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Abstract— Automatic pain recognition from videos is a vital
clinical application and, owing to its spontaneous nature, poses
interesting challenges to automatic facial expression recogni-
tion (AFER) research. Previous pain vs no-pain systems have
highlighted two major challenges: (1) ground truth is provided
for the sequence, but the presence or absence of the target
expression for a given frame is unknown, and (2) the time
point and the duration of the pain expression event(s) in each
video are unknown. To address these issues we propose a novel
framework (referred to as MS-MIL) where each sequence is
represented as a bag containing multiple segments, and multiple
instance learning (MIL) is employed to handle this weakly
labeled data in the form of sequence level ground-truth. These
segments are generated via multiple clustering of a sequence
or running a multi-scale temporal scanning window, and are
represented using a state-of-the-art Bag of Words (BoW)
representation. This work extends the idea of detecting facial
expressions through ‘concept frames’ to ‘concept segments’ and
argues through extensive experiments that algorithms like MIL
are needed to reap the benefits of such representation.

The key advantages of our approach are: (1) joint detection
and localization of painful frames using only sequence-level
ground-truth, (2) incorporation of temporal dynamics by rep-
resenting the data not as individual frames but as segments,
and (3) extraction of multiple segments, which is well suited
to signals with uncertain temporal location and duration in
the video. Experiments on UNBC-McMaster Shoulder Pain
dataset highlight the effectiveness of our approach by achieving
promising results on the problem of pain detection in videos.

[. INTRODUCTION

Pain is difficult to examine and considered critical in
clinical settings. It is a subjective measure and is often
reported by patient self-report, either through clinical in-
terview or visual analog scale (VAS). However these self-
report measures have several drawbacks like idiosyncratic
use, subjective differences, [1] etc. Hence there has been
a considerable research effort to identify and quantify pain
[2]. However most of these methods entail manual labeling
of facial action units and are time consuming.

Over the years there has been a significant progress
in analyzing facial expressions related to emotions using
machine learning (ML) and computer vision [3]. Most of
those works have focused on posed facial expressions that
are obtained under controlled lab settings and differ from
spontaneous facial expression in both which muscles are
moved and dynamics of the movement [4], [5]. We refer
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our readers to a survey on automatic facial expression
recognition (AFER) by Bartlett et.al [5] that has identified
the difficulties faced by AFER on spontaneous expressions.
A major challenge of spontaneous expressions is temporal
segmentation of the target expressions. Videos may exist in
which the target emotion or state was elicited, but the onset,
duration, and frequency of facial expressions within the video
are unknown.

A significant progress in research on spontaneous ex-
pressions has been the introduction of UNBC-McMaster
Shoulder Pain dataset [6] that involves subjects experiencing
shoulder pain in a clinical setting and this work focuses on
pain vs no-pain detection in videos on this dataset. In this
dataset each video is labeled for presence or absence of pain,
but there is no information about the location or duration of
facial expressions within each video. This poses a challenge
for training sliding window classifiers and further limits the
performance of the standard approach of obtaining fixed
length features through averaging and training a classifier.
Previous approaches [7], [8] follow a common paradigm of
assigning each frame the label of the corresponding video
and using them to train a support vector machine (SVM).
Pain is detected in a video if the average output score
(distance from separating hyperplane) of member frames
is above a pre-computed threshold. Such approaches suffer
from two major limitations: (1) not all frames in a video
have the same label, (2) averaging output scores across all
the frames may dampen the signal of interest. This paper
proposes to address these challenges by employing multiple
instance learning (MIL) [9].

MIL is one of the approaches for handling 'weakly la-
beled’ training data. In such cases the training data only
specifies the presence (or absence) of a signal of interest in
the data without indicating where it might be present. For
instance in the case of pain vs no-pain detection, a sequence
label only specifies if a subject is/mot in pain without
any details regarding locations or duration of pain. Other
techniques for tackling weakly labeled data includes part-
based models [10] and latent models like pLSA and LDA
[11]. Most of these approaches try to identify the signal of
interest by inferring the values of some latent variables while
minimizing a loss function. MIL was introduced to address
the problem of weakly supervised object detection [9] [12].
Compared to other approaches, MIL offers a tractable way to
train a discriminative classifier that avoids complex inference
procedures. MIL has been successfully employed for face
recognition from video [9] and more recently has been
proposed for handling labeling noise in video classification
[13].



