boosting involves constructing a strong classifierHT(x) by iteratively
combiningmanyweak classifiers ht(x), where the subscript t(t=1…T)
represents the index of the classifier added at the tth iteration. All weak
classifiers are constrained to belong to a certain family of functions H,
such as stumps or trees.

HT xð Þ ¼
XT
t¼1

αtht xð Þ ð1Þ

HT xð Þ ¼ HT−1 xð Þ þ αThT xð Þ ð2Þ

Eq. (2) can be seen as a numerical optimization strategy that itera-
tively minimizes a loss function L(D, HT − 1(x)) over training data D
by moving in certain optimal direction given by hT. Under this strategy,
the loss function at step T can either be seen as a function of the current
classifier HT − 1 or the parameters that define the family of functionsH.

Friedman suggested following the latter approach since it offers
an intuitive way to solve the above optimization problem. HT − 1(x)
can be considered as n dimensional vector whose ith component is
HT − 1(x). Following this idea, the gradient descent strategy is employed
to minimize the loss function by moving some steps in the direction of
ed pain localization usingmultiple segment representation, Image Vis.
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Table 1
Formulation of different soft-max functions along with wij in each case.

Soft-max g(pij) wij

NOR 1 − ∏ j(1 − pij)
ti−pi
pi

pij

GM 1
n∑k p

r
ij

� �1
r 1−pi 2−tið Þ

1−pi

pri j−prþ1
i j

∑ j pri j
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the negative-gradient of the loss function wrt HT − 1(x). This negative
gradient is denoted by wi in Eq. (3). In the remaining sections of this
paper we shall refer to w as weights and the rationale behind this will
be evident in Section 3.2.

wi ¼ − ∂L
∂HT−1 xð Þ

�����
x¼xi

ð3Þ

Thus the gradient boosting framework prescribes to minimize the
loss function by moving in the direction w computed at each iteration.
Since HT is a linear combination of HT − 1 and w, it would be smooth
only when w ∈ H. However it will be too idealistic to assume this in
all cases. Friedman proposed to tackle this problem by projecting w
over the function space max by finding the best approximation ht ∈ H
to w.

ht ¼ argmax
h

XN
i¼1

wih xið Þ ð4Þ

We shall refer to Eq. (4) as the ‘projection step’ and note that ht has
the maximum correlation with w. Once ht is computed, step size αt is
found via a line search to minimize L(D, HT(x)). In the next section we
shall discuss how gradient boosting is extended to the MIL framework.

3.2. MilBoost

MilBoost combines the gradient boosting framework with the con-
cept of MIL, where training data occurs as bags. As defined in
Section 3, the ith bag is denoted by Xi and the jth instance inside it is rep-
resented as xij. The posterior probabilities over bags and instances are
defined as:

pi ¼ Pr yi ¼ 1jXið Þ ð5Þ

pij ¼ Prðyij ¼ 1jxijÞ: ð6Þ

We shall be using the original formulation defined in [35] for the loss
function given by the negative log-likelihood:

L ¼ −
XN
i

ti logpi þ 1−tið Þ log 1−pið Þ ð7Þ

where ti = 1 if yi = 1 and ti = 0 if yi = −1.
This formulation for the loss function seems intuitive since the only

information available about a MIL dataset is label information for each
bag (yi). We lack any information about the probabilities (or labels) of
individual instances (pij). These instance probabilities can also be seen
as latent variables, whose values are inferred during the boosting
process [3].

MIL assumes that a positive bag contains at least one positive in-
stance. Hence the probability of a bag being positive (pi) is defined in
terms of individual instances as:

pi ¼ max
j

ðpijÞ: ð8Þ

Since the max function is not differentiable, a number of differentia-
ble approximations to the max function have been proposed for
MilBoost [3,35,40]. In this work we shall refer to these approximations
as softmax functions g(pij). The most common choice of soft-max func-
tion in earlier works is noisy-or (NOR). A major disadvantage with NOR
is that it deviates from the max function as the size of the bag increases,
which we shall refer to as ‘bagsize-bias’. To illustrate this shortcoming
we consider a toy example which consists of two bags B1 and B2 of
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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sizes of 3 and 5. The instance probabilities for these bags are given by
B1 = [.15 .15 2] and B2 = [.15 .15 .15 2]. As is evident, the max for
both cases is 2, however the NOR formulation yields the maximum
as .45 and .53 respectively. This observation clearly highlights the
bagsize-bias associated with NOR. Such a problem is critical for cases
where bag sizes might differ across training examples and ours is such
a case since the number of frames per sequence varies from 60 to 600.
Thus in this workwe have addressed this problem by employing anoth-
er soft-max function called generalized mean (GM), which is known to
be a better approximating function than NOR [3].

The instance probabilities (pij) for instance xij are obtained by the ap-
plication of a sigmoid function over the raw classifier score hij:

pij ¼ σðhðxijÞÞ: ð9Þ

As described in Section 3.1, the negative gradient of the loss-function
(for instance xij) is obtained as:

wij ¼ − ∂L
∂hij

: ð10Þ

We can easily calculatewij by exploiting the chain rule of differenti-
ation and calculating each component as:

wij ¼ − ∂L
∂hij

¼ −∂L
∂pi

∂pi
∂pij

∂pij
∂hij

ð11aÞ

∂L
∂pi

¼
1
pi

ti ¼ 1

1−ti
1−pi

ti ¼ 0

8>><>>: ð11bÞ

∂pi
∂pij

¼ ∂gðpijÞ
∂pij

ð11cÞ

∂pij
∂hij

¼ ∂σðhijÞ
∂hij

¼ σðhijÞð1−σðhijÞÞ: ð11dÞ

Next we explain the rationale behind referring to the negative
instance-wise gradients (wij) as weights, using the NOR softmax func-
tion as an example. From Table 1, wij for the NOR soft-max function is
defined as wij ¼ 1−pi

pi
pij for a positive bag and wij = −pij for a negative

bag. Thus these weights describe (1) the label of the bag containing in-
stance xij and (2) the importance of the instance in learning procedure,
by being high for an instance that lies in a positive bag but has a low
classifier score and vice-versa. The idea of weighting instances during
learning is common in boosting procedure [12].