Here we apply MIL to the problem of detecting spon-
taneous facial expression in video. We combine it with a
dynamic extension of concept frames, into a novel framework
called multiple-segment multiple instance learning (MS-
MIL). Our major contributions are as follows:

1) Inherent challenges in previous approaches for pain
detection in videos have been identified and a suitable
pipeline has been proposed to address these concerns.
The most salient feature of our approach is that it can
jointly detect and localize pain by using only sequence
level labels.

2) In order to address the demand of pain detection
task, we have proposed to represent each video as a
bag containing multiple segments which are modeled
using MIL. The multiple segment based representation
and MIL are able to address the potential problem
with spontaneous expressions, like pain, that can have
uncertain locations, durations and occurrences.

3) We compare the performance MS-MIL with other
approaches for pain detection in videos and also high-
light the localization capability of our approach by
comparing per frame prediction from our algorithm
with ground-truth pain intensities for 4 cases. Results
indicated the performance advantages obtained using
our approach for pain classification and shows appre-
ciable localization capabilities.

II. PAIN VS NO-PAIN DETECTION IN VIDEOS

Our experiments employ data from the UNBC-McMaster
Pain Shoulder Archive that was distributed to the research
community in [6], and included 200 sequences from 25
subjects. Each subject was undergoing some kind of shoulder
pain and was asked to perform a series of active and passive
movements of their affected and unaffected limbs. Active
tests were self-initiated shoulder movements and in passive
tests the physiotherapist was responsible for the movement.
For complete details of the experimental setting we refer the
readers to [6].

These sequences were then coded on a number of levels
by experts. The coding of interest to this work is the
Observer Pain Intensity (OPI) rating that was assigned to
each sequence on a level of 0 (no-pain)—>5 (strong pain) by
an independent observer trained in identification of pain ex-
pressions. Following the protocol proposed in [7] [8], labels
were binarized into ’pain’ and 'no pain’ by defining training
instances with OPI> 3 as the positive class (Pain) and
OPI= 0 as the negative class (No-Pain). Only those subjects
were included in our experiments who had a minimum of
one trial with an OPI rating of 0 (no pain) and one trial
with an OPI rating of either 3, 4 or 5 (pain). Intermediate
pain intensities of 1 and 2 were omitted, per the protocol in
[7] [8]. This yielded 147 sequences from 23 subjects for our
experiments.

III. RELATED WORK AND MOTIVATION

One of the first works on automatic pain detection in
videos is by Ashraf et.al [8]. Their approach starts by first

extracting AAM based features from each frames and using
these to cluster the frames in order to create a training
data whose size is manageable by SVM. Following this,
each of these clustered frames are assigned the label of
their corresponding sequence and used to train a linear
SVM. Finally during prediction each test-frame is assigned
a score based on its distance from separating hyperplane.
Then a test-video is predicted as pain if the average score
of its member frames exceeds a threshold. Lucey et.al [7]
extended this work by highlighting that temporal information
is enhanced by compressing the signal in spatial rather than
temporal domain. They borrowed ideas from the related field
of visual speech recognition and proposed to compress the
signal in the spatial rather than temporal domain using the
Discrete Cosine Transform (DCT). Lucey et.al [7] used the
system in [8] as their baseline system and showed significant
improvement in performance using their idea.

The first limitation of earlier work is the ambiguity in-
troduced by weakly labeled data where each member frame
is assigned the label of the sequence and such approaches
lead to a lower performance compared to the case when
ground-truth for each frame is known [8][14]. We address
this particular concern by proposing to use MIL that has
been designed specifically to handle weakly labeled data.