As described in Section 3.1, the next step involves finding a new
weak learner h(xij) that has the highest correlation with the weights
wij using the projection step (Eq. (4)). This work employs binary
ed pain localization usingmultiple segment representation, Image Vis.
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decision stumps as weak learners, which perform classification by
assigning a threshold to a single feature and are a common choice in
boosting frameworks [35]. ThusH80.99 belongs to the class of decision
stumps. A simplemathematical formulation has been provided in Borris
et al. [3] on how Eq. (4) (the projection step) can be transformed into:

ht ¼ argmin
h

X
ij

½hðxijÞ≠sgnðwijÞ�w 0
i j ð12Þ

where [.] is the Iverson bracket, w 0
i j ¼ wijj j

∑i j jwijj
and sgn(l) is the signum

function.
Eq. (12) is a general formulation for any learning algorithm that has

training data with binary labels sgn(wij) and weights w'ij. Thus we can
easily find a function ht(xij) at tth iteration that has the highest correla-
tion with wij by using training procedure for a decision stumps. All the
steps of the MilBoost algorithm are mentioned in a sequential order in
Algorithm 1.

Algorithm 1. MilBoost algorithm

4. Multiple instance learning based on multiple segments (MS-MIL)

4.1. Overview

Each sequence Si is represented as a bag containing many segments

or sub-sequences sij
� �Ni

j¼1, where Ni is the number of segments in se-

quence Si. Temporal consistency is maintained inside a segment sij by

restricting it to contain only contiguous frames (see Section 4.3), sij ¼
f ki ; f

kþ1
i ;…; f Nij−k−1

i

n o
, where k represents the time index (in the

video) of the first frame inside segment sij, fik represents the kth frame
in the sequence Si and Nij is the number of frames in subsequence sij.
Thus a sub-segment sij is characterized by length of the segment
(number of frames) Nij and the time index k of first frame in the video.
Two approaches are outlined in Section 4.3 for constructing multiple
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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segments — (1) overlapping temporal scanning windows and (2) mul-
tiple clustering. Depending upon the approach the number of frames in-
side a segment can either be fixed (in scanning windows) or sequence-
dependent (in multiple clustering). Also the frames inside the two dif-
ferent segments are allowed to overlap.

The only information available about a sequence during training is
whether it has a pain expression i.e. yi = 1 or not i.e. yi = −1. We
shall give a brief overview of the entire algorithm here.
4.1.1. Representation
The feature extraction process for a frame shall be denoted by a

mapping ϕFr : Rm × n → Rd that map frames in image space Rm × n to a
d-dimensional vector space Rd. The feature representation for a subse-
quence (or segment) is represented as amappingϕS : S→ Rd that trans-
forms subsequences in space S to a d-dimensional vector space.
4.1.2. Training
Training data in the formof bags is trained using theMilBoost frame-

work described in Section 3.2. This process yields a classifierHT : Rd→ R.
The number of iterations/weak-learners for MilBoost has been empiri-
cally set to 100 in our experiments.
4.1.3. Prediction
Suppose we have a test sequence Si ¼ si1;…; siNi

� �
. Each subse-

quence sij is assigned a posterior probability pij using the trained classi-
fier HT and a sigmoid function σ as:

pij ¼ σðHT ðϕSðsijÞÞÞ: ð17Þ

Here ϕs is the feature mapping for a sub-sequence.
The posterior probability of test sequence Si is predicted by using a

soft-max function, as described in Section 3.2, over instance probabilities:

pi ¼ gðpijÞ: ð18Þ

4.1.4. Avoiding local-minima
MilBoost algorithms can often overfit and converge to local minima.

This issue is more critical for problems such as pain detection since
theoretically the algorithm can converge even after learning a single
instance of pain expression in a sequence, since the loss function is
defined over bags. In such cases the learned function won't be able to
generalize well over unseen data. Hence we draw parallel ideas from
bagging predictors proposed by Brieman [5], in which multiple
versions of a predictor are combined to get an aggregated prediction.
They showed improvement for predictors that are unstable/get caught
up inmultiple local minima. Since the problem formulation is very sim-
ilar to ours, we also ran MilBoost over multiple initializations and
bootstrapped data (random 90% subset). The final predictions for each
segment were obtained by averaging the predictions pij made from
multipleMilBoost classifiers. Using this approachwe found an improve-
ment in predictions, and moreover this procedure allowed us to report
results that would be reproducible. Based on our experiments we opted
to run MilBoost 30 times. In practice we found that any number about
this size or larger worked equally well.
4.1.5. Pain localization
The prediction process estimates the posterior probability of each

segment sij in Si. For assigning posterior probability to any frame in the
sequence, we first identify the segments containing that frame. Follow-
ing this, the frames are assigned a score based on their proximity to the
center of that segment. We employ a hamming window, pivoted at the
ed pain localization usingmultiple segment representation, Image Vis.
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center of the segment, to assign a smoothly varying score to different
frames in a segment. Since a frame could belong to multiple segments,
it is assigned to themaximum score from all these segments. In mathe-
matical notations, the probability of frame fi

k in pain is predicted using
the following formula:

pf ki
¼ p y ¼ 1j f ki

� �
¼ max

j
ewðsijÞ � pijj f ki ∈sij
� �

ð19Þ

where ewðsijÞ is the hamming window function centered at the mid-
dle frame of segment sij. pf ki

is a discrete probability measure since
it is bounded by 0 and 1 since ewðsijÞ∈ð0;1� and pij ∈ [0, 1]. Secondly,
∑yp(y| f ik) = 1. Thus our algorithm yields not only the probability for
a sequence but also the probability for each frame that can be used to
localize painful expression frames in a video using just sequence-level
labels.

4.2. Bag of Words (BoW) based representation

Recently computer vision has witnessed significant research in BoW
models and their extensions, and as a result they have been applied
across multiple domains. Sikka et al. [29] present a survey of different
BoW architectures for AFER. They identified many advantages of BoW
based approaches over previous approaches to AFER based on Gabor
wavelets, or local binary patterns, passed directly through a classifier
and have proposed a state-of the-art feature pipeline through experi-
mental analysis.

We employed the system proposed in [29] for the feature extraction
and image representation. This representation consists of a spatial pyr-
amid of level 4 on top of highly discriminative multi-scale dense SIFT
(MSDF) features, which are encoded using LLC encoding followed by
max-pooling. We also employed a separate dataset (CK+ [20]) for
building a codebook (size 200 in this case) for encoding features. By
using a separate dataset for creating the codebook, the feature extrac-
tion process is completely independent of the dataset. Our experiments
yielded that MSDF features at two scales are sufficient for this problem
and hence extracted MSDF features with window sizes of 4 and 8 and
strides of 2 pixels. As mentioned in Section 4, the feature extraction op-
eration using BoW is denoted as amapping ϕFr. We refer readers to [29]
formore information about feature extraction and image representation
in the BoW model including empirical comparisons of alternative fea-
ture extraction methods for AFER.

4.3. Multiple segment (MS) representation

This work defines a segment as a subset of an original sequence that
contains only contiguous frames. Thus a sequence is represented as
a bag of segments which are allowed to overlap. As highlighted in
Section 2, themotivation behind the MS representation is that it allows
random onset of pain expression, incorporates dynamic information,
and can be efficiently handled by the MIL framework. It is assumed
that for a sequence labeled as pain, at least one of the segmentswill con-
tain a painful expression, and such a positive segment is referred to as a
‘concept segment’.

4.3.1. Construction
Wepropose twoways to generatemultiple segments. A naive proce-

dure is to run overlapping temporal scanning windows at multiple
scales across the sequence and represent each subset of frames as a seg-
ment. This idea ismotivated by the traditional approach in computer vi-
sion of running multi-scale scanning windows prior to a detection task.
This idea has been exploited in previouswork onweakly-supervised ob-
ject localization [11,35]. A parallel approach for generatingmultiple seg-
ments was explored in [13], where an image was segmented intomany
clusters using the idea of multiple stable segmentation. Each segmenta-
tion was obtained by varying the parameters of normalized cuts
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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(referred to as Ncuts) [13].We explored an analogous approach by clus-
tering the frames in a sequence usingNcuts. Since wewanted to restrict
a segment to contain only contiguous frames, theweight/similarity ma-
trix used in Ncuts was defined to incorporate the similarity between the
time indexes of two frames along with their feature similarity. Each el-
ement of this weight matrix Wi(r, s) defines the similarity between
frames f ir and f i

s of sequence Si:

W r; sð Þ ¼ exp −
ϕ Fr

f ri
� �

−ϕFr
f si
� �

σ f

�����
�����
2

− tr−ts
σ t

���� ����2
 !

ð20Þ

where tr refers to time index of frame f i
r.

Once the segments are constructed using either of the two ap-
proaches, it is important to represent them as fixed-length vectors
while also preserving temporal information. [22] have highlighted that
an elegant way of doing this is to append features from adjacent frames.
We employed this idea along with max feature pooling, proposed for
AFER in [29], for feature extraction. This process is represented as amap-

ping ϕS : S → Rd that maps a segment sij ¼ f ki ; f
kþ1
i ;…; f Nij−k−1

i

n o
be-

longing to set S to a d-dimensional vector space and can be shown as:

ϕSðsijÞ ¼ maxk ϕFr f ki
� �

f ki ∈sij
��� �

:
�

ð21Þ

The idea of using amax operation for temporal pooling has also been
explored in spatio-temporal deep learning approaches [32]. Also a num-
ber of recentworks [28,29,38] have highlighted theperformance advan-
tages of the max pooling operation compared to average pooling.

5. Experimental design

5.1. Dataset

Our experiments employed data from the UNBC-McMaster Pain
Shoulder Archive that was distributed to the research community in
[21], and included 200 sequences from 25 subjects. Each subject was
undergoing some kind of shoulder pain and was asked to perform a se-
ries of active and passive movements of their affected and unaffected
limbs. Active tests were self-initiated shoulder movements and in pas-
sive tests the physiotherapist was responsible for the movement. For
complete details of the experimental settings we refer the readers to
[21]. These sequences were then coded on a number of levels by
experts. The coding of interest to this work was the Observer Pain
Intensity (OPI) rating that was assigned to each sequence on a level of
0 (no-pain)–5 (strong pain) by an independent observer trained in
identification of pain expressions. Following the protocol proposed in
[2,22], labelswere binarized into ‘pain’ and ‘nopain’ by defining training
instances with OPI ≥ 3 as the positive class (pain) and OPI = 0 as the
negative class (no-pain). Only those subjects were included in our ex-
periments who had a minimum of one trial with an OPI rating of 0 (no
pain) and one trial with an OPI rating of either 3, 4 or 5 (pain). Interme-
diate pain intensities of 1 and 2were omitted, per the protocol in [2,22].
This yielded 147 sequences from 23 subjects for our experiments. Since
this work addressed two joint tasks i.e. classification and localization of
pain, two different performance metrics were employed to evaluate
each tasks separately.