Secondly, [7] highlighted that incorporating the dynamics
of the pain signal is difficult since there is no information
about the number of times pain expressions can occur or
their location and duration in a sequence. Following this, [7]
suggested to add temporal information by appending adjacent
frames onto the frame of interest, as input to the SVM [15].
[7] tested this idea of appending adjacent frames in their
paper, however they found that their performance degraded.
One possible explanation is that SVM classifiers are not well
suited to weakly labeled training data and may suffer from
mislabels when the data is in this form.

Motivated by the last idea we propose to incorporate
temporal dynamics by representing each sequence not as
individual frames (as done earlier) but as sets of frames,
referred to as ‘multiple segments’. The benefits of such a
representation are reaped by using MIL, which can efficiently
handle data in such form. Since MIL handles data as bags,
we can visualize every sequence as a bag containing multiple
segments. Multiple segments (MS) has two fold advantages:
(1) it allows pain to have random duration and occurrence,
and (2) it incorporates temporal information by pooling
across multiple frames in a segment.

A third limitation of earlier work is the way in which
prediction is done for each sequence using the average
decision score of its frames. Such an approach may not be
optimal in all situations since averaging operation tends to
dampen the signal of interest. The MIL framework employed
in this work avoids this limitation based on its inherent
property of using max operation to predict the label of a
bag based on the posterior probability of its instances (see
Section. [[V)).

In a recent paper [16] Tax et al. explored the question
of whether it is always necessary to fully model the entire



sequence, or whether the presence of specific frames, called
‘concept frames’, might be sufficient for reliable detection of
facial expressions. In their study two different approaches for
AFER were investigated: (1) modeling full sequences using
approaches like Hidden Markov Models and Conditional
Random Fields, and (2) modeling only certain frames, for AU
detection in sequences. The author in [16] also suggested that
for modeling only particular key frames, algorithms like MIL
are required and investigated one such approach. Through
extensive experiments the authors showed that for reliable
classification, modeling certain key frames is sufficient com-
pared to modeling entire sequence. A limitation of ‘concept
frames’, however, is that they do not incorporate temporal
information, which could potentially be exploited by learning
algorithms such as MIL (and to some extent SVM [17]).

The present paper takes a leap forward by proposing a
dynamic variant of ’concept frames’. Here we extend the
idea of ‘concept frames’ to ‘concept segments’ consisting of
multiple frames. These ‘concept segments’ can be thought
of as localized sub-expressions that contain the expression
of interest in a sequence. Hence we state the inherent re-
search direction in this work as: ‘Reliable detection of facial
expression can be achieved by detection of key localized
segments using tailored algorithms like MIL’. It is also
worth mentioning the work in [17] where a segment based
approach, called k-Seg SVM, was explored. Structured-SVM
was employed to detect temporal events (AU segments in
their case). Our work differs from this work in several
respects, most notably that [17] is a completely supervised
algorithm requiring location information in the training data,
whereas the approach presented here operates on weakly
labeled data.

IV. MIL

The general machine learning paradigm involves find-
ing a classification function that minimizes a loss function
L(D, h(z)) over training data provided as N samples along
with their corresponding labels, D = {x;,y;}¥,, where
z; € X and y; € Y. On the other hand, the MIL paradigm
is designed to handle problems involving training data in
the form of bags, B = {X;,y;},, where X; = {z;;} .
y; € Y and N; is the number of instances in X;. Since
this work deals with binary classification problem, we shall
use the output space Y € {—1,1}. Such problems occur
frequently in computer vision since it is easier to obtain a
group label for the data compared to individual labels and
such labels can also suffer from annotator bias and noise
[13]. Recently several works have adopted MIL to address
these concerns in domains like handling label noise in video
classification [13], face recognition in videos with subtitles
[18], object localization [12], etc.

As shown in Fig.[T] the MIL framework defines two kinds
of bags, positive and negative, in a fashion similar to positive
and negative instances in traditional ML. A bag is positive
if it contains at least one positive instance, while a negative
bag contains no positive instances.

. Negative Instance
() Positive Instance

+ve éag -ve bag

Fig. 1: Figure showing positive and negative bags used in MIL. A
positive bag contains one positive instance and negative contains
only negative instance.

We employed the Multiple Instance Learning based on
boosting (MilBoost) algorithm proposed by Viola et.al [9] for
this work. In next sections we shall give a brief overview of
MilBoost algorithm which is based on Friedman’s gradient
boosting framework [19].

A. MilBoost

MilBoost combines the gradient boosting framework with
the idea of MIL to handle training data as bags. The i*" bag
is denoted by X; and ;" instance inside it is represented as
2;5. The posterior probabilities over bags and instances are
defined as:

pi = Pr(y; = 1/X;) (1)
pij = Pr(y; = 1/xi5) 2

We shall be using the original formulation defined in [9]
for the loss function given by negative log-likelihood:

N
L=-) tilogpi+(1—t)log(1—p;) ()

where t; = 1if y; =1 and t; = 0 if y; = —1. This is the
same loss function used in methods like logistic regression.

This formulation for loss function seems intuitive since
the only information available about a MIL dataset is label
information for each bag (y;). We lack any information about
the probabilities (or labels) of individual instances (p;;),
which can also be seen as latent variables, whose values
are inferred during the boosting process.

Since a positive bag contains atleast one positive instance,
the probability of bag being positive (p;) is defined in terms
of individual instances as:

Di = m]élx(pij) €]

Since the max function is not differentiable, number of
differentiable approximations to the max function have been
proposed for MilBoost [9], [18], [20]. In this work we shall
refer to these approximations as soft-max functions g(p;;).



The most common choice of soft-max function is noisy-or
(NOR).

A major disadvantage with NOR is that it deviates from
the max function as size of the bag increases which we shall
refer to as ‘bagsize-bias’. To realize this shortcoming we
consider a toy example which consists of two bags B; and
By of sizes of 3 and 5. The instance probabilities for these
bags are given by By = [.15 .15 2] and By = [.15 .15 .15 2].
As is evident the max for both cases is 2 however the NOR
formulation yields maximas as .42 and .50 respectively. This
observation clearly highlights the bagsize-bias associated
with NOR. Such a problem is critical for cases where bag
sizes might differ across training examples and ours is one
such case since number of frames per sequence vary from
60 — 600. We have investigated the effect of choosing other
soft-max functions in this work by providing a comparison
of NOR with Generalized mean (GM) [20].

Similar to other boosting frameworks, MilBoost involves
constructing a strong classifier Hy(x;;) by iteratively com-
bining many weak classifiers h;(x;;) that belong to a certain
family of function denoted by #. The equation is given as

T
Hy(zij) =Y ashy(wi;) 5)
t=1

Here Hyp denotes the classifier constructed at 7% itera-
tion. The classifier score for each instance z;; is given by
Hr(zij). These raw scores are mapped into probabilities p;;
by a sigmoid function (p;; = o(Hr(x;;)). In order to add
another weak classifier to Hp, gradient boosting framework
proposes to compute weights for each instance x;;, denoted
by w;;, by taking the gradient of the loss function £ w.r.t
Hr(z;;) ie. the classifier score at each instance at T*"
iteration. This is given as
oL

OHr(4j)

Estimating weights w;; is a tractable procedure once we
have a differentiable soft-max function [20]. The next step
involves finding a new weak learner (hpy1 € #) that has the
highest correlation with the weights w;;. This is necessary
since w;; could define any arbitrary direction and thus it is

intended to find the best approximation to w;; in the space
of H

(6)

w,-j =

N
hri1 = arg;nax Z wiih(wf) (7N
ij
This work employs binary decision stumps as weak learner,
that assigns a threshold to one of the feature dimensions
and are common choice in boosting frameworks [9]. Thus
‘H refers to the class of decision stumps. In this setting it is
easy to realize that our choice of hpi(x;;) should be the
one that follows the sign of w;; for instances with highest
weights. We refer the readers to Borris et.al [20], who have
provided a simple mathematical formulation on how Eq.
can be transformed into:

hri1 = arggninZ[h(mij) # sgn(wq;)]wi; — (8)

j

where [.] is the Iverson bracket, w;; = lei\fu‘“
is the signum function. This Equation is formulation for
any learning algorithm that can learns binary labels over
weighted samples. Hence we can find a function hry;(z;;)
at (T + 1)*" iteration that has the highest correlation with

w;; by using training algorithm for binary decision stumps.