5.2. Performance metrics

5.2.1. Classification
The classification task focuses on pain predictions at video-level. Ex-

periments were conducted in a leave-one-subject-out cross-validation
strategy. Thus there was no overlap between subjects in the training
and testing data. For reporting the results, we followed the strategy
employed in [2,22], where they reported total classification rate or
ed pain localization usingmultiple segment representation, Image Vis.
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Table 2
Comparison of MS-MIL with different algorithms for pain classification in videos.

Method Accuracy (%)
(at EER)

# of subjects–
# of samples

Lucey et al. [22] 80.99 20–142
Ashraf et al. [2] (shown in [22]) 68.31 20–142
MS-SVMmax 77.17 23–147
MS-SVMavg 71.73 23–147
BoW + Avg + SVM [39] 66.30 23–147
BoW + Max + SVM [39] 81.52 23–147
MS-MIL 83.7 23–147
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accuracy, which refers to the percentage of correctly classified se-
quences, computed at Equal Error Rate (EER) in the Receiver Operation
Curve (ROC).

5.2.2. Localization
The localization task focuses on pain predictions at frame-level. This

taskwas evaluated by employing the Prkachin and Solomon pain inten-
sity index (PSPI) that combines intensities of 4 Action Units (AUs) from
Facial Action Coding System(FACS) [26]. In particular PSPI combines the
intensities of four “core” AUs for pain which are brow lowering (AU 4),
orbital tightening (AU 6 and AU 7), levator contraction (AU 9 and AU
10) and eye closure (AU 43) [21]. TheUNBC-McMaster dataset provided
FACS expert codes and PSPI metrics for each frame. We would like the
readers to note that our algorithm used only OPI labels (sequence-
level ground truth) for training, while the PSPI labels were solely used
for evaluation. The localization performance was evaluated across two
sub-tasks, as explained below, with experiments conducted in leave-
one-subject-out fashion.

The first task was designed to predict the presence/absence of pain
in each frame and compare these predictions against binarized PSPI
score (where PSPI N 0means pain). A similar idea of evaluating localiza-
tion performance, when training with only sequence-level ground
truth, was also explored in [1]. The first metric for this frame based
pain classification experiment was classification accuracy computed at
EER in the ROC curve. Several previous works focusing on detection
[30] have noted that metrics based on ROC curve are designed for bal-
anced binary classification rather than detection tasks, and hence are
unable to take into account the effect of the proportion of positive to
negative samples. Thus in this work we also incorporated maximum
F1 score (given by 2�Recall�Precision

RecallþPrecision ) for evaluating pain detection task.
The F1 score is known to give a trade-off between high recall rates
and accuracy for predictions [30].

The second task measured how well the per-frame classification
scores can predict PSPI pain intensities. This was accomplished bymea-
suring the correlation between predictions and PSPI pain intensities for
each frame. We opted for Spearman's rank correlation [15] instead of
Pearson correlation since the PSPI score occurs as ranked values in the
range of 1–16. For these experimentswe reported Spearman's rank cor-
relation coefficient, which is calculated between two observations Xi

and Yi as:

ρ ¼
X

i
xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
xi−xð Þ2

X
i
yi−yð Þ22

q ð27Þ

st−1≤ ρ≤ 1. ρ=0, ρ=1 and ρ=−1 correspond to no-correlation,
perfect correlation and perfect negative correlation, respectively.

6. Results and discussion

6.1. Performance evaluation of pain classification

MS-MIL was compared with related algorithms for the problem of
pain classification. We divided these related algorithms into 3 groups
and have provided implementation details for each of these in the
following subsections. The result for MS-MIL is reported for the best
configuration of the multiple segment representation, which was em-
pirically estimated to be a combination of segments of length 31, 41
and 51 frames, generated using overlapping scanning windows (see
Section 6.3).

6.1.1. Previous state of the art
MS-MILwas first comparedwith previous state of the art algorithms

by Ashraf et al. [2] and Lucey et al. [22] as shown in Table 2.We have re-
ported results for Ashraf et al. as were reported by authors in [22] using
their own implementation.
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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6.1.2. Global-feature based approaches
MS-MIL was also compared for pain classification performance with

two global-feature based approaches constructed using BoW [17,39], as
discussed in Section 2. Global-feature based methods represent a video
by a fixed length vector. Hence by themselves these methods can only
be used for pain classification task and not for pain localization. We
used the same frame features, constructed using BoW, as used in MS-
MIL. These frame features were then pooled using average [17,39] and
max pooling [39] to obtain a fixed dimensional representation for the
entire video. Following feature extraction, classification was performed
using a linear SVM [39]. Depending on the pooling strategy, these
approaches are referred to as BoW + Avg + SVM or BoW + Max +
SVM in Table 2. These approaches serve as a good baseline since they
are among the classical approaches for action classification in computer
vision [24].

6.1.3. Evaluating the contribution of MIL
Wehave argued the aptness ofMIL to handle sequences represented

asmultiple segments compared to traditional ML algorithms. This argu-
ment was validated by using the sameMS representation but replacing
MIL with a linear SVM. All the segments in the training data were
assigned the label of the sequence and used to train this SVM. This strat-
egy, if not same, is in spirit similar to that employed in previous works
[2,22]. Finally during prediction a combining rule was used to assign
each sequence a decision score based on the score of its member seg-
ments [31]. We had explored two common combining rules, namely
maxima (similar to MIL and used in [31]) and average [2,22] and the
corresponding SVMs are referred to as MS-SVMmax and MS-SVMavg.
Table 2 reports the accuracy for both SVMswith the sameMS represen-
tation as used in MS-MIL.