and sgn(l)

V. MULTIPLE INSTANCE LEARNING BASED ON
MULTIPLE SEGMENTS (MS-MIL)

A. Overview

Each sequence S; is represented as a bag containing
many segments or sub-sequences {s;; }5\/:1 where N, is
the number of segments in sequence S;. Temporal con-
sistency is maintained inside a segment s;; by restricting
it to contain only contji\guous frames (see Section. [V-C),
sig = {fF ] ”_k+1}, where fF represents the
k" frame in sequence S; and N;; is the number of frames
in subsequence s;;. The only information we know about a
sequence is if it has pain i.e. y; = 1 or no-pain i.e. y; = —1.
We shall give a brief overview of the entire algorithm here.

Representation: Feature extraction process for a frame
shall be denoted by a mapping ¢, : R™" — R% that maps
frames in image space to a d—dimensional vector space.
While feature representation for a subsequence (or segment)
is represented as a mapping ¢g : S — R? that transform a
subsequence in space S to a d—dimensional vector space. We
shall use these notations in this overview and have described
them in detail in next two Subsections.

Training: Training data in the form of bags is trained
using MilBoost framework described in Section. [V-A] This
process yields a classifier Hy : R — R. The number
of iterations for MilBoost have been set to 100 in our

experiments.
Prediction: Suppose we have a test sequence S; =
{$i1, ...., sin, }. Each subsequence s;; is assigned a posterior

probability p;; using the trained classifier H7 and sigmoid
function o as:

pij = o(Hr(¢s(si5))) ©)

The posterior probability of test sequence .S; is predicted as a
function of the probabilities of its instances using a soft-max
function g(I) as:

pi = 9(pij) (10)

Avoiding Local-Minima: MilBoost algorithms can often
converge to local minima. This problem is more critical for
pain detection since theoretically the algorithm can converge
even after learning a single instance of pain expression in
a sequence as the loss function is defined over bags. In
such cases the learned function won’t be able to generalize
well over unseen data. Hence we draw parallel ideas from
bagging predictors proposed by Brieman [21], which pro-
poses to combine multiple versions of a predictor to get an
aggregated prediction. They showed improvement in results
for predictors that are unstable/get caught up in multiple local
minima. Since the problem formulation is very similar to
ours, we also ran MilBoost over multiple initializations and



bootstrapped data. The final predictions for each segment
were obtained by averaging the predictions p;; made from
multiple MilBoost classifiers. Using this approach we found
an improvement in predictions and moreover this procedure
allowed us to report results that would be reproducible. Based
on our experiments we opted to run MilBoost 25 times (any
large enough number will work fine).

Pain Localization: The prediction process estimates the
posterior probability of each segment s;; in S;. Each frame
in a sequence is assigned a posterior probability by first
identifying the segment it belongs to. Following this, the
frame is assigned a score based on its proximity from the
center of that segment. In this work a hamming window is
employed to assign a smoothly varying score to different
frames in a segment. Since a frame could belong to multiple
segments, it is assigned the maximum score from all these
segments. For instance, the probability of frame fF in pain
is predicted using the following:

ppe=ply =1/fF) = max(w(si;) «pij|fF € si5) (1D

where w(s;;) is the hamming window function centered
at segment s;;. Thus our algorithm not only yields the
probability for a sequence but also the probability for each
frame that can be used to localize painful frames in a video

(see Section [VIII).
B. Bag of Words based Representation (BoW)

Recently computer vision has witnessed significant re-
search in BoW models and their extensions, and as a result
they have been applied across multiple domains. Sikka et
al. [22] presents a survey of different BoW Architectures
for AFER. They identified many advantages of BoW based
approaches over previous approaches to AFER based on
Gabor wavelets, local binary patterns, etc. and have proposed
a state-of the-art feature pipeline through experimental anal-
ysis.

We employed the system proposed in [22] for repre-
sentation, and built a spatial pyramid of level 4 on top
of highly discriminative multi-scale dense SIFT (MSDF)
features, which are encoded using LLC encoding followed
by max-pooling. As proposed, we also employed a separate
dataset (C' K+ [23]) for building a codebook (size 200 in this
case) for encoding features. It is important to note that this
strategy highlights the fact that feature extraction process
is completely independent of the dataset. Our experiments
yielded that MSDF features at two scales are sufficient
for this problem and hence extracted MSDF features with
window sizes of 4 and 8 and strides of 2 pixels. As mentioned
in the Overview section, the feature extraction operation
using BoW is denoted as a mapping ¢ ..

C. Multiple Segments

A segment is defined as a subset of original sequence that
contains only contiguous frames. Moreover in the current
framework a sequence is allowed to contain overlapping seg-
ments. As highlighted in Section the motivation behind
multiple segments is that it allows random onset of pain

expression, incorporates dynamic information, and can be
efficiently handled by the MIL framework. It is assumed that
for a sequence labeled as pain, at least one of the segments
will contain a painful expression, and such a positive segment
is referred to as a ‘concept segment’.

Construction: We propose two ways to generate these
multiple segments. A naive procedure is to run overlapping
temporal scanning windows at multiple scales (referred to
as Sc-wind) across the sequence and represent each subset
of frames as a segment. This idea is motivated by the
traditional approach in computer vision of running multi-
scale scanning windows prior to a detection task. This idea
has been exploited in previous work on weakly-supervised
object localization [10] [9]. A parallel approach of generating
multiple segments was explored in [12]. Here an image was
segmented into many clusters using the idea of multiple sta-
ble segmentation. Each segmentation is obtained by varying
the parameters of normalized cuts (referred to as Ncuts). We
explored an analogous approach by clustering the frames in a
sequence using Ncuts. Since we wanted to restrict a segment
to contain only contiguous frames, the weight matrix was
defined to incorporate the similarity between the time index
of two frames along with their feature similarity. This weight
matrix is used as an input to Ncuts. Each element of this
weight matrix W;(r, s) defines the similarity between frames
fi and f;? of sequence S;:

OnUD—OnUDE) L

W(r,s) =exp (|
of
tr - ts

Ot

..exp(—| %) (13)

where ¢, refers to time indexes of frame f;.

Once the segments are constructed using either of the
two approaches, it is important to represent them as fixed-
length vectors while also maintaining temporal information.
[7] have highlighted that an elegant way of doing this is
to append adjacent frames onto the frame of interest. We
employed this idea along with max feature pooling, proposed
for AFER in [22], for feature extraction. This process is
represented as a mapping ¢g : S — R that maps a segment
si; = {fF, fE ,fiN”_kH} belonging to set S to a
d-dimensional vector space and can be shown as:

¢s(sij) = mazi(dpr (1) fF € si5)

Recently several works [24] [25] have highlighted the per-
formance advantages of the max pooling operation compared
to standard pooling operations like averaging.

(14)

VI. EXPERIMENTS

The details of UNBC-McMaster pain dataset which was
used for our experiments can be found in Section Ex-
periments were conducted in a leave-one-subject-out cross-
validation strategy. Thus there is no overlap between subjects
in the training and testing data. For reporting the results, we
follow the strategy employed in [7] [8], where they reported
total classification rate, which refers to the percentage of



correctly classified sequences, computed at Equal Error Rate
in the Receiver Operation Curve.