6.1.4. Overview of pain classification task
Although it could be argued that a direct comparison with previous

algorithms for pain detection by [2,22] is not possible owing to a differ-
ent number of samples, some inferences could still be made since the
sample set differs by only a small amount of data. Firstly the results of
[2] (as published in [22]) showed an accuracy of 68.31% and 80.99% re-
spectively, compared to 83.7% performance of MS-MIL. Thus it could be
argued that MS-MIL shows significant performance improvement over
[2] and is comparable to (or better) than [22]. This improvement can
be attributed to the algorithmic improvements that MS-MIL has over
these approaches (see Section 2). The two global-feature based ap-
proaches, BoW+Avg+SVMandBoW+Max+SVM, yielded a perfor-
mance of 65.22% and 78.26% respectively. Our argument that global-
feature based approaches discard discriminative information as a result
of pooling is supported by the observation that they have a lower per-
formance compared to MS-MIL (65.2% and 78.26% vs 83.7%). Also
these results provide additional support that max pooling is preferable
to average pooling.

Lastly the argument that theMS representation is efficiently handled
by MIL is validated by the comparison of MS-MIL with SVM applied to
theMS representation as shown in Table 2. Here MS-MIL outperformed
ed pain localization usingmultiple segment representation, Image Vis.
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both MS-SVMavg and MS-SVMmax by a margin of at least 6% points. The
results also indicate that MS-SVMmax performs better than MS-SVMavg

for all cases since the averaging operation is known to dampen the sig-
nal of interest (Section 2).

6.2. Performance evaluation of pain localization

We evaluated the localization performance of MS-MIL for two
different sub-tasks of (1) predicting presence/absence of pain, and
(2) predicting pain intensity using per-frame classification scores, as
discussed in Section 5.2. The SVM based MS-SVMmax algorithm was
selected for comparison with MS-MIL. Both algorithms used the same
MS representation, which was a combination of segments of length
31, 41 and 51 frames generated using overlapping scanning windows
(Section 6.3).

Wewere also interested in performance comparison ofMS-MILwith
a system thatwas trained particularly for a frame-by-frame pain predic-
tion task. This was accomplished by training a linear SVM over the same
frame features as used in MS-MIL, using two versions of frame-level
ground truth. The first version, referred to as Frame-SVM1, was trained
using binarized PSPI labels (PSPI N 0 is pain). While for the second ver-
sion, referred to as Frame-SVM2, the frames were assigned the label of
the video that contained them. Thus Frame-SVM1 represents a fully su-
pervised algorithm with complete label information, and Frame-SVM2

represents a weakly-supervised algorithm (such as MS-MIL). Both
methods had the same experimental settings as MS-MIL. We handled
the massive amount of data (around 35 K frames) for this task by train-
ing the linear SVM in its primal form using LIBLINEAR SVM library [10].
The results from these experiments are shown Table 3.

Although the primary interest in this section is pain-localization per-
formance, we have also reported video-level classification accuracy for
each of these methods so as to supplement current analysis. For MS-
MIL and MS-SVMmax, the classification accuracy is the same as that re-
ported in Table 2. For the two frame based algorithms (Frame-SVM1

and Frame-SVM2), the video scores were estimated by taking a max
over the scores of member frames, as was done for MS-SVMmax in
Section 6.1.

It is evident from Table 3 that MS-MIL outperforms all other algo-
rithms across both pain localization tasks. The performance of Frame-
SVM1 was lower than MS-MIL as reported by pain localization metrics.
This was contrary to our expectations since Frame-SVM1 was trained
on actual (binarized PSPI) frames labels compared to weak-labels used
for MS-MIL. The possible reason for higher performance of MS-MIL
could be the use of the MS representation in MS-MIL, that is able to
achieve some degree of temporal smoothing. This also shows that MIL
framework used in MS-MIL is able to handle label ambiguity elegantly.
However one cannot neglect the benefit of having complete frame la-
bels, and this is evident in the classification accuracy of Frame-SVM1

(84.78%), which is slightly above MS-MIL (83.7%) and surpasses its
weakly-supervised counterpart (Frame-SVM2) (73.91%) by a large
margin.

The advantage of using the MS representation is also evident in the
higher performance of MS-SVMmax compared to Frame-SVM2, where
the two algorithms were trained on the same sequence-level labels
but employed the MS and the frame representation respectively.
It was also interesting to note that MS-MIL was able to achieve a
Table 3
Comparison of MS-MIL with different methods for the pain localization.

Method Localization accuracy (%) Correlation

MS-SVMmax 72.64 .390
MS-MIL 76.08 .432
Frame-SVM1 70.47 .385
Frame-SVM2 66.76 .282
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correlation of .432 with the PSPI intensity when it was trained using
only weak-labels in the form of video-level labels. Moreover this corre-
lationwas higher as compared to the correlation achieved by the super-
vised frame-by-frame algorithm Frame-SVM1 (.432 vs .385). Thus these
results conclude that MS-MIL has a performance advantage over its
weakly supervised counterparts as well as over supervised frame-by-
frame algorithms.

We have also shown visualization for 2 cases in Fig. 5 to highlight the
ability of our algorithm to localize pain. These visualizations compare
the per frame posterior probability as predicted by MS-MIL against the
PSPI index (Section 5.2). In order to facilitate a direct comparison be-
tween probabilities and the PSPI index on the same vertical scale, the
PSPI index was normalized in the range of [0, 1] by dividing by maxi-
mum PSPI score of 16 [21]. These visualizations qualitatively support
our claims that MS-MIL is capable of joint classification and localization
of pain. It is evident from Fig. 4 that our algorithm is able to identifymul-
tiple occurrences of pain. Secondly the posterior probabilities predicted
by MS-MIL seem to correlate well with the PSPI index. Fig. 4 shows a
case of a pain sequence whose PSPI ground-truth score was zero across
all frames but the observer rated the facial expression as showing pain
(OPI = 3). Our algorithm, which was trained on observer ratings, was
able to localize pain in this case. On further analysis we found that
there was a FACS coding error for this particular sample. This is an in-
triguing example highlighting the advantage of using automatic compu-
tational methods compared to humans.
6.3. How does the multiple segment representation effect MS-MIL

The novelty of this work lies in combining multiple segment repre-
sentation with MIL. In Section 6.1 we have already highlighted the
advantage of MIL by replacing MIL with SVM (MS-SVM). Here our aim
is to empirically evaluate the benefits of the MS representation in MS-
MIL. We have tried to show this by analyzing the performance of MS-
MIL across different configurations of the MS representation. Here we
compare different lengths of the multiple segments in Section 4.3, we
restricted ourselves to the use of multi-scale temporal scanning
windows (Scan-wind) for generating MS for this experiment. (Two
approaches for generating MS are evaluated independently in the next
section.)

Two parameters are required for Scan-wind: (1) window size and
(2) overlap between two windows. The overlap was fixed to 50% of
the window size in all cases and the window size parameter was
swept to generate results. The parameters were selected so as to cover
a broad range of window sizes starting from short windows of length
10 frames to large windows of length 100 frames. This was done keep-
ing in mind the large variation in video lengths and temporal extent of
pain signal in the dataset. We had also tried several combinations of
window sizes to generate multi-scale MS and included results for the
case having best performance for both classification and localization
tasks. The results are shown in Fig. 2, with Fig. 2a showing plots for clas-
sification and localization accuracymetric, and Fig. 2b showing plots for
correlation and F1 score metric. These metrics are the same as those
discussed in Section 5.2.

Looking at the results in Fig. 2, it is evident that the performance
across all metrics goes up as the window size is increased from 11 to
Max-F1 Video-level classification accuracy (%)

.471 77.17

.523 83.70

.477 84.78

.403 73.91
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Fig. 2. Plots for classification and localization performance across different configurations
ofmultiple segment representation (Section 6.3). (a) Accuracies for both tasks. (b) Perfor-
mance metric for localization task.

Fig. 3. Visualization of the weights learned by MS-MIL classifier. Fig. 3a–c shows the
weights learned by 3 individual classifiers, while Fig. 3d shows the weights learned by
final classifier obtained after bagging (Section 4). Color coding is shown in Fig. 4b.

9K. Sikka et al. / Image and Vision Computing xxx (2014) xxx–xxx
61 frames and thereafter the performance starts to fall down. These re-
sults are quite intuitive to interpret as features pooled over small win-
dows will not encode sufficient temporal information, showing lower
performance. While for very large window sizes, pooling tends to pack
too much information in the features making them less discriminative
(as discussed in Section 6.1). The algorithm performed consistently
high across window sizes of lengths 41 to 61 frames. One possible rea-
son for this observation could be that most subjects in the dataset pres-
ent facial action related to pain within intervals of length 41–61 frames.
Finally the result corresponding to combination of MS of length 31, 41
and 51 frames yielded the highest results across all the metrics. Al-
though it had the same classification accuracy as segments from 41 to
61 frames, it showed significant improvement in themetrics evaluating
localization task. Thus one could argue the advantage of using multi-
scale MS for the pain detection task since it tries to capture all possible
pain expressions in a scale independent manner.

Overall these results empirically support the advantage of themulti-
ple segment representation in MS-MIL for the problem of pain detec-
tion. Moreover it is evident that the advantage of MS is best reaped at
segments of medium length or a combination of these. It was also inter-
esting to empirically verify our hypothesis regarding the importance of
pooling over segments of the right length as discussed in Section 2.
Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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6.4. Approaches for generating multiple segments
(normalized cuts vs scanning windows)

Two methods for generating the multiple segment represen-
tation were discussed in Section 4. The first method was Ncuts that
generated segments through clustering. Since the number of frames
differs across videos, we determined the number of clusters for Ncuts
by fixing the minimum number of elements (frames) in a cluster.
The values of other parameters were kept constant for all experiments
(σt = 100 and σf = 10k). The second approach is the multi-scale
temporal scanning windows. We employed the same parameters for
multi-scale temporal scanning window as taken in Section 6.3. For
both cases the parameter of interest is the length of the segment to be
used.

To systematically study the effect of these approaches on perfor-
mance, four scenarios were considered by varying the length of seg-
ments in our MS representation. These configurations were selected to
cover a wide variety of temporal scales. They are referred to as:

1. short — segments of short length (11 frames)
2. med — segments of medium length (41 frames)
3. long — segments of long length (81 frames)
4. combine — combination of segments of lengths 31, 41 and 51.

We have also included results from MS-SVMmax and MS-SVMavg,
alongwith results fromMS-MIL in Table 4, formaking further inference.