A. MIL vs traditional machine learning approaches

We have argued the aptness of MIL to handle sequences
represented as multiple segments compared to traditional
ML algorithms. This argument has been validated by using
the same multiple segment representation but replacing MIL
with linear SVM. All the segments in the training data are
assigned the label of sequence and used to train this SVM.
This strategy, if not same, is in spirit similar to that employed
in previous works ([7] ([8]). Finally during prediction a
combining rule is used to assign each sequence a decision
score based on the score of its member segments [16].
We have explored two common combining rules, namely
maxima (similar to MIL and used in [16]) and average ([7]
[8]) and the corresponding SVMs are referred to as MS-
SVMp,q0, and MS-SVM,4.

We have also explored two approaches for generating
multiple segments, namely via multi-scale temporal scanning
windows and multiple clustering. This is accomplished by
considering four scenarios as shown in Table. [I] by using
different settings for the two methods for generating multiple
segments. This will also allow us to study the effect of
varying number of segments. Since number of frames are
different across videos, we determine the number of clusters
for Ncuts by fixing minimum number of elements (frames) in
a cluster. The values of other parameters are kept constant
for all experiments (0; = 100 and oy = 10k). The two
parameters for scanning window based method are: (1)
window size, and (2) overlap between two windows. The
overlap is set as 50% of the window size in all cases. We have
also studied the effect of two different soft-max functions
on our algorithm. This is necessary since soft-max functions
show deviation from max function with different number of
bags.

Name | Method Min Window
frames size
S1 Ncut 30 -
Sa2 Ncut 30,40, 50 -
S3 Sc-wind - 31
Sa Sc-wind - 31,41,51

TABLE I: Methods compared for generating multiple clusters. Each
S; refers to a different setting.

Setting MS-MIL ML-SVMinae | ML-SVMgug
NOR GM
S1 83.7 | 81.52 75.51 68.71
So 82.61 | 82.99 72.79 69.39
S3 82.61 | 82.61 76.19 68.71
S4 81.52 | 83.7 74.83 70.75

TABLE II: Comparison of MS-MIL with traditional machine learn-
ing approaches across four different settings.

B. MS-MIL vs Other Pain Detection Algorithms

We have also provided a comparison between MS-MIL
and previous state of the art algorithms ([8] [7] for Pain

Detection as shown in Table. Although it is not possible
to directly compare the results owing to different number of
subjects and samples, we would like to highlight that our
experiments have been conducted with a larger number of
samples (147 vs 142 and 84 in [7] and [8] respectively).
Secondly there isn’t much difference between the number of
samples used in [7] and ours (5/147 samples), in which case
the results could be comparable to some extent.

Method Accuracy | #subjects | #samples
(at EER)

MS-MIL 83.7 23 147
Lucey et.al [7] 80.99 20 142
Ashraf et.al [8] 68.31 20 142
(shown in [7])

Ashraf et.al [8] 81.21 21 84
ML-SVMg4 4 70.75 23 147
ML-SVM,p a4 76.19 23 147

TABLE III: with different algorithms for pain detection in videos.

VII. RESULTS AND DISCUSSION

Table. [[II] shows that MS-MIL achieves a higher perfor-
mance compared to its counterparts. MS-MIL shows more
than 7% improvement over both ML-SVMg,y and ML-
SVM, ... Although we have stated that a direct comparison
with previous algorithms is not possible, some inferences
could still be made. Firstly the results of [8] (as implemented
by Lucey et al. in [7]) and [7], whose experimental settings
are very close to ours, shows an accuracy of 68.31% and
80.99% respectively, compared to 83.7% performance of
MS-MIL. Thus it could be argued that MS-MIL shows signif-
icant performance improvement over [8] and is comparable
to (or better) than [7].

Our argument that multiple segments are efficiently han-
dled by MIL is validated by the comparison of MS-MIL with
SVM based methods in Table. [l Here MS-MIL performs
better than both ML-SVM,,,,; and ML-SVM,,, ., in all of the
settings considered. A trend can be observed in moving from
lower (S7 and S3) to higher number (S5 and Sy) of segments
for different algorithms for generating multiple segments.
MS-MIL based on NOR soft-max function shows a decrease
in performance, while for MS-MIL employing GM soft-max
function the performance improves. This observation falls
in line with the argument presented in Section that
NOR soft-max approximation to the max function deviates
as the size of the bags increases. Based on this observation,
GM seems to be a better choice for the soft-max function.
The results also indicate that ML-SVM,,, .. outperforms ML-
SVM,,,4 for all cases since the averaging operation is known
to dampen the signal of interest.

The best result of 83.7% was obtained with MS-MIL
under the setting S4 and GM soft-max function. Although
a similar result was obtained with setting S1 and NOR
soft-max function, it could have resulted from bag-size bias
associated with NOR function. Hence we propose setting
Sy with GM soft-max function for pain detection and for
performing pain localization in Section.
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Fig. 2:

VIII. LOCALIZATION OF PAIN

We show 4 cases in Fig. [2] to highlight the ability of
our algorithm to localize pain. This visualization compares
the posterior probability per frame predicted by MS-MIL
against frame level pain intensities (PSPI index) provided
as a form of ground-truth labels with this dataset. The
Prkachin and Solomon pain intensity index (PSPI) is a metric
that combines intensities of 4 Action units (AUs) from the
Facial Action Coding System (FACS) [26]. Each frame in
the dataset was FACS coded by experts, and the PSPI was
computed for each frame. The PSPI does not always agree
with observer ratings of pain.

We remind readers that MS-MIL uses only sequence level
labels to generate these predictions. In order to facilitate
direct comparison between probabilities and the PSPI index
on the same vertical scale, PSPI index was normalized in the
range of [0, 1] by dividing by maximum PSPI score of 16
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Pain Localization: Example showing the performance of our algorithm for pain localization vs ground-truth frame labels (PSPI).
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These visualizations support our claims that MS-MIL is
capable of joint classification and localization of pain. It
is evident from Fig. 2a] and Fig. that our algorithm
is able to identify multiple occurrences of pain. Secondly
the posterior probabilities predicted by MS-MIL seem to
correlate well with the PSPI index. We wanted to draw
attention to one major advantage of learning pain expression
through sequence level labels. Fig. [2b] shows a case of a pain
sequence whose PSPI ground-truth score was zero across
all frames but the observer rated the facial expression as
showing pain (OPI= 3). Our algorithm, which was trained on
observer ratings (at the sequence level), was able to localize
pain in this case. One explanation for zeros in the PSPI index
is that it is based on intensities of 4 AUs which might not be
able to account for all possible ways pain can be expressed,
or perceived as pain by observers. We would also like to



highlight a case where MS-MIL correctly assigned a lower
probability to a segment that gave an impression of a subject
expressing pain. One such case is shown in Fig. 2d] where
MS-MIL assigns a probability < .5 to the segment around
frame 600 where the subject was talking

Videos for all 4 cases shown in Fig. [2] are available for
public view on Youtube [1]

IX. CONCLUSION

This paper proposed a novel approach to the problem
of detecting spontaneous expressions of pain in videos,
based on multiple instance learning (MIL). We presented a
novel framework called multiple-segment multiple instance
learning (MS-MIL) which incorporates with MIL a dynamic
extension of concept frames.

The paper first highlighted some limitations of previous
approaches and how they motivated the design of pro-
posed algorithm. Next, a brief overview of multiple instance
learning was presented, followed by the description of the
proposed approach, MS-MIL. We then showed the perfor-
mance advantages of representing each sequence as multiple
segments, and how multiple instance learning efficiently
handles such representations compared to traditional ma-
chine learning approaches. Different methods for extracting
multiple segments and soft-max functions for MIL were
also compared. We tested our algorithm on the UNBC Mc-
Master Shoulder Pain archive, and obtained a significant
improvement in results over algorithms based on traditional
machine learning.

From our experiments it is evident that pain detection in
videos is a challenging problem owing to the variability asso-
ciated with how pain can be expressed by different subjects
at different times and scenarios. The present algorithm is
able to do an appreciable job of not only detecting pain, but
also identifying the temporal location of pain expressions
within the video clip. The most salient contribution of this
work is that pain localization is achieved without any human
intervention and employing only sequence level labels.
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