From results in Table 4 it is evident that MS-MIL has a low perfor-
mance for short and long settings and high for medium and combine
settings, for both Ncuts and Scan-wind. This observation is in line with
the results presented in the previous Section. We didn't observe any
clear trends for the SVM based approaches. It is also interesting to
note that the performance of both MS-SVMmax and MS-MIL is similar
(78.26%) for Ncuts with the short setting. Thus it is possible that there
isn't much difference between MS-MIL and MS-SVMmax for short seg-
ments since features pooled over short-segments are less informative.
Finally MS-MIL shows a consistent performance of 83.7% for combine
segments for both Ncuts and Scan-wind, highlighting a consistent ben-
efit of multi-scaleMS. AlthoughNcuts and Scan-wind show similar clas-
sification performance, Ncuts lag behind Scan-wind on the localization
ed pain localization usingmultiple segment representation, Image Vis.
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Fig. 4.Discriminative facial patches for paindetection as learned byour algorithm (Section 7). a shows an intensity imagewith hue of the color encoding importance of each facial region as
discovered by MS-MIL. The color bar is shown in b, with blue and red denoting lowest and highest weights respectively. c shows the same intensity image overlaid over a subject's image
for better visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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task. This is because Ncuts employ windows/segments that are sparsely
located in time, compared to dense sampling in Scan-wind, and localiza-
tion in the former case will only be approximate (see Section 4).
Fig. 5. Pain localization: example showing the performance of our algorithm for pain local-
ization vs ground-truth frame labels (PSPI).
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7. Visualizing the classifier and benefits of bagging

Since different expressions are associated with different facial
muscles, we wanted to visualize the facial regions contributing most
towards pain detection. To accomplish this we selected the weights
and indices of the weak-learners learned during the gradient boosting
procedure (Section 3.2). Since our features are based on the spatial-
pyramid BoW framework [29], each of these indices represents a
word that lies in a localized image patch at one of the 4 scales (see
Section 4.2). Next we formed an intensity image by back-mapping
each index to its facial patch, and then aggregating weights over all
facial patches. We further converted the intensity image into a RGB
image with the color hue encoding the magnitude of the weights. The
intensity image corresponding to the MS-MIL classifier is shown in
Fig. 4a with the color encoding shown in Fig. 4b. We have also shown
an intensity image in Fig. 4c overlaid with the image of a subject to aid
in visualization of discriminative facial regions. Please note that we
have shown both the overlaid and non-overlaid intensity images since
the overlaid intensity image could include some extra intensity owing
to the texture on subject's face image.

We have tried to interpret the visualization in Fig. 4c by relating re-
gions, identified important for pain detection, to Action Units previously
known to be associated with pain [26].

1. The red-most region near the lower-corner of right eye seems to be
picking up levator contraction and naso-labial furrow changes asso-
ciated with AU 9 and AU 10 respectively. This region also seems to
capture orbital contraction movements related to AU 6.

2. The eye corner (left-eye) seems to be picking up eye squinting (AU 7
and also AU 43).

3. The chin area seems up to be picking up a chin raise related to AU 17
or mouth opening related to AU 25.

Thus it is evident that the visualization showing discriminative facial
regions (learned by the algorithm) seems to correlate well with the
prior knowledge about Action Units related to pain.
Table 4
Evaluation across different methods for generating multiple segments. Classification
accuracy is reported in %.

Setting MS-MIL MS-SVMmax MS-SVMavg

Ncuts Scan-wind Ncuts Scan-wind Ncuts Scan-wind

Short 78.26 78.16 78.26 73.91 73.91 73.91
Medium 82.61 83.7 78.26 77.17 70.65 75.00
Long 80.43 82.61 79.34 73.91 75.00 75.00
Combine 83.70 83.7 77.17 76.08 71.73 73.91

ed pain localization usingmultiple segment representation, Image Vis.
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These visualizations have also been used for highlighting the advan-
tage of using bagging step in MS-MIL. The bagging step works by train-
ing multiple MilBoost predictors with different initialization and
bootstrapped data as discussed in Section 4. The final classification
score for a segment is obtained by averaging scores from each predictor.
To emphasize the contribution of the bagging step, we visualize the
weights learned by 3 individual predictors in Fig. 3a–c and the final
average predictor obtained after averaging (bagging) in Fig. 3d. These
visualizations have been generated using the same procedure as
discussed in previous paragraph. It is evident from these visualizations
that the weights learned by individual classifiers have high variance
and the bagging step helps by averaging and lowering the variance in
weights. It is also interesting to note that these results support the argu-
ment, posed in several works that analyzed bagging theoretically [23],
that bagging can be seen as a kind regularization operation. The weight
patterns also reveal the discovery thatwemade during our experiments
that MS-MIL, being a latent variable model, is unstable with respect to
initializations and prone to local-minima. And this instability is the
vital component that causes bagging to work well in our case as noted
in [5].

8. Experiments on FEEDTUM dataset

From extensive experiments it is evident that MS-MIL gives appre-
ciable results on the UNBC-McMaster Pain dataset. However it could
be argued by a machine learning practitioner that the reason for good
results could be over-fitting by MS-MIL for this particular setting of fea-
tures and dataset. Thus we evaluated MS-MIL on a different dataset of
spontaneous expressions. We compared the performance of MS-MIL
with its global-feature based counterpart on a different problem with
different sets of features. The rationale behind opting for a different
problem and a different set of features is to exhibit that MS-MIL can
also be generalized to a different yet connected problem.

This experiment was conducted on a subset of FEEDTUM facial ex-
pression dataset [36] that consists of videos of 19 subjects (320 videos)
showing six basis emotions, namely — anger, disgust, fear, happiness,
sadness and surprise. The dataset exhibits natural (or spontaneous) ex-
pressions, whichwere elicited by showing the subjects several carefully
selected video stimulus. This is different from datasets like CK+ [20],
where the subjects were asked to move specific facial muscles. The
rationale behind selecting this dataset is that the subjects exhibit
spontaneous expressions and the videos are unsegmented, yielding no
information about the onset, duration and frequency of the facial ex-
pressions. Thus AFER on this dataset poses similar challenges as were
discussed in the motivation for current work (see Section 1).

8.1. Experimental setting and results

The experiments were conducted in leave-one-subject-out fashion.
The classification was performed in 1-vs-all format and thus involved
solving a different binary classification task for each of the 6 expres-
sions. Different from BoW features, we opted for features based on the
displacement of facial landmarks points [27]. 49 landmark points were
obtained for each frame by using a state-of-the-art facial feature detec-
tor based on supervised gradient descent [41]. Displacement features
for each frame were obtained by subtracting x and y coordinates of
the landmark points in that frame from the landmark coordinates in
the first (neutral frame) in that video. It is shown in the expression
Table 5
Experiments on FEEDTUM dataset highlighting the generality of MS-MIL. Classification accurac
the two classification accuracies is 0.0162, showing that the difference is significant.

Algo Anger Disgust Fear

geom. + MilBoost 79.86 80.95 87.88
geom. + MS-MIL 84.28 85.41 85.01

Please cite this article as: K. Sikka, et al., Classification and weakly supervis
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recognition literature that this subtraction from a person-specific neu-
tral face is vital to normalize landmark features and remove subject-
dependent bias [27]. The final feature dimension of 98 is obtained by
concatenating displacements of both x and y coordinates.

In order to highlight the efficacy of MS-MIL, we compared the per-
formance of the following two implementations:

1. geom. + MS-MIL: This is essentially MS-MIL with landmark dis-
placement features. We extracted multiple segments of lengths 9,
15, and 21, using the overlapping scanning window approach as
discussed in Section 4.3. The features inside a multiple segment
were obtained by averaging the landmark features of all of the
frames inside that segment. This is in spirit similar to the averaging
operation used for pooling BoW features (see Section 4.3). We also
tried using operators like max instead of averaging to obtain the
fixed length features and didn't see significant change in results.

2. geom.+ MilBoost: This version is similar to the global-feature based
approaches as discussed in Section 6.1.2. The fixed length features
that represent each video are obtained by averaging the landmark
features over all the frames. Once the features are obtained,MilBoost
is used as the binary classifier.

It is important to note that MilBoost functions as a generic classifier
while workingwith training data organized as positive and negative in-
stances (as for geom.+ MilBoost). Also fixing the classifier allows us to
perform a fair comparison for highlighting the performance different
with (geom. + MS-MIL) and without (geom. + MilBoost) multiple
segments.

All the experimental settings for MilBoost have been kept same as
those of MS-MIL (see Section), except the number of weak learners
which is set to 60 (feature dimension is 98) since we found the perfor-
mance to saturate approximately at 60 weak learners. The threshold for
assigning a positive label to a video based on the probabilistic output
(see Eq. (18))was set to a standard value of 0.5. The performancemetric
for this experiment ismean classification accuracy over the 6 expression
classes.

The results are shown in Table 5. MS-MIL gives a mean classification
accuracy of 84.55(±0.98) compared to 81.78(±1.31) of MilBoost. Thus
it is evident from the results that MS-MIL utilizing multiple segments
outperforms its fixed length feature counterpart even for an expression
classification problem on a different dataset and with different feature
sets. Such a result was expected since FEEDTUM is a spontaneous ex-
pression dataset and holds the assumption that not all frames in a
video exhibit the expression of interest. Thus it is evident from this ex-
periment that MS-MIL is capable of generalizing to other classification
problems with similar assumptions.

9. Conclusion

This paper proposed a novel approach to the problem of detecting
spontaneous expressions of pain in videos, based on multiple instance
learning (MIL). We presented a novel framework called multiple-
segment multiple instance learning (MS-MIL) which incorporated
withMIL a dynamic extension of concept frames, referred to asmultiple
segments (MS). This work targeted the joint problem of, (1) classifying
the expression in a video as pain/no-pain (classification) and (2)
predicting pain in each frame (localization). The problem is particularly
challenging since the algorithm is trained using only sequence-level
y is reported in % for six different facial expressions. p-Value for the paired t-test between

Happiness Sadness Surprise All

83.98 77.20 80.73 81.78 ± 1.31
86.36 83.04 83.18 84.55 ± 0.98
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ground truth, which provides no information regarding the presence/
absence of pain for a given frame.

The paper first highlighted some limitations of previous approaches
and how theymotivated the design of the proposed algorithm. Next, an
overview of multiple instance learning was presented, followed by the
description of the proposed approach, MS-MIL. Rigorous experiments
were conducted to compare the performance of MS-MIL against related
algorithms on both classification and localization tasks on the UNBC-
McMaster Shoulder Pain dataset. The benefits of our algorithmwere ev-
ident by having significant performance advantages compared to its
counterparts across both tasks. Following this we also empirically vali-
dated the contributions of both multiple segments representation and
multiple instance learning in MS-MIL independently. The results from
these experiments supported our argument that MS-MIL is able to tack-
le the twin challenges of (1) label ambiguity and (2) incorporating tem-
poral information, in current problem efficiently. To highlight that our
algorithm is actually learning meaningful facial structures for pain de-
tection, we showed the visualization for the discriminative facial
patches that were learned by our algorithm. We further showed that
these discriminative facial patches were related to Action Units known
to be associated with Pain.

From our experiments it is evident that pain detection in videos is a
challenging problem owing to the variability associated with how pain
can be expressed by different subjects at different times and scenarios.
The present algorithm is able to do an appreciable job of not only detect-
ing pain, but also identifying the temporal location of pain expressions
within the video clip. The most salient contribution of this work is that
pain localization is achieved without any human intervention and
employing only sequence level labels.
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